Articles | Volume 13, issue 1
https://doi.org/10.5194/essd-13-171-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/essd-13-171-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Last interglacial (MIS 5e) sea-level proxies in southeastern South America
Evan J. Gowan
CORRESPONDING AUTHOR
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
MARUM, University of Bremen, Bremen, Germany
Alessio Rovere
MARUM, University of Bremen, Bremen, Germany
Deirdre D. Ryan
MARUM, University of Bremen, Bremen, Germany
Sebastian Richiano
Instituto Patagónico de Geología y Paleontología, IPGP CENPAT CONICET, Puerto Madryn, Argentina
Alejandro Montes
Antártida e Islas del Atlántico Sur, Instituto de Ciencias Polares, Ambiente y Recursos Naturales, Universidad Nacional de Tierra del Fuego, Ushuaia, Tierra del Fuego, Argentina
Laboratorio de Geomorfología y Cuaternario, Centro Austral de Investigaciones Científicas (CADIC-CONICET), Ushuaia, Argentina
Marta Pappalardo
Department of Earth Sciences, University of Pisa, Pisa, Italy
Marina L. Aguirre
CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
Facultad de Ciencias Naturales y Museo (FCNyM), Universidad Nacional de La Plata (UNLP),La Plata, Argentina
Related authors
April S. Dalton, Evan J. Gowan, Jan Mangerud, Per Möller, Juha P. Lunkka, and Valery Astakhov
Earth Syst. Sci. Data, 14, 1447–1492, https://doi.org/10.5194/essd-14-1447-2022, https://doi.org/10.5194/essd-14-1447-2022, 2022
Short summary
Short summary
The last interglacial (LIG; 130 to 115 ka) is a useful analogue for improving predictions of future changes to sea level. Here, we describe the location and characteristics of 82 LIG marine sites from the glaciated Northern Hemisphere (Russia, northern Europe, Greenland and North America). Sites are located in a variety of settings, including boreholes, riverbank exposures and along coastal cliffs.
Sebastian Hinck, Evan J. Gowan, Xu Zhang, and Gerrit Lohmann
The Cryosphere, 16, 941–965, https://doi.org/10.5194/tc-16-941-2022, https://doi.org/10.5194/tc-16-941-2022, 2022
Short summary
Short summary
Proglacial lakes were pervasive along the retreating continental ice margins after the Last Glacial Maximum. Similarly to the marine ice boundary, interactions at the ice-lake interface impact ice sheet dynamics and mass balance. Previous numerical ice sheet modeling studies did not include a dynamical lake boundary. We describe the implementation of an adaptive lake boundary condition in PISM and apply the model to the glacial retreat of the Laurentide Ice Sheet.
Andrew Hollyday, Maureen E. Raymo, Jacqueline Austermann, Fred Richards, Mark Hoggard, and Alessio Rovere
Earth Surf. Dynam., 12, 883–905, https://doi.org/10.5194/esurf-12-883-2024, https://doi.org/10.5194/esurf-12-883-2024, 2024
Short summary
Short summary
Sea level was significantly higher during the Pliocene epoch, around 3 million years ago. The present-day elevations of shorelines that formed in the past provide a data constraint on the extent of ice sheet melt and the global sea level response under warm Pliocene conditions. In this study, we identify 10 escarpments that formed from wave-cut erosion during Pliocene times and compare their elevations with model predictions of solid Earth deformation processes to estimate past sea level.
Patrick Boyden, Paolo Stocchi, and Alessio Rovere
Earth Surf. Dynam., 11, 917–931, https://doi.org/10.5194/esurf-11-917-2023, https://doi.org/10.5194/esurf-11-917-2023, 2023
Short summary
Short summary
Preservation bias often hampers the extraction of sea level changes from the stratigraphic record. In this contribution, we use a forward stratigraphic model to build three synthetic subtropical fringing reefs for a site in southwestern Madagascar (Indian Ocean). Each of the three synthetic reefs represents a different ice sheet melt scenario for the Pleistocene. We then evaluate each resultant reef sequence against the observed stratigraphic record.
Paolo Scussolini, Job Dullaart, Sanne Muis, Alessio Rovere, Pepijn Bakker, Dim Coumou, Hans Renssen, Philip J. Ward, and Jeroen C. J. H. Aerts
Clim. Past, 19, 141–157, https://doi.org/10.5194/cp-19-141-2023, https://doi.org/10.5194/cp-19-141-2023, 2023
Short summary
Short summary
We reconstruct sea level extremes due to storm surges in a past warmer climate. We employ a novel combination of paleoclimate modeling and global ocean hydrodynamic modeling. We find that during the Last Interglacial, about 127 000 years ago, seasonal sea level extremes were indeed significantly different – higher or lower – on long stretches of the global coast. These changes are associated with different patterns of atmospheric storminess linked with meridional shifts in wind bands.
Alessio Rovere, Deirdre D. Ryan, Matteo Vacchi, Andrea Dutton, Alexander R. Simms, and Colin V. Murray-Wallace
Earth Syst. Sci. Data, 15, 1–23, https://doi.org/10.5194/essd-15-1-2023, https://doi.org/10.5194/essd-15-1-2023, 2023
Short summary
Short summary
In this work, we describe WALIS, the World Atlas of Last Interglacial Shorelines. WALIS is a sea-level database that includes sea-level proxies and samples dated to marine isotope stage 5 (~ 80 to 130 ka). The database was built through topical data compilations included in a special issue in this journal.
