Articles | Volume 12, issue 4
https://doi.org/10.5194/essd-12-2607-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-12-2607-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Global Space-based Stratospheric Aerosol Climatology (version 2.0): 1979–2018
Mahesh Kovilakam
CORRESPONDING AUTHOR
Science Systems and Applications, Inc. (SSAI), Hampton, Virginia, USA
NASA Langley Research Center, Hampton, Virginia, USA
Larry W. Thomason
NASA Langley Research Center, Hampton, Virginia, USA
Nicholas Ernest
Science Systems and Applications, Inc. (SSAI), Hampton, Virginia, USA
Landon Rieger
University of Saskatchewan, Saskatoon, Saskatchewan, Canada
Adam Bourassa
University of Saskatchewan, Saskatoon, Saskatchewan, Canada
Luis Millán
NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
Related authors
Jayanta Kar, Mark A. Vaughan, Robert P. Damadeo, Mahesh Kovilakam, Jason L. Tackett, and Charles R. Trepte
EGUsphere, https://doi.org/10.5194/egusphere-2025-3141, https://doi.org/10.5194/egusphere-2025-3141, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
This paper assesses a possible bias in calibration of the spaceborne CALIOP lidar signals at 1064 nm resulting from relative attenuation of the signals at 1064 nm and 532 nm due to stratospheric aerosols. Multi-channel aerosol measurements from SAGE III instrument on ISS indicate that the bias is less than 1–2 % for background conditions and up to 5 % for strong stratospheric loading. Implications for extinction retrievals at 1064 nm and cascading errors for multi-layer scenes are discussed.
Hazel Vernier, Demilson Quintão, Bruno Biazon, Eduardo Landulfo, Giovanni Souza, V. Amanda Santos, J. S. Fabio Lopes, C. P. Alex Mendes, A. S. José da Matta, K. Pinheiro Damaris, Benoit Grosslin, P. M. P. Maria Jorge, Maria de Fátima Andrade, Neeraj Rastogi, Akhil Raj, Hongyu Liu, Mahesh Kovilakam, Suvarna Fadnavis, Frank G. Wienhold, Mathieu Colombier, D. Chris Boone, Gwenael Berthet, Nicolas Dumelie, Lilian Joly, and Jean-Paul Vernier
EGUsphere, https://doi.org/10.5194/egusphere-2025-924, https://doi.org/10.5194/egusphere-2025-924, 2025
Short summary
Short summary
The eruption of Hunga Tonga-Hunga Ha'apai injected large amounts of water vapor and sea salt into the stratosphere, altering traditional views of volcanic aerosols. Using balloon-borne samplers, we collected aerosol samples and found high levels of sea salt and calcium, suggesting sulfate depletion due to gypsum formation. These findings highlight the need to consider sea salt in climate models to better predict volcanic impacts on the atmosphere and climate.
Mahesh Kovilakam, Larry W. Thomason, Magali Verkerk, Thomas Aubry, and Travis N. Knepp
Atmos. Chem. Phys., 25, 535–553, https://doi.org/10.5194/acp-25-535-2025, https://doi.org/10.5194/acp-25-535-2025, 2025
Short summary
Short summary
The Global Space-based Stratospheric Aerosol Climatology (GloSSAC) is essential for understanding and modeling the climatic impacts of stratospheric aerosols, comprising data from various space-based measurements. Here, we examine the Ozone Mapping and Profiler Suite Limb Profiler (OMPS-LP) against other data sets, particularly the Stratospheric Aerosol and Gas Experiment (SAGE) III/ISS, to discern differences and explore the applicability of OMPS data within the GloSSAC framework.
Yunqian Zhu, Hideharu Akiyoshi, Valentina Aquila, Elisabeth Asher, Ewa M. Bednarz, Slimane Bekki, Christoph Brühl, Amy H. Butler, Parker Case, Simon Chabrillat, Gabriel Chiodo, Margot Clyne, Lola Falletti, Peter R. Colarco, Eric Fleming, Andrin Jörimann, Mahesh Kovilakam, Gerbrand Koren, Ales Kuchar, Nicolas Lebas, Qing Liang, Cheng-Cheng Liu, Graham Mann, Michael Manyin, Marion Marchand, Olaf Morgenstern, Paul Newman, Luke D. Oman, Freja F. Østerstrøm, Yifeng Peng, David Plummer, Ilaria Quaglia, William Randel, Samuel Rémy, Takashi Sekiya, Stephen Steenrod, Timofei Sukhodolov, Simone Tilmes, Kostas Tsigaridis, Rei Ueyama, Daniele Visioni, Xinyue Wang, Shingo Watanabe, Yousuke Yamashita, Pengfei Yu, Wandi Yu, Jun Zhang, and Zhihong Zhuo
EGUsphere, https://doi.org/10.5194/egusphere-2024-3412, https://doi.org/10.5194/egusphere-2024-3412, 2024
Short summary
Short summary
To understand the climate impact of the 2022 Hunga volcanic eruption, we developed a climate model-observation comparison project. The paper describes the protocols and models that participate in the experiments. We designed several experiments to achieve our goal of this activity: 1. evaluate the climate model performance; 2. understand the Earth system responses to this eruption.
