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Abstract. Soil organic carbon (SOC) is very important in the vulnerable ecological environment of the Third
Pole; however, data regarding the spatial distribution of SOC are still scarce and uncertain. Based on multiple
environmental variables and soil profile data from 458 pits (depth of 0–1 m) and 114 cores (depth of 0–3 m), this
study uses a machine-learning approach to evaluate the SOC storage and spatial distribution at a depth interval of
0–3 m in the frozen ground area of the Third Pole region. Our results showed that SOC stocks (SOCSs) exhibited
a decreasing spatial pattern from the southeast towards the northwest. The estimated SOC storage in the upper
3 m of the soil profile was 46.18 Pg for an area of 3.27× 106 km2, which included 21.69 and 24.49 Pg for areas
of permafrost and seasonally frozen ground, respectively. Our results provide information on the storage and
patterns of SOCSs at a 1 km resolution for areas of frozen ground in the Third Pole region, thus providing a
scientific basis for future studies pertaining to Earth system models. The dataset is open-access and available at
https://doi.org/10.5281/zenodo.4293454 (Wang et al., 2020).

1 Introduction

Soil is an important part of the global terrestrial ecosystem
and represents the largest terrestrial organic carbon pool with
the longest turnover time (Amundson, 2001). This is espe-
cially true in areas of frozen ground, including permafrost
and seasonally frozen ground. In cold environments, soil ac-
cumulates substantial organic carbon due to slow decomposi-
tion rates and repeated freeze–thaw cycles (Fan et al., 2012;

Li et al., 2020). It has been reported that more than half of
the world’s soil organic carbon (SOC) is stored in permafrost
regions (Hugelius et al., 2014; Ping et al., 2015). Even slight
changes in the decomposition of the SOC pool in permafrost
regions might lead to significant changes in the atmospheric
CO2 concentration, which plays an important role in regulat-
ing and stabilizing the carbon balance of global ecosystems
(Schuur et al., 2015). Therefore, it is of great significance
to accurately estimate the storage and spatial distribution of
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SOC in regions of frozen ground in order to study the carbon
cycle of this ecosystem as well as global change.

As the “roof of the world”, the Third Pole is the area of
frozen ground at the highest average altitude in the middle
and low latitudes of the Northern Hemisphere. The Third
Pole is also one of the most sensitive areas with respect to
global climate change and has a warming rate that is approx-
imately twice the global average (Stocker et al., 2013). In
the past few decades, permafrost in the Third Pole region
has experienced obvious degradation (Mu et al., 2020b; Ran
et al., 2018; Turetsky et al., 2019; Wu et al., 2012). Per-
mafrost degradation will not only cause serious geological
disasters and affect engineering construction in cold areas,
but it will also accelerate the decomposition of the huge SOC
pool stored in permafrost (Cheng and Wu, 2007; Cheng et
al., 2019; Ding et al., 2021). Moreover, it will emit a large
amount of greenhouse gases into the atmosphere, thus in-
creasing the rate of climate change in the future (Schuur et
al., 2015). Therefore, accurate estimates of the SOC storage
and spatial distribution in the areas of frozen ground in the
Third Pole region have become important for Earth system
modeling. Such estimates are widely used to study the car-
bon cycle of this ecosystem and global change (Koven et al.,
2011; Lombardozzi et al., 2016; McGuire et al., 2018).