April S. Dalton, Evan J. Gowan, Jan Mangerud, Per Möller, Juha P. Lunkka, and Valery Astakhov
Earth Syst. Sci. Data, 14, 1447–1492, https://doi.org/10.5194/essd-14-1447-2022, https://doi.org/10.5194/essd-14-1447-2022, 2022
Short summary
Short summary
The last interglacial (LIG; 130 to 115 ka) is a useful analogue for improving predictions of future changes to sea level. Here, we describe the location and characteristics of 82 LIG marine sites from the glaciated Northern Hemisphere (Russia, northern Europe, Greenland and North America). Sites are located in a variety of settings, including boreholes, riverbank exposures and along coastal cliffs.
Sebastian Hinck, Evan J. Gowan, Xu Zhang, and Gerrit Lohmann
The Cryosphere, 16, 941–965, https://doi.org/10.5194/tc-16-941-2022, https://doi.org/10.5194/tc-16-941-2022, 2022
Short summary
Short summary
Proglacial lakes were pervasive along the retreating continental ice margins after the Last Glacial Maximum. Similarly to the marine ice boundary, interactions at the ice-lake interface impact ice sheet dynamics and mass balance. Previous numerical ice sheet modeling studies did not include a dynamical lake boundary. We describe the implementation of an adaptive lake boundary condition in PISM and apply the model to the glacial retreat of the Laurentide Ice Sheet.
Karla Rubio-Sandoval, Alessio Rovere, Ciro Cerrone, Paolo Stocchi, Thomas Lorscheid, Thomas Felis, Ann-Kathrin Petersen, and Deirdre D. Ryan
Earth Syst. Sci. Data, 13, 4819–4845, https://doi.org/10.5194/essd-13-4819-2021, https://doi.org/10.5194/essd-13-4819-2021, 2021
Short summary
Short summary
The Last Interglacial (LIG) is a warm period characterized by a higher-than-present sea level. For this reason, scientists use it as an analog for future climatic conditions. In this paper, we use the World Atlas of Last Interglacial Shorelines database to standardize LIG sea-level data along the coasts of the western Atlantic and mainland Caribbean, identifying 55 unique sea-level indicators.
Ciro Cerrone, Matteo Vacchi, Alessandro Fontana, and Alessio Rovere
Earth Syst. Sci. Data, 13, 4485–4527, https://doi.org/10.5194/essd-13-4485-2021, https://doi.org/10.5194/essd-13-4485-2021, 2021
Short summary
Short summary
The paper is a critical review and standardization of 199 published scientific papers to compile a Last Interglacial sea-level database for the Western Mediterranean sector. In the database, 396 sea-level data points associated with 401 dated samples are included. The relative sea-level data points and associated ages have been ranked on a 0 to 5 scale score.
Kathrine Maxwell, Hildegard Westphal, and Alessio Rovere
Earth Syst. Sci. Data, 13, 4313–4329, https://doi.org/10.5194/essd-13-4313-2021, https://doi.org/10.5194/essd-13-4313-2021, 2021
Short summary
Short summary
Marine Isotope Stage 5e (MIS 5e; the Last Interglacial, 125 ka) represents a period in the Earth’s geologic history when sea level was higher than present. In this paper, a standardized database was produced after screening and reviewing LIG sea-level data from published papers in Southeast Asia. We identified 43 unique sea-level indicators (42 from coral reef terraces and 1 from a tidal notch) and compiled the data in the World Atlas of Last Interglacial Shorelines (WALIS).
Deirdre D. Ryan, Alastair J. H. Clement, Nathan R. Jankowski, and Paolo Stocchi
Earth Syst. Sci. Data, 13, 3399–3437, https://doi.org/10.5194/essd-13-3399-2021, https://doi.org/10.5194/essd-13-3399-2021, 2021
Short summary
Short summary
Studies of ancient sea level and coastlines help scientists understand how coasts will respond to future sea-level rise. This work standardized the published records of sea level around New Zealand correlated with sea-level peaks within the Last Interglacial (~128 000–73 000 years ago) using the World Atlas of Last Interglacial Shorelines (WALIS) database. New Zealand has the potential to provide an important sea-level record with more detailed descriptions and improved age constraint.
Patrick Boyden, Jennifer Weil-Accardo, Pierre Deschamps, Davide Oppo, and Alessio Rovere
Earth Syst. Sci. Data, 13, 1633–1651, https://doi.org/10.5194/essd-13-1633-2021, https://doi.org/10.5194/essd-13-1633-2021, 2021
Short summary
Short summary
Sea levels during the last interglacial (130 to 73 ka) are seen as possible process analogs for future sea-level-rise scenarios as our world warms. To this end we catalog previously published ancient shoreline elevations and chronologies in a standardized data format for East Africa and the Western Indian Ocean region. These entries were then contributed to the greater World Atlas of Last Interglacial Shorelines database.
Cited articles
Aguirre, M. L.: Palaeobiogeography of the Holocene molluscan fauna from
northeastern Buenos Aires Province, Argentina: its relation to coastal
evolution and sea level changes, Palaeogeogr. Palaeocl., 102, 1–26, https://doi.org/10.1016/0031-0182(93)90002-Z, 1993. a
Aguirre, M. L.: Late Pleistocene and Holocene palaeoenvironments in Golfo San
Jorge, Patagonia: molluscan evidence, Mar. Geol., 194, 3–30,
https://doi.org/10.1016/S0025-3227(02)00696-5, 2003. a
Aguirre, M., Dellatorre, F., Codignotto, J., and Kokot, R.: Malacofauna y
paleoambientes del Pleistoceno y Holoceno de Puerto Lobos-Bahía Cracker
(norte de Patagonia, Argentina), in: Actas XVI Congreso Geológico
Argentino, vol. 4, 185–192, 2005a. a
Aguirre, M. L., Sirch, Y. N., and Richiano, S.: Late Quaternary molluscan
assemblages from the coastal area of Bahía Bustamante (Patagonia,
Argentina): Paleoecology and paleoenvironments, J. S. Am.