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Bradley Hall, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan P. Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Blair Trewin, Myles Allen, Robbie Andrew, Richard A. Betts, Alex Borger, Tim Boyer, Jiddu A. Broersma, Carlo Buontempo, Samantha Burgess, Chiara Cagnazzo, Lijing Cheng, Pierre Friedlingstein, Andrew Gettelman, Johannes Gütschow, Masayoshi Ishii, Stuart Jenkins, Xin Lan, Colin Morice, Jens Mühle, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Jan C. Minx, Gunnar Myhre, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, Sophie Szopa, Peter Thorne, Mahesh V. M. Kovilakam, Elisa Majamäki, Jukka-Pekka Jalkanen, Margreet van Marle, Rachel M. Hoesly, Robert Rohde, Dominik Schumacher, Guido van der Werf, Russell Vose, Kirsten Zickfeld, Xuebin Zhang, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 16, 2625–2658, https://doi.org/10.5194/essd-16-2625-2024, https://doi.org/10.5194/essd-16-2625-2024, 2024
Short summary
Short summary
This paper tracks some key indicators of global warming through time, from 1850 through to the end of 2023. It is designed to give an authoritative estimate of global warming to date and its causes. We find that in 2023, global warming reached 1.3 °C and is increasing at over 0.2 °C per decade. This is caused by all-time-high greenhouse gas emissions.
Travis N. Knepp, Mahesh Kovilakam, Larry Thomason, and Stephen J. Miller
Atmos. Meas. Tech., 17, 2025–2054, https://doi.org/10.5194/amt-17-2025-2024, https://doi.org/10.5194/amt-17-2025-2024, 2024
Short summary
Short summary
An algorithm is presented to derive a new SAGE III/ISS (Stratospheric Aerosol and Gas Experiment III on the International Space Station) Level-2 product: the size distribution of stratospheric particles. This is a significant improvement over previous techniques in that we now provide uncertainty estimates for all inferred parameters. We also evaluated the stability of this method in retrieving bimodal distribution parameters. We present a special application to the 2022 eruption of Hunga Tonga.
Mahesh Kovilakam, Larry Thomason, and Travis Knepp
Atmos. Meas. Tech., 16, 2709–2731, https://doi.org/10.5194/amt-16-2709-2023, https://doi.org/10.5194/amt-16-2709-2023, 2023
Short summary
Short summary
The paper describes SAGE III/ISS aerosol/cloud categorization and its implications on Global Space-based Stratospheric Aerosol Climatology (GloSSAC). The presence of data from the SAGE type of multi-wavelength measurements is important in GloSSAC. The new aerosol/cloud categorization method described in this paper will help retain more measurements, particularly in the lower stratosphere during and following a volcanic event and other processes.
Travis N. Knepp, Larry Thomason, Mahesh Kovilakam, Jason Tackett, Jayanta Kar, Robert Damadeo, and David Flittner
Atmos. Meas. Tech., 15, 5235–5260, https://doi.org/10.5194/amt-15-5235-2022, https://doi.org/10.5194/amt-15-5235-2022, 2022
Short summary
Short summary
We used aerosol profiles from the SAGE III/ISS instrument to develop an aerosol classification method that was tested on four case-study events (two volcanic, two fire) and supported with CALIOP aerosol products. The method worked well in identifying smoke and volcanic aerosol in the stratosphere for these events. Raikoke is presented as a demonstration of the limitations of this method.
Jayanta Kar, Mark A. Vaughan, Robert P. Damadeo, Mahesh Kovilakam, Jason L. Tackett, and Charles R. Trepte
EGUsphere, https://doi.org/10.5194/egusphere-2025-3141, https://doi.org/10.5194/egusphere-2025-3141, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
This paper assesses a possible bias in calibration of the spaceborne CALIOP lidar signals at 1064 nm resulting from relative attenuation of the signals at 1064 nm and 532 nm due to stratospheric aerosols. Multi-channel aerosol measurements from SAGE III instrument on ISS indicate that the bias is less than 1–2 % for background conditions and up to 5 % for strong stratospheric loading. Implications for extinction retrievals at 1064 nm and cascading errors for multi-layer scenes are discussed.
Clair Duchamp, Bernard Legras, Aurélien Podglajen, Pasquale Sellitto, Adam E. Bourassa, Alexei Rozanov, Ghassan Taha, and Daniel J. Zawada
EGUsphere, https://doi.org/10.5194/egusphere-2025-3355, https://doi.org/10.5194/egusphere-2025-3355, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
We analyzed the stratospheric aerosol plume from the 2022 Hunga eruption using satellite lidar data. We implemented a method to retrieve some aerosol properties, as standard products failed in this case. We found very high optical depth values in the days following the eruption, which decreased rapidly but remained elevated for months. Our results are broadly validated, though some satellite products underestimate the values due, in part, to the unusual aerosol size distribution in the plume.