Early studies were mostly based on data from China’s
national soil survey and were combined with regional
vegetation–soil maps to estimate the SOC pool for a cer-
tain vegetation type or relatively small area (Wang et al.,
2002; Zeng et al., 2004). Up until 2008, the Chinese part of
the Qinghai–Tibet Plateau (QTP) was taken as an indepen-
dent geographical unit to estimate the SOC pool in the upper
100 cm of the soil profile (Tian et al., 2008; Wu et al., 2008).
However, these studies did not distinguish between regions
of permafrost and seasonally frozen ground. In recent years,
based on soil profile data and vegetation–soil maps, some
studies have estimated the SOC pool in the QTP permafrost
region (Mu et al., 2015; Zhao et al., 2018; Jiang et al., 2019).
The aforementioned studies improved our understanding of
SOC storage in the Third Pole region, but estimation results
of 0–3 m SOC pool have large uncertainties, ranging from
17.1 to 40.9 Pg. In addition, the large-scale maps of vege-
tation and soil types used in these studies were associated
with large uncertainties because they were created years ago
and have a low spatial resolution, thus leading to potentially
large errors in the estimated total SOC pools (Mishra et al.,
2013; Mu et al., 2020a). Recently, considerable progress has
been made in digital soil mapping methods. Spatial inter-
polation, linear regression, and machine learning have been
widely used to simulate the spatial distribution of SOC in
the permafrost region of the QTP (Ding et al., 2016, 2019;
Wang et al., 2020; Yang et al., 2008). These studies have pro-
vided new spatial data and improved the prediction accuracy
of SOC compared with earlier studies. However, few studies
to date have systematically assessed SOC pools across areas
of seasonally frozen ground in the Third Pole region, which

limits many investigations requiring SOC data for these ar-
eas.

To evaluate the size and high-resolution spatial patterns of
SOC stocks in the Third Pole region, we carried out a large-
scale field-sampling plan that covered representative per-
mafrost zones over the region’s bioclimatic gradient, includ-
ing a large unpopulated area with harsh natural conditions. A
total of 200 soil pits were excavated, most of which were
deeper than 2 m. In addition, we collected field-measured
SOCS data for the Third Pole region from relevant literature
published between 2000 and 2016 (Ding et al., 2016; Song
et al., 2016; Xu et al., 2019; Yang et al., 2008). By com-
bining high-resolution remotely sensed data and interpolated
meteorological datasets, we simulated the spatial distribution
of SOCSs in the Third Pole region by three machine-learning
methods and calculated the SOC storage of specific soil inter-
vals (0–30, 0–50, 0–100, 0–200, and 0–300 cm). The results
provide basic data for Earth system modeling and reference
methods for studying the spatial distribution of soil elements
under complex terrain.

2 Materials and methods

2.1 Study area

The Third Pole is the highest plateau in the world and is lo-
cated on the QTP and its surrounding mountains, which in-
clude Pamir and Hindu Kush mountain ranges in the west,
the Hengduan Mountains in the east, the Kunlun and Qilian
Mountains in the north, and the Himalayas in the south (Yao
et al., 2012). In addition, the Third Pole is the largest high-
altitude permafrost zone in the Northern Hemisphere, with a
total permafrost area of approximately 1.72× 106 km2, thus
representing ∼ 8 % of permafrost regions in the Northern
Hemisphere (Obu et al., 2019). The area of seasonally frozen
ground covers an area of approximately 1.55× 106 km2,
which is mainly located in the eastern and southern parts
of the Third Pole as well as at lower elevations of basins
(Fig. 1). The Third Pole is mainly covered by five ecosys-
tems: forests, shrubs, grasslands, croplands, and deserts (Hao
et al., 2017).

2.2 Data processing

2.2.1 Soil organic carbon data

The collected SOC data used in this study included field-
investigated data and available published data for a total of
371 soil samples (458 samples for the 0–100 cm soil layer
and 113 samples for the 0–300 cm soil layer).

1. Field-measured data. A total of 200 soil pits were ex-
cavated between 2009 and 2011; 72 soil pits were ex-
cavated manually in 2009, and 128 soil pits were exca-
vated with hydraulic excavators in 2010 and 2011. Most
of the pits were deeper than 2 m, unless rock layers were
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Figure 1. Distribution of soil pits in the Third Pole region (the frozen ground map is derived from Obu et al., 2019).