Earth Sci., 20, 13–32, https://doi.org/10.1016/j.jsames.2005.05.006,
2005b. a, b
Aguirre, M., Richiano, S., and Sirch, Y. N.: Palaeoenvironments and
palaeoclimates of the Quaternary molluscan faunas from the coastal area of
Bahía Vera-Camarones (Chubut, Patagonia), Palaeogeogr.
Palaeocl., 229, 251–286,
https://doi.org/10.1016/j.palaeo.2005.06.025, 2006. a, b, c
Aguirre, M. L., Hlebszevitsch Savalscky, J. C., and Dellatorre, F.: Late
Cenozoic invertebrate paleontology of Patagonia and Tierra del Fuego, with
emphasis on molluscs, in: The Late Cenozoic of Patagonia and Tierra del
Fuego, edited by: Rabassa, J., vol. 11 of Developments in Quaternary
Sciences, Elsevier, 285–325, https://doi.org/10.1016/S1571-0866(07)10014-2,
2008. a, b, c
Aguirre, M. L., Richiano, S., Álvarez, M. F., and Eastoe, C.: Malacofauna cuaternaria del litoral norte de Santa Cruz (Patagonia, Argentina), Geobios, 42, 411–434, https://doi.org/10.1016/j.geobios.2009.01.002, 2009. a
Aguirre, M. L., Donato, M., Richiano, S., and Farinati, E. A.: Pleistocene and Holocene interglacial molluscan assemblages from Patagonian and Bonaerensian littoral (Argentina, SW Atlantic): Palaeobiodiversity and
palaeobiogeography, Palaeogeogr. Palaeocl., 308,
277–292, https://doi.org/10.1016/j.palaeo.2011.05.032, 2011. a, b, c
Aguirre, M. L., Richiano, S., Donato, M., and Farinati, E. A.: Tegula atra (Lesson, 1830) (Mollusca, Gastropoda) in the marine Quaternary of
Patagonia (Argentina, SW Atlantic): Biostratigraphical tool and
palaeoclimate-palaeoceanographical signal, Quatern. Int., 305,
163–187, https://doi.org/10.1016/j.quaint.2013.02.011, 2013. a
Aguirre, M., Richiano, S., Farinati, E., Castellanos, P. I., and Davies, K.:
Diversity and distribution of micromolluscs (Gastropoda and Bivalvia) from
the marine Quaternary of Argentina (SW Atlantic): palaeoenvironmental,
palaeoclimate, palaeoceanographical implications, Palaeontogr.
Abt. A, 309, 91–171, https://doi.org/10.1127/pala/2017/0069, 2017. a, b
Bayer, M. S., Gordillo, S., and Morsan, E.: Late Quaternary faunal changes in northeastern Patagonia (Argentina) according to a dynamic mosaic of benthic habitats: taphonomic and paleoecological analyses of mollusk assemblages, Ameghiniana, 53, 655–674, https://doi.org/10.5710/AMGH.24.08.2016.2961,
2016a. a
Bayer, M. S., Morsan, E., Gordillo, S., and Moran, G.: Form changes in
Amiantis purpurata (Bivalvia, Veneridae) shells over the past 100,000 years
in North Patagonia (Argentina), J. Mar. Biol. Assoc. UK, 96, 1243–1250, https://doi.org/10.1017/S0025315415001332,
2016b. a
Beilinson, E., Raigemborn, M. S., Rodriguez, S. G., Soibelzon, E., Gasparini,
G. M., Calvo-Marcilese, L., Cusminsky, G. C., Mari, F., Iacona, F., and
Soibelzon, L. H.: A multi-proxy approach to paleoenvironmental changes in
the southwestern Río de la Plata area (Argentina) during Late
Pleistocene, Quatern. Int., 512, 6–17,
https://doi.org/10.1016/j.quaint.2019.01.010, 2019. a, b, c, d
Bini, M., Zanchetta, G., Ribolini, A., Salvatore, M. C., Baroni, C.,
Pappalardo, M., Isola, I., Isla, F. I., Fucks, E. E., Boretto, G. M., Morigi,
C., Ragaini, L., Marzaioli, F., and Passariello, I.: Last interglacial
sea-level highstand deduced from notches and inner margins of marine terraces
at Puerto Deseado, Santa Cruz Province, Argentina, Geogr. Fis.
Din. Quat., 40, 29–39, https://doi.org/10.4461/gfdq.2017.40.3, 2017. a
Bird, P.: An updated digital model of plate boundaries, Geochem. Geophy. Geosy., 4, 1027, https://doi.org/10.1029/2001GC000252, 2003.
Björck, S., Lambeck, K., Möller, P., Waldmann, N., Bennike, O., Jiang,
H., Li, D., Sandgren, P., Nielsen, A. B., and Porter, C. T.: Relative sea
level changes and glacio-isostatic modelling in the Beagle Channel, Tierra
del Fuego, Chile: Glacial and tectonic implications, Quaternary Sci.
Rev., 251, 106657, https://doi.org/10.1016/j.quascirev.2020.106657, 2021. a, b
Boretto, G., Gordillo, S., Cioccale, M., Colombo, F., and Fucks, E.:
Multi-proxy evidence of Late Quaternary environmental changes in the coastal
area of Puerto Lobos (northern Patagonia, Argentina), Quatern.