Nicholas Ernest, Larry W. Thomason, and Terry Deshler
Atmos. Meas. Tech., 18, 2957–2968, https://doi.org/10.5194/amt-18-2957-2025, https://doi.org/10.5194/amt-18-2957-2025, 2025
Short summary
Short summary
We use balloon-borne measurements of aerosol size distribution (ASD) made by the University of Wyoming (UW) to derive distributions which are representative of the ASDs that underlie measurements made by the Stratospheric Aerosol and Gas Experiment II (SAGE II). A simple single-mode log-normal distribution has in the past been used to derive ASD from SAGE II data; here we derive bimodal log-normal distributions, reproducing median aerosol properties measured by UW.
Zhihong Zhuo, Xinyue Wang, Yunqian Zhu, Ewa M. Bednarz, Eric Fleming, Peter R. Colarco, Shingo Watanabe, David Plummer, Georgiy Stenchikov, William Randel, Adam Bourassa, Valentina Aquila, Takashi Sekiya, Mark R. Schoeberl, Simone Tilmes, Wandi Yu, Jun Zhang, Paul J. Kushner, and Francesco S. R. Pausata
EGUsphere, https://doi.org/10.5194/egusphere-2025-1505, https://doi.org/10.5194/egusphere-2025-1505, 2025
Short summary
Short summary
The 2022 Hunga eruption caused unprecedented stratospheric water injection, triggering unique atmospheric impacts. This study combines observations and model simulations, projecting a stratospheric water vapor anomaly lasting 4–7 years, with significant temperature variations and ozone depletion in the upper atmosphere lasting 7–10 years. These findings offer critical insights into the role of stratospheric water vapor in shaping climate and atmospheric chemistry.
Hazel Vernier, Demilson Quintão, Bruno Biazon, Eduardo Landulfo, Giovanni Souza, V. Amanda Santos, J. S. Fabio Lopes, C. P. Alex Mendes, A. S. José da Matta, K. Pinheiro Damaris, Benoit Grosslin, P. M. P. Maria Jorge, Maria de Fátima Andrade, Neeraj Rastogi, Akhil Raj, Hongyu Liu, Mahesh Kovilakam, Suvarna Fadnavis, Frank G. Wienhold, Mathieu Colombier, D. Chris Boone, Gwenael Berthet, Nicolas Dumelie, Lilian Joly, and Jean-Paul Vernier
EGUsphere, https://doi.org/10.5194/egusphere-2025-924, https://doi.org/10.5194/egusphere-2025-924, 2025
Short summary
Short summary
The eruption of Hunga Tonga-Hunga Ha'apai injected large amounts of water vapor and sea salt into the stratosphere, altering traditional views of volcanic aerosols. Using balloon-borne samplers, we collected aerosol samples and found high levels of sea salt and calcium, suggesting sulfate depletion due to gypsum formation. These findings highlight the need to consider sea salt in climate models to better predict volcanic impacts on the atmosphere and climate.
Daniel Letros, Liam Graham, Adam Bourassa, Doug Degenstein, Paul Loewen, Landon Rieger, and Nick Lloyd
EGUsphere, https://doi.org/10.5194/egusphere-2025-67, https://doi.org/10.5194/egusphere-2025-67, 2025
Short summary
Short summary
The Aerosol Limb Imager (ALI) is an optical instrument which measures stratospheric aerosols. These aerosols are of interest to atmospheric science as they have a significant impact on the Earth's climate. ALI has the ability to measure the polarization of atmospheric light over a wide spectral range, which is a novel ability for the measurement ALI uses. We demonstrate and discuss ALI capability, and how the polarized information may improve aerosol information for this type measurement.
Felix Wrana, Terry Deshler, Christian Löns, Larry W. Thomason, and Christian von Savigny
Atmos. Chem. Phys., 25, 3717–3736, https://doi.org/10.5194/acp-25-3717-2025, https://doi.org/10.5194/acp-25-3717-2025, 2025
Short summary
Short summary
There is a natural and globally occurring layer of small droplets (aerosols) at roughly 20 km altitude in the atmosphere. In this work, the size of these droplets is calculated from satellite measurements for the years 2002 to 2005, which is important for the aerosol cooling effect on Earth's climate. These years are interesting because there were no large volcanic eruptions that would change the background state of the aerosols. The results are compared to reliable balloon-borne measurements.
Luis F. Millán, Matthew D. Lebsock, and Marcin J. Kurowski
EGUsphere, https://doi.org/10.5194/egusphere-2025-322, https://doi.org/10.5194/egusphere-2025-322, 2025
Short summary
Short summary
This study explores the potential of a hypothetical spaceborne radar to observe water vapor within clouds.