Figure 2. Fieldwork photographs showing (a) soil sample collection and (b) a soil profile.

detected. For each soil profile, we collected soil samples
at depth intervals of 0–10, 10–20, 20–30, 30–50, 50–
100, and 100–200 cm (Fig. 2). The bulk density samples
were obtained for each layer using a standard soil sam-
pler (5 cm diameter and 5 cm high stainless-steel cutting
ring), and bulk density was calculated as the ratio of the
oven-dry soil mass to the container volume. Soil sam-
ples for carbon analysis were air-dried, handpicked to
remove plant detritus, and then sieved through a 2 mm
mesh to calculate the volume percentage of the gravel.
The SOC content was determined using the Walkley–
Black method after soil samples were pretreated by air
drying, grinding, and screening. The analyses were car-
ried out in triplicate using subsamples, and the mean of
three values was used as the SOC content. The SOCS
was calculated using Eq. (1):

SOCS=
n∑
i=1

Ti ×BDi ×SOCi ×
(1−Ci)

10
, (1)

where Ti , BDi , SOCi,, and Ci are soil thickness (cm),
dried bulk density (g cm−3), SOC content (%), and
> 2 mm rock fragment content (%) at layer i.

2. Available published data. We compiled all available in-
formation from the studies on SOC stocks in the Third
Pole regions published after 2000. The following three
criteria are used to screen the data of SOC stocks from
the published literature: (1) the SOC data must be field
investigated data; (2) eliminate sample data with miss-
ing geographic location information and sampling time;
(3) SOC measuring methods were similar to our ex-
perimental procedure. Finally, the four papers selected
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encompassed the main ecosystems in the Third Pole,
namely forest, grassland, desert, cropland, and shrub
ecosystems. Specifically, data pertaining to a soil depth
interval of 0–30 cm (n= 135) were retrieved from Yang
et al. (2010) for the SOC database; data pertaining to a
depth interval of 0–100 cm (n= 93) were obtained from
Xu et al. (2019); data pertaining to a depth interval of 0–
100 cm (n= 30) were retrieved from Song et al. (2016).
Moreover, additional data for 0–3 and 0–2 m depth in-
tervals (n= 113) were retrieved from Ding et al. (2016).

Combined with the available published data and field-
investigated data (Table 1), the 458 soil pits (depth of 0–1 m)
and 114 soil cores (depth of 0–3 m) can represent the ecosys-
tem types and characters in large areas of the Third Pole (Ta-
ble 2).

2.2.2 Environmental covariates

The environmental covariates used in this study included a
digital elevation model (DEM), remotely sensed data, and
spatial interpolation data (Table S1).

A DEM at a spatial resolution of 1 km was downloaded
from the International Scientific Data Service Platform (http:
//datamirror.csdb.cn, last access: 8 July 2021). Using the
DEM data and SAGA GIS software, we calculated 14 terrain
attributes: elevation (H), slope (S), aspect (A), plan curvature
(PlanC), profile curvature (ProC), topographic wetness index
(TWI), total catchment area (TCA), relative slope position
(RSP), slope length and steepness factor (LS), convergence
index (CI), channel network base level (CNB), channel net-
work distance (CND), valley depth (VD), and closed depres-
sions (CD).

Mean annual air temperature (MAT) and mean annual
precipitation (MAP) data were downloaded from World-
Clim version 2.1 (https://www.worldclim.org, last access:
8 July 2021). These datasets were generated by organizing,
calculating, and spatially interpolating observed data from
global meteorological stations for the period 1970–2000.

Normalized difference vegetation index (NDVI) data were
obtained from the United States Geological Survey (USGS)
(http://modis.gsfc.nasa.gov/, last access: 8 July 2021). The
datasets underwent atmospheric, radiometric, and geomet-
ric correction, with a spatial resolution of 1 km for every
1-month interval over the period 2000–2015. The NDVI
product was calculated using the maximum value composite
(MVC) method, which can minimize the effects of aerosols
and clouds (Stow et al., 2004).

The net primary productivity (NPP) and leaf area in-
dex (LAI) data were obtained from the Global Land Sur-
face Satellite (GLASS, V3.1), which is estimated from the
MODIS reflectance data using the general regression neural
network (GRNN) method (Liang et al., 2013). Data were at
a 1 km resolution for 8 d periods between 2000 and 2015 and
were downloaded from the National Earth System Science

Figure 3. Workflow diagram for predicting SOCS in this study.
RF: random forest; SVM: support vector machine; GBRT: gradient
boosted regression tree.