Int., 305, 188–205, https://doi.org/10.1016/j.quaint.2013.02.017, 2013. a, b
Bujalesky, G. G.: Tsunami Overtopping Fan and Erosive Scarps at Atlantic Coast of Tierra Del Fuego, J. Coast. Res., 28, 442–456,
https://doi.org/10.2112/JCOASTRES-D-11-00037.1, 2012. a
Charó, M. P., Gordillo, S., and Fucks, E. E.: Paleoecological significance
of Late Quaternary molluscan faunas of the Bahia San Blas area, Argentina,
Quatern. Int., 301, 135–149, https://doi.org/10.1016/j.quaint.2012.12.019,
2013b. a, b
Charó, M. P., Fucks, E. E., and Gordillo, S.: Late Pleistocene – Recent
marine malacological assemblages of the Colorado River delta (south of Buenos
Aires Province): Paleoecology and paleoclimatology, Quatern.
Int., 377, 52–70, https://doi.org/10.1016/j.quaint.2015.05.025, 2015. a, b
Charó, M. P., Cavallotto, J. L., Aceñolaza, G., and Charó, G. D.:
Bioerosion on marine molluscs of MIS 5e in Faro Segunda Barranca, South of
Buenos Aires Province, Argentina, Serie Correlación Geológica, 34,
5–22, available at: http://hdl.handle.net/11336/87571 (last access: 22 January 2021), 2018. a
Clarke, S. J. and Murray-Wallace, C. V.: Mathematical expressions used in amino acid racemisation geochronology – a review, Quat. Geochronol., 1, 261–278, https://doi.org/10.1016/j.quageo.2006.12.002, 2006. a
Creveling, J. R., Mitrovica, J. X., Clark, P. U., Waelbroeck, C., and Pico, T.: Predicted bounds on peak global mean sea level during Marine Isotope Stages 5a and 5c, Quaternary Sci. Rev., 163, 193–208,
https://doi.org/10.1016/j.quascirev.2017.03.003, 2017. a
Cuitiño, J. I., Santos, R. V., Muruaga, P. J. A., and Scasso, R. A.:
Sr-stratigraphy and sedimentary evolution of early Miocene marine foreland
deposits in the northern Austral (Magallanes) Basin, Argentina, Andean
Geol., 42, 364–385, https://doi.org/10.5027/andgeoV42n3-a05, 2015a. a
Cuitiño, J. I., Scasso, R. A., Ventura Santos, R., and Mancini, H. L.: Sr ages for the Chenque Formation in the Comodoro Rivadavia region (Golfo San Jorge Basin, Argentina): Stratigraphic implications, Latin American Journal of Sedimentology and Basin Analysis, 22, 3–12,
available at: http://hdl.handle.net/11336/37062 (last access: 22 January 2021), 2015b. a
Darwin, C.: Geological observations on South America: Being the third part of the geology of the voyage of the Beagle, under the command of Capt. Fitzroy, RN during the years 1832 to 1836, vol. 3, chap. 1 – On the elevation of the eastern coast of South America, Smith, Elder and Co., London, UK, 1–26,
1846. a, b
del Río, C. J., Griffin, M., McArthur, J. M., Martínez, S.,
and Thirlwall, M. F.: Evidence for early Pliocene and late Miocene
transgressions in southern Patagonia (Argentina): 87Sr/86Sr ages of
the pectinid “Chlamys” actinodes (Sowerby), J. S. Am. Earth
Sci., 47, 220–229, https://doi.org/10.1016/j.jsames.2013.08.004, 2013. a, b
del Río, C. J., Martínez, S. A., McArthur, J. M., Thirlwall, M. F.,
and Pérez, L. M.: Dating late Miocene marine incursions across Argentina
and Uruguay with Sr-isotope stratigraphy, J. S. Am. Earth
Sci., 85, 312–324, https://doi.org/10.1016/j.jsames.2018.05.016, 2018. a
Dumas, B., Hoang, C. T., and Raffy, J.: Record of MIS 5 sea-level highstands
based on U∕Th dated coral terraces of Haiti, Quatern. Int., 145,
106–118, https://doi.org/10.1016/j.quaint.2005.07.010, 2006. a
Dutton, A. and Lambeck, K.: Ice volume and sea level during the last
interglacial, Science, 337, 216–219, https://doi.org/10.1126/science.1205749, 2012. a
Eggins, S. M., Grün, R., McCulloch, M. T., Pike, A. W., Chappell, J.,
Kinsley, L., Mortimer, G., Shelley, M., Murray-Wallace, C. V., Spötl, C.,
and Taylor, L.: In situ U-series dating by laser-ablation multi-collector
ICPMS: new prospects for Quaternary geochronology, Quaternary Sci.