Mahesh Kovilakam, Larry W. Thomason, Magali Verkerk, Thomas Aubry, and Travis N. Knepp
Atmos. Chem. Phys., 25, 535–553, https://doi.org/10.5194/acp-25-535-2025, https://doi.org/10.5194/acp-25-535-2025, 2025
Short summary
Short summary
The Global Space-based Stratospheric Aerosol Climatology (GloSSAC) is essential for understanding and modeling the climatic impacts of stratospheric aerosols, comprising data from various space-based measurements. Here, we examine the Ozone Mapping and Profiler Suite Limb Profiler (OMPS-LP) against other data sets, particularly the Stratospheric Aerosol and Gas Experiment (SAGE) III/ISS, to discern differences and explore the applicability of OMPS data within the GloSSAC framework.
Alexei Rozanov, Christine Pohl, Carlo Arosio, Adam Bourassa, Klaus Bramstedt, Elizaveta Malinina, Landon Rieger, and John P. Burrows
Atmos. Meas. Tech., 17, 6677–6695, https://doi.org/10.5194/amt-17-6677-2024, https://doi.org/10.5194/amt-17-6677-2024, 2024
Short summary
Short summary
We developed a new algorithm to retrieve vertical distributions of aerosol extinction coefficients in the stratosphere. The algorithm is applied to measurements of scattered solar light from the spaceborne OMPS-LP (Ozone Mapper and Profiler Suite Limb Profiler) instrument. The retrieval results are compared to data from other spaceborne instruments and used to investigate the evolution of the aerosol plume following the eruption of the Hunga Tonga–Hunga Ha'apai volcano in January 2022.
Kimberlee Dubé, Susann Tegtmeier, Adam Bourassa, Daniel Zawada, Douglas Degenstein, William Randel, Sean Davis, Michael Schwartz, Nathaniel Livesey, and Anne Smith
Atmos. Chem. Phys., 24, 12925–12941, https://doi.org/10.5194/acp-24-12925-2024, https://doi.org/10.5194/acp-24-12925-2024, 2024
Short summary
Short summary
Greenhouse gas emissions that warm the troposphere also result in stratospheric cooling. The cooling rate is difficult to quantify above 35 km due to a deficit of long-term observational data with high vertical resolution in this region. We use satellite observations from several instruments, including a new temperature product from OSIRIS, to show that the upper stratosphere, from 35–60 km, cooled by 0.5 to 1 K per decade over 2005–2021 and by 0.6 K per decade over 1979–2021.
Yunqian Zhu, Hideharu Akiyoshi, Valentina Aquila, Elisabeth Asher, Ewa M. Bednarz, Slimane Bekki, Christoph Brühl, Amy H. Butler, Parker Case, Simon Chabrillat, Gabriel Chiodo, Margot Clyne, Lola Falletti, Peter R. Colarco, Eric Fleming, Andrin Jörimann, Mahesh Kovilakam, Gerbrand Koren, Ales Kuchar, Nicolas Lebas, Qing Liang, Cheng-Cheng Liu, Graham Mann, Michael Manyin, Marion Marchand, Olaf Morgenstern, Paul Newman, Luke D. Oman, Freja F. Østerstrøm, Yifeng Peng, David Plummer, Ilaria Quaglia, William Randel, Samuel Rémy, Takashi Sekiya, Stephen Steenrod, Timofei Sukhodolov, Simone Tilmes, Kostas Tsigaridis, Rei Ueyama, Daniele Visioni, Xinyue Wang, Shingo Watanabe, Yousuke Yamashita, Pengfei Yu, Wandi Yu, Jun Zhang, and Zhihong Zhuo
EGUsphere, https://doi.org/10.5194/egusphere-2024-3412, https://doi.org/10.5194/egusphere-2024-3412, 2024
Short summary
Short summary
To understand the climate impact of the 2022 Hunga volcanic eruption, we developed a climate model-observation comparison project. The paper describes the protocols and models that participate in the experiments. We designed several experiments to achieve our goal of this activity: 1. evaluate the climate model performance; 2. understand the Earth system responses to this eruption.
Viktoria F. Sofieva, Alexei Rozanov, Monika Szelag, John P. Burrows, Christian Retscher, Robert Damadeo, Doug Degenstein, Landon A. Rieger, and Adam Bourassa
Earth Syst. Sci. Data, 16, 5227–5241, https://doi.org/10.5194/essd-16-5227-2024, https://doi.org/10.5194/essd-16-5227-2024, 2024
Short summary
Short summary
Climate-related studies need information about the distribution of stratospheric aerosols, which influence the energy balance of the Earth’s atmosphere. In this work, we present a merged dataset of vertically resolved stratospheric aerosol extinction coefficients, which is derived from data of six limb and occultation satellite instruments. The created aerosol climate record covers the period from October 1984 to December 2023. It can be used in various climate-related studies.
Sujan Khanal, Matthew Toohey, Adam Bourassa, C. Thomas McElroy, Christopher Sioris, and Kaley A. Walker
EGUsphere, https://doi.org/10.5194/egusphere-2024-3286, https://doi.org/10.5194/egusphere-2024-3286, 2024
Short summary
Short summary
Measurements of stratospheric aerosol from the MAESTRO instrument are compared to other measurements to assess their scientific value. We find that medians of MAESTRO measurements binned by month and latitude show reasonable correlation with other data sets, with notable increases after volcanic eruptions, and that biases in the data can be alleviated through a simple correction technique. Used with care, MAESTRO aerosol measurements provide information that can complement other data sets.