Data Center of the National Science & Technology Infras-
tructure of China (http://www.geodata.cn).

The soil texture data, including sand, silt, and clay con-
tents, were obtained from the SoilGrids250m database (http:
//www.isric.org, last access: 8 July 2021). The original 250 m
spatial resolution data were resampled to a 1 km resolution
based on nearest neighbor interpolation using ArcGIS 10.2
software (ESRI, Redlands, CA, USA).

The land cover data used in this study were collected from
the Land Cover Type Climate Modeling Grid (CMG) product
(MCD12C1) from 2010 (https://lpdaac.usgs.gov, last access:
8 July 2021). The classification schemes in this study were
based on the global vegetation classification scheme of the
International Geosphere-Biosphere Programme (IGBP). We
reclassified the land cover types into five major categories:
forest, shrub, grassland, cropland, and desert.

2.3 Model predictions

2.3.1 Geographical modeling and selection of the
predictors

In this study, three machine-learning methods (random forest
(RF), gradient boosted regression tree (GBRT), and support
vector machine (SVM)) were constructed and validated us-
ing the SOCS in the upper 30 cm of soil profiles along with
associated variables (Fig. 3).
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Table 1. Summary of soil organic carbon datasets used in this study.

Number of samples Depth interval Period Method Source

135 0–100 cm 2001–2005 Walkley–Black method Yang et al. (2010)
30 Genetic horizon 2012–2013 Walkley–Black method Song et al. (2016)
93 0–100 cm 2004–2014 Walkley–Black method Xu et al. (2019)

113 0–200 and 0–300 cm 2013–2014 Walkley–Black method Ding et al. (2016)
200 0–200 cm 2009–2013 Walkley–Black method Field-investigated

Figure 4. Extrapolation function of the SOCS between soil depth intervals of (a) 0–100 and 0–200 cm in grassland ecosystems, (b) 0–100
and 0–200 cm in desert ecosystems, and (c) 0–200 and 0–300 cm in grassland ecosystems.

Table 2. Number of soil sample points of different ecosystems in
the Third Pole region.

Ecosystem
types Forest Shrub Grassland Desert Cropland

Number 10 22 371 49 6

With respect to the machine-learning methods used, RF is
used for classification, regression, and other tasks. It is op-
erated by constructing a large number of decision trees dur-
ing training and outputs the class as the classification or re-
gression patterns of single trees (Tin Kam, 1998). The GBRT
method is an iterative fitting algorithm composed of multiple
regression trees and combines regression trees with a boost-
ing technique to improve predictive accuracy (Elith et al.,
2008). The SVM regression method uses kernel functions to
construct an optimal hyperplane, which has a minimal total
deviation (Drake and Guisan, 2006). Combined with the re-
motely sensed data and spatial interpolation data, RF, GBRT,
and SVM regression were conducted to predict the SOCS
in the Third Pole region. The “randomForest”, “gbm”, and
“e1071” packages in R were used to perform RF, GBRT, and
SVM analyses.

The 15 input variables (H, S, TWI, TCA, RSP, CNB, CND,
VD, NDVI, NPP, LAI, MAP, MAT, sand, and silt) for the
three regression models were selected because they can re-
flect the effects of topography, climate, vegetation, and soil

Figure 5. A Taylor diagram used to evaluate the model performance
of random forest (RF), support vector machine (SVM), and gradient
boosting regression tree (GBRT) models, which were used to pre-
dict the SOCS in the upper 30 cm of soil profiles across the Third
Pole. The contour centered on the observed indicates the root-mean-
square error (RMSE, kg m−2) between the predicted value and ob-
served value.

properties on regional SOCS. Moreover, these variables were
significantly associated with the SOCS at a depth interval of
0–30 cm (P < 0.01, Table S2), whereas other environmental
factors were eliminated due to their low correlation coeffi-
cients.
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Figure 6. “Leave-one-out” cross-validation for the RF model used to predict the SOCS at (a) 0–30 cm, (b) 0–50 cm, and (c) 0–100 cm depth
intervals.