Rev., 24, 2523–2538, https://doi.org/10.1016/j.quascirev.2005.07.006, 2005. a
Emiliani, C.: Pleistocene Temperatures, J. Geol., 63, 538–578,
https://doi.org/10.1086/626295, 1955. a
Fucks, E., Aguirre, M., and Deschamps, C. M.: Late Quaternary continental and marine sediments of northeastern Buenos Aires province (Argentina): Fossil content and paleoenvironmental interpretation, J. S. Am. Earth Sci., 20, 45–56, https://doi.org/10.1016/j.jsames.2005.05.003, 2005. a, b
Fucks, E., Aguirre, M. L., Schnack, E., Erra, G., and Ramos, N.: Rasgos
litológicos y fosilíferos de la Formación Pascua (Pleistoceno
Tardío) en su localidad tipo, provincia de Buenos Aires, in: III
Congreso Argentino de Cuaternario y Geomorfología, 10–13 October 2006, Córdoba,
Argentina, Actas de Trabaojos Tomo II, 727–736, 2006. a
Fucks, E. E., Schnack, E. J., and Aguirre, M. L.: Nuevo ordenamiento
estratigráfico de las secuencias marinas del sector continental de la
Bahía Samborombón, provincia de Buenos Aires, Revista de la
Asociación Geológica Argentina, 67, 27–39, 2010. a
Fucks, E., Schnack, E. J., and Charó, M.: Aspectos geológicos y
geomorfológicos del sector N del golfo San Matías, Río Negro,
Argentina, Revista de la Sociedad Geológica de España, 25, 95–105,
2012b. a
Gasparini, G. M., Soibelzon, E., Deschamps, C., Francia, A., Beilinson, E.,
Soibelzon, L. H., and Tonni, E. P.: Continental vertebrates during the
Marine Isotope Stage 3 (MIS 3) in Argentina, in: Marine Isotope Stage 3 in
Southern South America, 60 KA BP–30 KA BP, Springer, 227–247,
https://doi.org/10.1007/978-3-319-40000-6_13, 2016. a
González, M. A.: Discussion of: Rutter, N. W., Radtke, U., and Schnack,
E. J., 1990. Comparison of ESR and Amino Acid Data in correlating and dating
Quaternary shorelines along the Patagonian Coast, Argentina, Journal of
Coastal Research, 6, 391–411, J. Coast. Res., 8, 496–502, available at: https://www.jstor.org/stable/4297992 (last access: 22 January 2021), 1992. a, b
González, M. A. and Guida, N. G.: Late Pleistocene Littoral Deposits from
33∘ to 40∘ S, Argentine Republic: Blake and Probable Lake Mungo Events – Magnetostratigraphic Geochronology, J. Coast. Res., 6,
357–366, available at: https://www.jstor.org/stable/4297685 (last access: 22 January 2021), 1990. a, b, c, d, e, f
González, M. A. and Ravizza, G.: Sedimentos estuáricos del Pleistoceno tardío y Holoceno en la Isla Martín García, Río de la Plata, Revista Asociación Geológica Argentina, 42, 231–243, 1987. a
González, M. A., Weiler, N. E., and Guida, N. G.: Late Pleistocene and
Holocene coastal behaviour from 33∘ to 40∘ south, Argentine
Republic, J. Coast. Res., 4, 59–68, available at: https://www.jstor.org/stable/4297372 (last access: 22 January 2021), 1988a. a
González, M. A., Weiler, N. E., and Guida, N. G.: Transgressive Deposits
of the Mid-Wisconsin Interstadial from 33∘ to 40∘ south
latitude, Argentine Republic: Reliability of 14C Ages, J.
Coast. Res., 4, 667–676, available at: https://www.jstor.org/stable/4297468 (last access: 22 January 2021), 1988b. a, b, c, d, e, f, g
Gordillo, S. and Isla, F. I.: Faunistic changes between the Middle/Late
Pleistocene and the Holocene on the Atlantic coast of Tierra del Fuego:
molluscan evidence, Quatern. Int., 233, 101–112,
https://doi.org/10.1016/j.quaint.2010.06.006, 2011. a, b
Gordillo, S., Cusminsky, G., Bernasconi, E., Ponce, J., Rabassa, J., and Pino,
M.: Pleistocene marine calcareous macro-and-microfossils of Navarino Island
(Chile) as environmental proxies during the last interglacial in southern
South America, Quatern. Int., 221, 159–174,
https://doi.org/10.1016/j.quaint.2009.10.025, 2010. a, b
Gordillo, S., Bernasconi, E., Cusminsky, G., Coronato, A. J., and Rabassa,
J. O.: Late Quaternary environmental changes in southernmost South America
reflected in marine calcareous macro-and-microfossils, Quatern.
Int., 305, 149–162, https://doi.org/10.1016/j.quaint.2012.11.016, 2013. a
Gowan, E. J., Rovere, A., Ryan, D. D., Richiano, S., Montes, A., Pappalardo,
M., and Aguirre, M. L.: Last interglacial (MIS 5e) sea-level proxies in
southeastern South America (Version 1.1) [Data set], Zenodo, https://doi.org/10.5281/zenodo.3991596, 2020. a, b, c
Guillaume, B., Martinod, J., Husson, L., Roddaz, M., and Riquelme, R.: Neogene
uplift of central eastern Patagonia: Dynamic response to active spreading
ridge subduction?, Tectonics, 28, TC2009, https://doi.org/10.1029/2008TC002324, 2009. a
Isla, F. I. and Angulo, R. J.: Tectonic processes along the South America
coastline derived from Quaternary marine terraces, J. Coast.
Res., 32, 840–852, https://doi.org/10.2112/JCOASTRES-D-14-00178.1, 2016. a, b
Isola, I., Bini, M., Ribolini, A., Pappalardo, M., Consoloni, I., Fucks, E.,
Boretto, G., Ragaini, L., and Zanchetta, G.: Geomorphologic map of
northeastern sector of San Jorge Gulf (Chubut, Argentina), J. Maps,
7, 476–485, https://doi.org/10.4113/jom.2011.1203, 2011. a
Kopp, R. E., Simons, F. J., Mitrovica, J. X., Maloof, A. C., and Oppenheimer,
M.: Probabilistic assessment of sea level during the last interglacial stage,
Nature, 462, 863–867, https://doi.org/10.1038/nature08686, 2009. a
Lambeck, K. and Chappell, J.: Sea level change through the last glacial cycle, Science, 292, 679–686, https://doi.org/10.1126/science.1059549, 2001. a, b
Lanfredi, N. W., Pousa, J. L., and D'Onofrio, E. E.: Sea-level Rise and
Related Potential Hazards on the Argentine Coast, J. Coast.