Christine Pohl, Felix Wrana, Alexei Rozanov, Terry Deshler, Elizaveta Malinina, Christian von Savigny, Landon A. Rieger, Adam E. Bourassa, and John P. Burrows
Atmos. Meas. Tech., 17, 4153–4181, https://doi.org/10.5194/amt-17-4153-2024, https://doi.org/10.5194/amt-17-4153-2024, 2024
Short summary
Short summary
Knowledge of stratospheric aerosol characteristics is important for understanding chemical and climate aerosol feedbacks. Two particle size distribution parameters, the aerosol extinction coefficient and the effective radius, are obtained from SCIAMACHY limb observations. The aerosol characteristics show good agreement with independent data sets from balloon-borne and satellite observations. This data set expands the limited knowledge of stratospheric aerosol characteristics.
Luis F. Millán, Peter Hoor, Michaela I. Hegglin, Gloria L. Manney, Harald Boenisch, Paul Jeffery, Daniel Kunkel, Irina Petropavlovskikh, Hao Ye, Thierry Leblanc, and Kaley Walker
Atmos. Chem. Phys., 24, 7927–7959, https://doi.org/10.5194/acp-24-7927-2024, https://doi.org/10.5194/acp-24-7927-2024, 2024
Short summary
Short summary
In the Observed Composition Trends And Variability in the UTLS (OCTAV-UTLS) Stratosphere-troposphere Processes And their Role in Climate (SPARC) activity, we have mapped multiplatform ozone datasets into coordinate systems to systematically evaluate the influence of these coordinates on binned climatological variability. This effort unifies the work of studies that focused on individual coordinate system variability. Our goal was to create the most comprehensive assessment of this topic.
Robert P. Damadeo, Viktoria F. Sofieva, Alexei Rozanov, and Larry W. Thomason
Atmos. Meas. Tech., 17, 3669–3678, https://doi.org/10.5194/amt-17-3669-2024, https://doi.org/10.5194/amt-17-3669-2024, 2024
Short summary
Short summary
Comparing different aerosol data sets for scientific studies often requires converting aerosol extinction data between different wavelengths. A common approximation for the spectral behavior of aerosol is the Ångström formula; however, this introduces biases. Using measurements across many different wavelengths from a single instrument, we derive an empirical relationship to both characterize this bias and offer a correction for other studies that may employ this analysis approach.
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Bradley Hall, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan P. Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Blair Trewin, Myles Allen, Robbie Andrew, Richard A. Betts, Alex Borger, Tim Boyer, Jiddu A. Broersma, Carlo Buontempo, Samantha Burgess, Chiara Cagnazzo, Lijing Cheng, Pierre Friedlingstein, Andrew Gettelman, Johannes Gütschow, Masayoshi Ishii, Stuart Jenkins, Xin Lan, Colin Morice, Jens Mühle, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Jan C. Minx, Gunnar Myhre, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, Sophie Szopa, Peter Thorne, Mahesh V. M. Kovilakam, Elisa Majamäki, Jukka-Pekka Jalkanen, Margreet van Marle, Rachel M. Hoesly, Robert Rohde, Dominik Schumacher, Guido van der Werf, Russell Vose, Kirsten Zickfeld, Xuebin Zhang, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 16, 2625–2658, https://doi.org/10.5194/essd-16-2625-2024, https://doi.org/10.5194/essd-16-2625-2024, 2024
Short summary
Short summary
This paper tracks some key indicators of global warming through time, from 1850 through to the end of 2023. It is designed to give an authoritative estimate of global warming to date and its causes. We find that in 2023, global warming reached 1.3 °C and is increasing at over 0.2 °C per decade. This is caused by all-time-high greenhouse gas emissions.
Travis N. Knepp, Mahesh Kovilakam, Larry Thomason, and Stephen J. Miller
Atmos. Meas. Tech., 17, 2025–2054, https://doi.org/10.5194/amt-17-2025-2024, https://doi.org/10.5194/amt-17-2025-2024, 2024
Short summary
Short summary
An algorithm is presented to derive a new SAGE III/ISS (Stratospheric Aerosol and Gas Experiment III on the International Space Station) Level-2 product: the size distribution of stratospheric particles. This is a significant improvement over previous techniques in that we now provide uncertainty estimates for all inferred parameters. We also evaluated the stability of this method in retrieving bimodal distribution parameters. We present a special application to the 2022 eruption of Hunga Tonga.