2.3.2 Estimation method of SOCS in deep soils

To generate the spatial distributions of SOCS in deep layers
(below a depth of 100 cm), we established nonlinear extrap-
olation models (Fig. 4a–b; Eqs. 2–4) between the SOCS in
the upper 100 cm interval and the SOCS in the upper 200 cm
interval using the data from the 200 soil pits in grassland
(n= 151) and desert ecosystems (n= 49, Fig. S1). A third
extrapolation model between the SOCS in the upper 200 cm
interval and the SOCS in the upper 300 cm interval in grass-
land ecosystems was established using the data from 114
sites reported by Ding et al. (2016) (Fig. 4c; Eq. 4).

lnSOCSG(0–200 cm) =

0.9708× lnSOCSG(0–100 cm)+ 0.3128 (2)

lnSOCSD(0–200 cm) =

0.8690× lnSOCSD(0–100 cm)+ 0.7649 (3)

lnSOCSG(0–300 cm) =

0.9521× lnSOCSG(0–200 cm)+ 0.3296, (4)

where lnSOCSG(0–100 cm) , lnSOCSG(0–200 cm) , and
lnSOCSG(0–300 cm) are the natural logarithms of the SOC
stocks (kg m−2) in grassland ecosystems at the depth
intervals of 0–100, 0–200, and 0–300 cm, respectively;
likewise, lnSOCSD(0–100 cm) and lnSOCSD(0–200 cm) are the
natural logarithms of the SOC stocks (kg m−2) in desert
ecosystems at the depth intervals of 0–100 and 0–200 cm,
respectively.

It is impossible to build extrapolation models directly to
estimate deep SOC storage in forest, shrub, and cropland
ecosystems, which lack deep soil pits below 100 cm. There-
fore, according to the vertical distribution of the SOCS asso-
ciated with different land cover types worldwide from Job-
bagy and Jackson (2000), the extrapolation models shown
in Eqs. (5)–(6) were established indirectly to estimate deep
SOC storage (below a depth of 100 cm) in areas of these land
cover types (Fig. S1). Correspondingly, Eq. (7) was estab-

lished to estimate the deep SOC storage (below a depth of
200 cm) in desert ecosystems due to a lack of deep soil pits
below 200 cm.

SOCS0–200 cm = (1+β100–200 cm)×SOCS0–100 cm (5)

SOCS0–300 cm =

(1+β100–200 cm+β200–300 cm)×SOCS0–100 cm (6)

SOCS0–300 cm =

SOCS0–200 cm+β200–300 cm×SOCS0–100 cm, (7)

where β100–200 cm and β200–300 cm are proportion of
SOCS100–200 cm and SOCS200–300 cm in SOCS0–100 cm, re-
spectively.

The calculation of the SOC storage (Pg) for a region gen-
erally uses Eq. (8):

SOCstorage =

n∑
i=1

SOCSi ×A× 10−12, (8)

where SOCSi is the SOCS (kg m−2) at site i, and A is the
area (m2) of each grid unit.

2.3.3 Model validation

To test the predictive effects of the three machine-learning
methods, “leave-one-out” cross-validation was conducted.
We used the R2 value, the mean error (ME, Eq. 9), and the
root mean square error (RMSE, Eq. 10) to evaluate the per-
formance of the prediction models.

ME=
1
n

n∑
i=1

[
D(xi)−D∗(xi)

]
(9)

RMSE=

√√√√1
n

n∑
i=1

[
D(xi)−D∗(xi)

]2
, (10)

where D(xi) is the measured SOCS, D∗(xi) is the predicted
SOCS, and n is the number of validation sites.
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Figure 7. Spatial distribution of SOCS at different depth intervals over the Third Pole.