Res., 14, 47–60, https://doi.org/10.2112/04-0205.1, 1998. a
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20, PA1003, https://doi.org/10.1029/2004PA001071, 2005. a, b
Lorscheid, T. and Rovere, A.: The indicative meaning calculator–quantification of paleo sea-level relationships by using global wave and tide datasets, Open Geospatial Data, Software and Standards, 4, 10, https://doi.org/10.1186/s40965-019-0069-8, 2019. a
Mangerud, J., Sønstegaard, E., and Sejrup, H.-P.: Correlation of the Eemian (interglacial) Stage and the deep-sea oxygen-isotope stratigraphy, Nature,
277, 189–192, https://doi.org/10.1038/277189a0, 1979. a
Martínez, S. and Rojas, A.: Relative sea level during the Holocene in
Uruguay, Palaeogeogr. Palaeocl., 374, 123–131,
https://doi.org/10.1016/j.palaeo.2013.01.010, 2013. a
Martínez, S., Ubilla, M., Verde, M., Perea, D., Rojas, A.,
Guérèquiz, R., and Piñeiro, G.: Paleoecology and geochronology
of Uruguayan coastal marine Pleistocene deposits, Quaternary Res., 55,
246–254, https://doi.org/10.1006/qres.2000.2204, 2001. a, b, c, d
Mauz, B., Vacchi, M., Green, A., Hoffmann, G., and Cooper, A.: Beachrock: a
tool for reconstructing relative sea level in the far-field, Mar. Geol.,
362, 1–16, https://doi.org/10.1016/j.margeo.2015.01.009, 2015. a, b, c
Meglioli, A.: Glacial geology of southernmost Patagonia, the Strait of
Magellan and northern Tierra del Fuego, PhD thesis, Lehigh University,
Bethlehem, PA, USA, 1992. a
Moseley, G. E., Smart, P. L., Richards, D. A., and Hoffmann, D. L.: Speleothem constraints on Marine Isotope Stage (MIS) 5 relative sea levels, Yucatan Peninsula, Mexico, J. Quaternary Sci., 28, 293–300,
https://doi.org/10.1002/jqs.2613, 2013. a
Otvos, E. G.: Beach ridges–definitions and significance, Geomorphology, 32,
83–108, https://doi.org/10.1016/S0169-555X(99)00075-6, 2000. a, b
Otvos, E. G.: The last interglacial stage: Definitions and marine highstand,
North America and Eurasia, Quatern. Int., 383, 158–173,
https://doi.org/10.1016/j.quaint.2014.05.010, 2015. a, b, c
Pappalardo, M., Aguirre, M., Bini, M., Consoloni, I., Fucks, E., Hellstrom, J., Isola, I., Ribolini, A., and Zanchetta, G.: Coastal landscape evolution and sea-level change: a case study from Central Patagonia (Argentina),
Z. Geomorphol., 59, 145–172,
https://doi.org/10.1127/0372-8854/2014/0142, 2015. a, b, c, d, e, f
Pappalardo, M., Baroni, C., Bini, M., Isola, I., Ribolini, A., Salvatore,
M. C., and Zanchetta, G.: Challenges in relative sea-level change assessment
highlighted through a case study: The central coast of Atlantic Patagonia,
Global Planet. Change, 182, 103008, https://doi.org/10.1016/j.gloplacha.2019.103008, 2019. a, b, c, d, e
Parras, A., Griffin, M., Feldmann, R., Casadío, S., Schweitzer, C., and
Marenssi, S.: Correlation of marine beds based on Sr- and Ar-date
determinations and faunal affinities across the Paleogene/Neogene boundary in
southern Patagonia, Argentina, J. S. Am. Earth Sci., 26,
204–216, https://doi.org/10.1016/j.jsames.2008.03.006, 2008. a
Parras, A., Dix, G. R., and Griffin, M.: Sr-isotope chronostratigraphy of
Paleogene–Neogene marine deposits: Austral Basin, southern Patagonia
(Argentina), J. S. Am. Earth Sci., 37, 122–135,
https://doi.org/10.1016/j.jsames.2012.02.007, 2012. a
Pedoja, K., Regard, V., Husson, L., Martinod, J., Guillaume, B., Fucks, E.,
Iglesias, M., and Weill, P.: Uplift of Quaternary shorelines in eastern
Patagonia: Darwin revisited, Geomorphology, 127, 121–142,
https://doi.org/10.1016/j.geomorph.2010.08.003, 2011. a, b, c, d
Peltier, W. and Drummond, R.: A “broad-shelf effect” upon postglacial relative sea level history, Geophys. Res. Lett., 29, 10–1,
https://doi.org/10.1029/2001GL014273, 2002. a
Peltier, W. R., Argus, D. F., and Drummond, R.: Space geodesy constrains ice
age terminal deglaciation: The global ICE-6G_C (VM5a) model, J.
Geophys. Res.-Sol. Ea., 120, 450–487, https://doi.org/10.1002/2014JB011176,
2015. a
Pirazzoli, P. A.: Marine terraces, Springer, Berlin, Germany, 632–633, 2005. a
Potter, E.-K., Esat, T. M., Schellmann, G., Radtke, U., Lambeck, K., and
McCulloch, M. T.: Suborbital-period sea-level oscillations during marine
isotope substages 5a and 5c, Earth Planet. Sc. Lett., 225,
191–204, https://doi.org/10.1016/j.epsl.2004.05.034, 2004. a
Rabassa, J., Gordillo, S., Ocampo, C., and Hurtado, P. R.: The southernmost
evidence for an interglacial transgression (Sangamon?) in South America.