Daniel Zawada, Kimberlee Dubé, Taran Warnock, Adam Bourassa, Susann Tegtmeier, and Douglas Degenstein
Atmos. Meas. Tech., 17, 1995–2010, https://doi.org/10.5194/amt-17-1995-2024, https://doi.org/10.5194/amt-17-1995-2024, 2024
Short summary
Short summary
There remain large uncertainties in long-term changes of stratospheric–atmospheric temperatures. We have produced a time series of more than 20 years of satellite-based temperature measurements from the OSIRIS instrument in the upper–middle stratosphere. The dataset is publicly available and intended to be used for a better understanding of changes in stratospheric temperatures.
Luis F. Millán, Matthew D. Lebsock, Ken B. Cooper, Jose V. Siles, Robert Dengler, Raquel Rodriguez Monje, Amin Nehrir, Rory A. Barton-Grimley, James E. Collins, Claire E. Robinson, Kenneth L. Thornhill, and Holger Vömel
Atmos. Meas. Tech., 17, 539–559, https://doi.org/10.5194/amt-17-539-2024, https://doi.org/10.5194/amt-17-539-2024, 2024
Short summary
Short summary
In this study, we describe and validate a new technique in which three radar tones are used to estimate the water vapor inside clouds and precipitation. This instrument flew on board NASA's P-3 aircraft during the Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) campaign and the Synergies Of Active optical and Active microwave Remote Sensing Experiment (SOA2RSE) campaign.
Lukas Fehr, Chris McLinden, Debora Griffin, Daniel Zawada, Doug Degenstein, and Adam Bourassa
Geosci. Model Dev., 16, 7491–7507, https://doi.org/10.5194/gmd-16-7491-2023, https://doi.org/10.5194/gmd-16-7491-2023, 2023
Short summary
Short summary
This work highlights upgrades to SASKTRAN, a model that simulates sunlight interacting with the atmosphere to help measure trace gases. The upgrades were verified by detailed comparisons between different numerical methods. A case study was performed using SASKTRAN’s multidimensional capabilities, which found that ignoring horizontal variation in the atmosphere (a common practice in the field) can introduce non-negligible errors where there is snow or high pollution.
Yunqian Zhu, Robert W. Portmann, Douglas Kinnison, Owen Brian Toon, Luis Millán, Jun Zhang, Holger Vömel, Simone Tilmes, Charles G. Bardeen, Xinyue Wang, Stephanie Evan, William J. Randel, and Karen H. Rosenlof
Atmos. Chem. Phys., 23, 13355–13367, https://doi.org/10.5194/acp-23-13355-2023, https://doi.org/10.5194/acp-23-13355-2023, 2023
Short summary
Short summary
The 2022 Hunga Tonga eruption injected a large amount of water into the stratosphere. Ozone depletion was observed inside the volcanic plume. Chlorine and water vapor injected by this eruption exceeded the normal range, which made the ozone chemistry during this event occur at a higher temperature than polar ozone depletion. Unlike polar ozone chemistry where chlorine nitrate is more important, hypochlorous acid plays a large role in the in-plume chlorine balance and heterogeneous processes.
Kimberlee Dubé, Susann Tegtmeier, Adam Bourassa, Daniel Zawada, Douglas Degenstein, Patrick E. Sheese, Kaley A. Walker, and William Randel
Atmos. Chem. Phys., 23, 13283–13300, https://doi.org/10.5194/acp-23-13283-2023, https://doi.org/10.5194/acp-23-13283-2023, 2023
Short summary
Short summary
This paper presents a technique for understanding the causes of long-term changes in stratospheric composition. By using N2O as a proxy for stratospheric circulation in the model used to calculated trends, it is possible to separate the effects of dynamics and chemistry on observed trace gas trends. We find that observed HCl increases are due to changes in the stratospheric circulation, as are O3 decreases above 30 hPa in the Northern Hemisphere.
Larry W. Thomason and Travis Knepp
Atmos. Chem. Phys., 23, 10361–10381, https://doi.org/10.5194/acp-23-10361-2023, https://doi.org/10.5194/acp-23-10361-2023, 2023
Short summary
Short summary
We examine space-based observations of stratospheric aerosol to infer the presence of episodic smoke perturbations. We find that smoke's optical properties often show a consistent behavior but vary somewhat from event to event. We also find that the rate of smoke events observed in the 1984–2005 period is about half the rate of similar observations in the period from 2017 to the present; however, with such low overall rates, inferring change between the periods is difficult.
Felix Wrana, Ulrike Niemeier, Larry W. Thomason, Sandra Wallis, and Christian von Savigny
Atmos. Chem. Phys., 23, 9725–9743, https://doi.org/10.5194/acp-23-9725-2023, https://doi.org/10.5194/acp-23-9725-2023, 2023
Short summary
Short summary
The stratospheric aerosol layer is a naturally occurring and permanent layer of aerosol, in this case very small droplets of mostly sulfuric acid and water, that has a cooling effect on our climate. To quantify this effect and for our general understanding of stratospheric microphysical processes, knowledge of the size of those aerosol particles is needed. Using satellite measurements and atmospheric models we show that some volcanic eruptions can lead to on average smaller aerosol sizes.