3 Results

3.1 Performance of machine-learning methods

The results of the “leave-one-out” cross-validation showed
that the RF model exhibited a Pearson’s correlation coeffi-
cient of 0.81, which was higher than that of the GBRT model
(0.79) and SVM model (0.77). In addition, the RMSE of the
RF model (3.01 kg m−2) was lower than that of the GBRT
model (3.11 kg m−2) and SVM model (3.21 kg m−2) for the
upper 30 cm of the soil profile (Fig. 5). These results suggest
that the RF model provides a better tool for predicting the
spatial distribution of SOCS in the Third Pole region. More-
over, in order to further discuss the simulation accuracy of
the RF model in this study, “leave-one-out” cross-validations
were conducted for depth intervals of 0–50 and 0–100 cm.
The results revealed high R2 as well as low RMSE and ME
values (Fig. 6).

3.2 Storage and spatial distribution of soil organic
carbon

Figure 7 shows a large spatial variability of the SOCS across
the Third Pole region, whereby an overall decreasing trend
can be observed from the southeast towards the northwest.
The wetland area in the eastern region of the Third Pole
(Ruoergai) had the highest predicted SOCS for a depth inter-
val of 0–300 cm (> 32 kg m−2), whereas the northern region
(Qiangtang Plateau and Qaidam Basin) had the lowest SOCS
(< 8 kg m−2). The estimated mean SOCS for the entire Third
Pole region at depth intervals of 0–30, 0–50, 1–100, 0–200,
and 0–300 cm was 4.84, 6.45, 8.51, 11.57, and 14.17 kg m−2,
respectively. Correspondingly, the total estimated SOC stor-
age was 15.79, 21.04, 27.75, 37.71, and 46.18 Pg at 0–30,
0–50, 0–100, 0–200, and 0–300 cm, respectively (Table 3).
In addition, the SOCS decreased with increasing soil depth
across the Third Pole region, with 34.26 % of the total SOC
storage for a depth interval of 0–300 cm being contained in
the uppermost 30 cm and only 17.89 % in the 200–300 cm
depth interval.
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Figure 8. Comparison of spatial details of the predictions with the previous studies: SOCS at 0–300 cm depth in the map excerpt of
Budongquan area of Qinghai province, China. (a) Ding et al. (2016); (b) Ding et al. (2019); (c) Wang et al. (2020); (d) this study.
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Table 3. Summary of the estimated mean SOC stocks and storages in permafrost and seasonally frozen ground of the Third Pole.

Depth (cm) SOC stock (kg m−2) SOC storage (Pg)

Seasonally Seasonally
Permafrost frozen ground Third Pole Permafrost frozen ground Third Pole

0–30 4.13 5.56 4.84 7.61 8.63 15.79
0–50 5.72 7.16 6.45 10.53 11.12 21.04
0–100 7.28 9.70 8.51 13.41 15.06 27.75
0–200 10.25 12.88 11.57 18.88 19.99 37.71
0–300 12.52 15.40 14.17 21.69 24.49 46.18

Figure 9. Comparison of the SOCS prediction with the WISE30sec from Batjes (2016) and the SoilGrids250m from Hengl et al. (2017) at
0–200 cm depth intervals based on the 213 SOCS data from Ding et al. (2016) and field investigations.

https://doi.org/10.5194/essd-13-3453-2021 Earth Syst. Sci. Data, 13, 3453–3465, 2021
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Compared with the area of seasonally frozen ground, the
mean SOCS and total SOC storage in the permafrost region
were lower in each soil layer. The estimated amount of SOC
stored at a depth interval of 0–300 cm in the permafrost and
seasonal frozen ground zone was 21.69 and 24.49 Pg, respec-
tively, which accounted for 46.97 % and 53.03 % of the total
SOC pools, respectively.

4 Discussion

In this study, we provided the new version of 1 km resolution
maps of SOCS across the Third Pole at 0–300 cm depth inter-
vals, which largely makes up for the deficiencies of previous
studies (Ding et al., 2016, 2019; Wang et al., 2020). On the
one hand, our predictions have higher resolution than those
studies. Take an example and focus on a 4.5× 104 km2 local
area situated in the Budongquan area of Qinghai province,
China (Fig. 8). It can be seen from the excerpts of the map
that our prediction is much more detailed than previous stud-
ies. Thus, our predictions better represented spatial variation
of the SOCS across the Third Pole region, especially for
those regions with large heterogeneity. On the other hand,
these reports focused mostly on the permafrost regions rather
than the whole Third Pole (Ding et al., 2016; Wang et al.,
2020). To date, few studies have investigated the SOC stor-
age and spatial patterns in areas of seasonally frozen ground
in the Third Pole region. In this study, we created high spatial
resolution data of SOCS distribution in the whole Third Pole
by compiling all the field data and using machine-learning
methods, thus providing more accurate data than previous
studies.