First record of upraised Pleistocene marine deposits in Isla Navarino (Beagle
Channel, Southern Chile), Geol. Acta, 6, 251–258,
https://doi.org/10.1344/105.000000254, 2008. a, b
Radtke, U.: How to avoid “useless” radiocarbon dating, Nature, 333, 307–308,
https://doi.org/10.1038/333307b0, 1988. a
Radtke, U., Mangini, A., and Grün, R.: ESR dating of marine fossil
shells, Nuclear Tracks and Radiation Measurements (1982), 10, 879–884,
https://doi.org/10.1016/0735-245X(85)90103-6, 1985. a, b, c
Ribolini, A., Aguirre, M., Baneschi, I., Consoloni, I., Fucks, E., Isola, I.,
Mazzarini, F., Pappalardo, M., Zanchetta, G., and Bini, M.: Holocene Beach
Ridges and Coastal Evolution in the Cabo Raso Bay (Atlantic Patagonian Coast,
Argentina), J. Coast. Res., 27, 973–983,
https://doi.org/10.2112/JCOASTRES-D-10-00139.1, 2011. a
Ribolini, A., Bini, M., Consoloni, I., Isola, I., Pappalardo, M., Zanchetta,
G., Fucks, E., Panzeri, L., Martini, M., and Terrasi, F.: Late–pleistocene
wedge structures along the Patagonian coast (Argentina): chronological
constraints and palaeo-environmental implications, Geogr. Ann. A, 96, 161–176, https://doi.org/10.1111/geoa.12038, 2014. a, b
Roberts, A. P.: Geomagnetic excursions: knowns and unknowns, Geophys.
Res. Lett., 35, L17307, https://doi.org/10.1029/2008GL034719, 2008. a
Rojas, A. and Martínez, S.: Marine Isotope Stage 3 (MIS 3) Versus Marine Isotope Stage 5 (MIS 5) Fossiliferous Marine Deposits from Uruguay, in: Marine Isotope Stage 3 in Southern South America, 60 KA BP–30 KA BP, Springer, 249–278, https://doi.org/10.1007/978-3-319-40000-6_14, 2016. a, b, c, d, e, f, g, h, i, j, k
Rojas, A. and Urteaga, D.: Late Pleistocene and Holocene chitons (Mollusca,
Polyplacophora) from Uruguay: Palaeobiogeography and palaeoenvironmental
reconstruction in mid latitudes of the southwestern Atlantic, Geobios, 44,
377–386, https://doi.org/10.1016/j.geobios.2010.09.002, 2011. a, b
Rojas, A., Demicheli, M., and Martínez, S.: Taphonomy of the Late
Pleistocene marine molluscan assemblages from Uruguay, Neues Jahrb.
Geol. P.-An, 289, 217–235,
https://doi.org/10.1127/njgpa/2018/0757, 2018a. a, b, c, d
Rojas, A., Zaffaroni, J. C., and Martínez, S.: New molluscan records and
palaeoecology of the Late Pleistocene marine assemblage from La Coronilla
(Rocha, Uruguay), J. Sediment. Environ., 3, 220–233,
https://doi.org/10.12957/jse.2018.39139, 2018b. a, b
Rossi, C., Mertz-Kraus, R., and Osete, M.-L.: Paleoclimate variability during
the Blake geomagnetic excursion (MIS 5d) deduced from a speleothem record,
Quaternary Sci. Rev., 102, 166–180,
https://doi.org/10.1016/j.quascirev.2014.08.007, 2014. a
Rostami, K., Peltier, W. R., and Mangini, A.: Quaternary marine terraces,
sea-level changes and uplift history of Patagonia, Argentina: comparisons
with predictions of the ICE-4G (VM2) model of the global process of glacial
isostatic adjustment, Quaternary Sci. Rev., 19, 1495–1525,
https://doi.org/10.1016/S0277-3791(00)00075-5, 2000. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Rovere, A., Raymo, M. E., Vacchi, M., Lorscheid, T., Stocchi, P., Gomez-Pujol, L., Harris, D. L., Casella, E., O'Leary, M. J., and Hearty, P. J.: The
analysis of Last Interglacial (MIS 5e) relative sea-level indicators:
Reconstructing sea-level in a warmer world, Earth-Sci. Rev., 159,
404–427, 2016. a, b, c, d, e, f, g, h, i, j, k, l
Rovere, A., Pappalardo, M., Richiano, S., Aguirre, M., Sandstrom, M. R.,
Hearty, P. J., Austermann, J., Castellanos, I., and Raymo, M. E.: An Early
Pliocene relative sea level record from Patagonia (Argentina),
https://doi.org/10.31223/osf.io/ycp6t, preprint posted on EarthArXiv,
2020a. a
Rovere, A., Ryan, D., Murray-Wallace, C., Simms, A., Vacchi, M., Dutton, A.,
Lorscheid, T., Chutcharavan, P., Brill, D., Bartz, M., Jankowski, N.,
Mueller, D., Cohen, K., and Gowan, E.: Descriptions of database fields for
the World Atlas of Last Interglacial Shorelines (WALIS) (Version 1,0), Zenodo,
https://doi.org/10.5281/zenodo.3961544, 2020b. a, b
Rutter, N., Schnack, E. J., del Rio, J., Fasano, J. L., Isla, F. I., and
Radtke, U.: Correlation and dating of Quaternary littoral zones along the
Patagonian coast, Argentina, Quaternary Sci. Rev., 8, 213–234,
https://doi.org/10.1016/0277-3791(89)90038-3, 1989. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w
Rutter, N., Radtke, U., and Schnack, E. J.: Comparison of ESR and amino acid
data in correlating and dating Quaternary shorelines along the Patagonian
coast, Argentina, J. Coast. Res., 6, 391–411, available at:
https://www.jstor.org/stable/4297690 (last access: 22 January 2021), 1990. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v
Rutter, N., Radtke, U., and Schnack, E. J.: Reply to Discussion of Dr. M.A.