Ethan Runge, Jeff Langille, Daniel Zawada, Adam Bourassa, and Doug Degenstein
Atmos. Meas. Tech., 16, 3123–3139, https://doi.org/10.5194/amt-16-3123-2023, https://doi.org/10.5194/amt-16-3123-2023, 2023
Short summary
Short summary
The Limb Imaging Fourier Transform Spectrometer Experiment (LIFE) instrument takes vertical images of limb radiance across a wide mid-infrared spectral band from a stratospheric balloon. Measurements are used to infer vertical-trace-gas-profile retrievals of H2O, O3, HNO3, CH4, and N2O. Nearly time-/space-coincident observations from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) and Microwave Limb Sounder (MLS) instruments are compared to the LIFE results.
Luis F. Millán, Gloria L. Manney, Harald Boenisch, Michaela I. Hegglin, Peter Hoor, Daniel Kunkel, Thierry Leblanc, Irina Petropavlovskikh, Kaley Walker, Krzysztof Wargan, and Andreas Zahn
Atmos. Meas. Tech., 16, 2957–2988, https://doi.org/10.5194/amt-16-2957-2023, https://doi.org/10.5194/amt-16-2957-2023, 2023
Short summary
Short summary
The determination of atmospheric composition trends in the upper troposphere and lower stratosphere (UTLS) is still highly uncertain. We present the creation of dynamical diagnostics to map several ozone datasets (ozonesondes, lidars, aircraft, and satellite measurements) in geophysically based coordinate systems. The diagnostics can also be used to analyze other greenhouse gases relevant to surface climate and UTLS chemistry.
Frank Werner, Nathaniel J. Livesey, Luis F. Millán, William G. Read, Michael J. Schwartz, Paul A. Wagner, William H. Daffer, Alyn Lambert, Sasha N. Tolstoff, and Michelle L. Santee
Atmos. Meas. Tech., 16, 2733–2751, https://doi.org/10.5194/amt-16-2733-2023, https://doi.org/10.5194/amt-16-2733-2023, 2023
Short summary
Short summary
The algorithm that produces the near-real-time data products of the Aura Microwave Limb Sounder has been updated. The new algorithm is based on machine learning techniques and yields data products with much improved accuracy. It is shown that the new algorithm outperforms the previous versions, even when it is trained on only a few years of satellite observations. This confirms the potential of applying machine learning to the near-real-time efforts of other current and future mission concepts.
Mahesh Kovilakam, Larry Thomason, and Travis Knepp
Atmos. Meas. Tech., 16, 2709–2731, https://doi.org/10.5194/amt-16-2709-2023, https://doi.org/10.5194/amt-16-2709-2023, 2023
Short summary
Short summary
The paper describes SAGE III/ISS aerosol/cloud categorization and its implications on Global Space-based Stratospheric Aerosol Climatology (GloSSAC). The presence of data from the SAGE type of multi-wavelength measurements is important in GloSSAC. The new aerosol/cloud categorization method described in this paper will help retain more measurements, particularly in the lower stratosphere during and following a volcanic event and other processes.
Viktoria F. Sofieva, Monika Szelag, Johanna Tamminen, Carlo Arosio, Alexei Rozanov, Mark Weber, Doug Degenstein, Adam Bourassa, Daniel Zawada, Michael Kiefer, Alexandra Laeng, Kaley A. Walker, Patrick Sheese, Daan Hubert, Michel van Roozendael, Christian Retscher, Robert Damadeo, and Jerry D. Lumpe
Atmos. Meas. Tech., 16, 1881–1899, https://doi.org/10.5194/amt-16-1881-2023, https://doi.org/10.5194/amt-16-1881-2023, 2023
Short summary
Short summary
The paper presents the updated SAGE-CCI-OMPS+ climate data record of monthly zonal mean ozone profiles. This dataset covers the stratosphere and combines measurements by nine limb and occultation satellite instruments (SAGE II, OSIRIS, MIPAS, SCIAMACHY, GOMOS, ACE-FTS, OMPS-LP, POAM III, and SAGE III/ISS). The update includes new versions of MIPAS, ACE-FTS, and OSIRIS datasets and introduces data from additional sensors (POAM III and SAGE III/ISS) and retrieval processors (OMPS-LP).
Yi Wang, Mark Schoeberl, Ghassan Taha, Daniel Zawada, and Adam Bourassa
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-36, https://doi.org/10.5194/amt-2023-36, 2023
Revised manuscript not accepted
Short summary
Short summary
The OMPS-LP satellite instrument measures aerosol scattering properties across the atmospheric limb. Adopting an algorithm that uses extinction at two wavelengths, we retrieve vertical profiles of particle size and concentration. We demonstrate that these profiles are consistent with in-situ balloon and SAGE-III/ISS satellite measurements. We also show how aerosol size and concentration evolve during Reikoke and Hunga Tonga-Hunga Ha'apai eruptions.