In addition, our predictions were much more accurate
than the existing global SOC datasets. Figure 9 shows ac-
curacy assessments of our predictions, the SoilGrids250m
from Hengl et al. (2017), and the WISE30sec SOCS data
from Batjes (2016) at 0–2 m depth intervals based on the 213
SOC stock data from Ding et al. (2016) and field investi-
gations. We found that our prediction had a higher R2 value
and lower RMSE value than SoilGrids250m and WISE30sec.
The lowest accuracy was found for the WISE30sec maps,
showing the advantage of digital soil mapping based on ma-
chine learning over conventional mapping method based on
the vegetation–soil units (Liu et al., 2020). The lower accu-
racy of SoilGrids250m than our predictions is mainly be-
cause of serious overestimation of bulk density, as well as
the neglected influence of coarse gravel content (Hengl et al.,
2017). Soil profile data used in SoilGrids250m at the Third
Pole region are mainly from China’s second national soil sur-
vey, which lacked accurate information on coarse-gravel con-
tent and bulk density (Shi and Song, 2016). In addition, al-
most all of these soil profiles are within 1 m depth, which
could be a great instability in calculating the deeper SOC by
SoilGrids250m. Moreover, the global model building could
be less accurate than the regional model building when fo-

cusing on a regional extent (Vitharana et al., 2019; Liu et al.,
2020). Consequently, our predictions were much more accu-
rate than the existing maps of SOCS.

Our study provides new and more accurate data on SOC
storage and spatial patterns for a depth interval of 0–3 m at
a 1 km resolution over the Third Pole region, thus providing
basic data for future studies pertaining to Earth system mod-
eling. We note that a lack of deep soil pits in forest, shrub,
and cropland ecosystems (Fig. S2) means some uncertain-
ties in the estimation of deep SOC pools remain; however,
the collective area of these ecosystems accounts for < 6% of
the total area of the Third Pole region and may have a rela-
tively small influence on total SOC pools (Fig. S1). Regard-
less, there is a need for large-scale soil surveys that include
these areas in order to obtain more accurate information on
the SOC storage and distribution in the Third Pole region.
Furthermore, regional SOC pools are affected by many other
factors, such as soil moisture (Wu et al., 2016) and grazing
activities (Zhou et al., 2017), which were not considered in
our study due to lack of high-resolution data with a high ac-
curacy. Future work should consider the influence of these
factors on SOC at a regional scale to obtain more accurate
datasets.

5 Data availability

The datasets of SOC stocks distribution in GeoTiff format are
available at https://doi.org/10.5281/zenodo.4293454 (Wang
et al., 2020). The file name is “TP-SOC-d.tif”, where d rep-
resents soil depth; for example, “TP-SOC-30.tif” represents
the spatial distribution of SOC stocks in the Third Pole re-
gions of the upper 30 cm depth interval.

6 Conclusions

This study simulated the spatial pattern of the SOCS over
the Third Pole region, and systematically estimated the SOC
storage (46.18 Pg) at a depth interval of 0–3 m for the
first time. Our results demonstrated that combining multi-
environmental factors with machine-learning techniques (RF,
SVM, and GBRT) can offer an effective and powerful mod-
eling approach for mapping the spatial patterns of SOC. Fur-
thermore, this study provided datasets of SOCS and SOC
storage for permafrost and seasonally frozen ground at dif-
ferent soil depths (0–30, 0–50, 0–100, 0–200, and 0–300 cm)
across the Third Pole region. These datasets can be used to
modify existing Earth system models and improve prediction
accuracy, as well as also serve as a reference for policymak-
ers to formulate more effective carbon budget management
strategies.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-13-3453-2021-supplement.
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