Gonzales on Our Paper “Comparison of ESR and Amino Acid Data in Correlating
and Dating Quaternary Shorelines along the Patagonian Coast, Argentina” in
J. Coast. Res., 6, 391–412, J. Coast. Res., 8,
503, available at: https://journals.flvc.org/jcr/article/view/78728 (last access: 27 January 2021), 1992. a, b
Scasso, R. A., McArthur, J. M., del Río, C. J., Martínez, S., and
Thirlwall, M. F.: 87Sr/86Sr Late Miocene age of fossil molluscs in
the `Entrerriense' of the Valdés Peninsula (Chubut, Argentina), J.
S. Am. Earth Sci., 14, 319–329,
https://doi.org/10.1016/S0895-9811(01)00032-3, 2001. a
Schellmann, G.: Jungkänozoische Landschaftsgeschichte Patagoniens
(Argentinien): andine Vorlandvergletscherungen, Talentwicklung und marine
Terrassen, vol. 29 of Essener geographische Arbeiten, Klartext,
Essen, 1. Auflage edn., teilw. zugl.: Essen, Univ., Habil.-Schr. 1997 u.d.T.:
Schellmann, Gerhard: Andine Vorlandvergletscherungen und marine Terrassen,
1998. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o
Schellmann, G. and Radtke, U.: Electron spin resonance (ESR) techniques
applied to mollusc shells from South America (Chile, Argentina) and
implications for palaeo sea-level curve, Quaternary Sci. Rev., 16,
465–475, https://doi.org/10.1016/S0277-3791(96)00104-7, 1997. a, b, c
Schellmann, G. and Radtke, U.: Problems encountered in the determination of
dose and dose rate in ESR dating of mollusc shells, Quaternary Sci.
Revi., 18, 1515–1527, https://doi.org/10.1016/S0277-3791(99)00043-8, 1999. a, b, c
Schellmann, G. and Radtke, U.: ESR dating stratigraphically well-constrained
marine terraces along the Patagonian Atlantic coast (Argentina), Quatern.
Int., 68, 261–273, https://doi.org/10.1016/S1040-6182(00)00049-5, 2000. a, b, c, d
Schellmann, G. and Radtke, U.: Timing and magnitude of Holocene sea-level
changes along the middle and south Patagonian Atlantic coast derived from
beach ridge systems, littoral terraces and valley-mouth terraces,
Earth-Sci. Rev., 103, 1–30, https://doi.org/10.1016/j.earscirev.2010.06.003,
2010. a, b
Shackleton, N. J.: The last interglacial in the marine and terrestrial records, P. Roy. Soc. Lond. B Bio., 174, 135–154, https://doi.org/10.1098/rspb.1969.0085, 1969. a
Shennan, I.: Handbook of sea-level research, chap. 2, John Wiley &
Sons, Ltd, 3–25, https://doi.org/10.1002/9781118452547.ch2, 2015. a
Surić, M., Richards, D. A., Hoffmann, D. L., Tibljaš, D., and
Juračić, M.: Sea-level change during MIS 5a based on submerged
speleothems from the eastern Adriatic Sea (Croatia), Mar. Geol., 262,
62–67, https://doi.org/10.1016/j.margeo.2009.03.005, 2009. a
Tamura, T.: Beach ridges and prograded beach deposits as palaeoenvironment
records, Earth-Sci. Rev., 114, 279–297,
https://doi.org/10.1016/j.earscirev.2012.06.004, 2012. a
Weiler, N. E.: Niveles marinos del Pleistoceno tardío y Holoceno en
Bahía Anegada, Provincia de Buenos Aires: geocronología y
correlaciones, Revista de la Asociación Geológica Argentina, 48,
207–216, 1993. a
Weiler, N. E., González, M. A., and Guida, N. G.: Niveles marinos del
Pleistoceno tardío en Cañada de Arregui, Partido de Magdalena,
provincia de Buenos Aires, Revista Asociación Geológica Argentina,
42, 92–98, 1988. a
Wessel, P., Smith, W. H., Scharroo, R., Luis, J., and Wobbe, F.: Generic
mapping tools: improved version released, Eos, Transactions American
Geophysical Union, 94, 409–410, https://doi.org/10.1002/2013EO450001, 2013. a
Wood, R.: From revolution to convention: the past, present and future of
radiocarbon dating, J. Archaeol. Sci., 56, 61–72,
https://doi.org/10.1016/j.jas.2015.02.019, 2015.
a
Zanchetta, G., Bini, M., Isola, I., Pappalardo, M., Ribolini, A., Consoloni,
I., Boretto, G., Fucks, E., Ragaini, L., and Terrasi, F.: Middle- to
late-Holocene relative sea-level changes at Puerto Deseado (Patagonia,
Argentina), Holocene, 24, 307–317, https://doi.org/10.1177/0959683613518589,
2014. a
Zárate, M., Kemp, R., and Toms, P.: Late Quaternary landscape
reconstruction and geochronology in the northern Pampas of Buenos Aires
province, Argentina, J. S. Am. Earth Sci., 27, 88–99,
https://doi.org/10.1016/j.jsames.2008.10.001, 2009. a, b, c
Zecchin, M., Nalin, R., and Roda, C.: Raised Pleistocene marine terraces of the
Crotone peninsula (Calabria, southern Italy): facies analysis and
organization of their deposits, Sediment. Geol., 172, 165–185,
https://doi.org/10.1016/j.sedgeo.2004.08.003, 2004. a, b
Short summary
During the last interglacial (130 to 115 ka), global sea level was higher than present. The World Atlas of Last Interglacial Shorelines (WALIS) has been created to document this. In this paper, we have compiled data for southeastern South America. There are landforms that indicate that sea level was 5 to 25 m higher than present during this time period. However, the quality of these data is hampered by limitations on elevation measurements, chronology, and geological descriptions.
During the last interglacial (130 to 115 ka), global sea level was higher than present. The...
Special issue
Altmetrics
Final-revised paper
Preprint