Paul S. Jeffery, Kaley A. Walker, Chris E. Sioris, Chris D. Boone, Doug Degenstein, Gloria L. Manney, C. Thomas McElroy, Luis Millán, David A. Plummer, Niall J. Ryan, Patrick E. Sheese, and Jiansheng Zou
Atmos. Chem. Phys., 22, 14709–14734, https://doi.org/10.5194/acp-22-14709-2022, https://doi.org/10.5194/acp-22-14709-2022, 2022
Short summary
Short summary
The upper troposphere–lower stratosphere is one of the most variable regions in the atmosphere. To improve our understanding of water vapour and ozone concentrations in this region, climatologies have been developed from 14 years of measurements from three Canadian satellite instruments. Horizontal and vertical coordinates have been chosen to minimize the effects of variability. To aid in analysis, model simulations have been used to characterize differences between instrument climatologies.
Kimberlee Dubé, Daniel Zawada, Adam Bourassa, Doug Degenstein, William Randel, David Flittner, Patrick Sheese, and Kaley Walker
Atmos. Meas. Tech., 15, 6163–6180, https://doi.org/10.5194/amt-15-6163-2022, https://doi.org/10.5194/amt-15-6163-2022, 2022
Short summary
Short summary
Satellite observations are important for monitoring changes in atmospheric composition. Here we describe an improved version of the NO2 retrieval for the Optical Spectrograph and InfraRed Imager System. The resulting NO2 profiles are compared to those from the Atmospheric Chemistry Experiment – Fourier Transform Spectrometer and the Stratospheric Aerosol and Gas Experiment III on the International Space Station. All datasets agree within 20 % throughout the stratosphere.
Travis N. Knepp, Larry Thomason, Mahesh Kovilakam, Jason Tackett, Jayanta Kar, Robert Damadeo, and David Flittner
Atmos. Meas. Tech., 15, 5235–5260, https://doi.org/10.5194/amt-15-5235-2022, https://doi.org/10.5194/amt-15-5235-2022, 2022
Short summary
Short summary
We used aerosol profiles from the SAGE III/ISS instrument to develop an aerosol classification method that was tested on four case-study events (two volcanic, two fire) and supported with CALIOP aerosol products. The method worked well in identifying smoke and volcanic aerosol in the stratosphere for these events. Raikoke is presented as a demonstration of the limitations of this method.
Kristof Bognar, Susann Tegtmeier, Adam Bourassa, Chris Roth, Taran Warnock, Daniel Zawada, and Doug Degenstein
Atmos. Chem. Phys., 22, 9553–9569, https://doi.org/10.5194/acp-22-9553-2022, https://doi.org/10.5194/acp-22-9553-2022, 2022
Short summary
Short summary
We quantify recent changes in stratospheric ozone (outside the polar regions) using a combination of three satellite datasets. We find that upper stratospheric ozone have increased significantly since 2000, although the recovery shows an unexpected pause in the Northern Hemisphere. Combined with the likely decrease in ozone in the lower stratosphere, this presents an interesting challenge for predicting the future of the ozone layer.
Lucien Froidevaux, Douglas E. Kinnison, Michelle L. Santee, Luis F. Millán, Nathaniel J. Livesey, William G. Read, Charles G. Bardeen, John J. Orlando, and Ryan A. Fuller
Atmos. Chem. Phys., 22, 4779–4799, https://doi.org/10.5194/acp-22-4779-2022, https://doi.org/10.5194/acp-22-4779-2022, 2022
Short summary
Short summary
We analyze satellite-derived distributions of chlorine monoxide (ClO) and hypochlorous acid (HOCl) in the upper atmosphere. For 2005–2020, from 50°S to 50°N and over ~30 to 45 km, ClO and HOCl decreased by −0.7 % and −0.4 % per year, respectively. A detailed model of chemistry and dynamics agrees with the results. These decreases confirm the effectiveness of the 1987 Montreal Protocol, which limited emissions of chlorine- and bromine-containing source gases, in order to protect the ozone layer.
Julia Koch, Adam Bourassa, Nick Lloyd, Chris Roth, and Christian von Savigny
Atmos. Chem. Phys., 22, 3191–3202, https://doi.org/10.5194/acp-22-3191-2022, https://doi.org/10.5194/acp-22-3191-2022, 2022
Short summary
Short summary
The mesopause, the region of the earth's atmosphere between 85 and 100 km, is hard to access by direct measurements. Therefore we look for parameters that can be measured using satellite or ground-based measurements. In this study we researched sodium airglow, a phenomenon that occurs when sodium atoms are excited by chemical reactions. We compared satellite measurements of the airglow and resulting sodium concentration profiles to gain a better understanding of the sodium in that region.
Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, Adam E. Bourassa, Doug A. Degenstein, Lucien Froidevaux, C. Thomas McElroy, Donal Murtagh, James M. Russell III, and Jiansheng Zou
Atmos. Meas. Tech., 15, 1233–1249, https://doi.org/10.5194/amt-15-1233-2022, https://doi.org/10.5194/amt-15-1233-2022, 2022
Short summary
Short summary
This study analyzes the quality of two versions (v3.6 and v4.1) of ozone concentration measurements from the ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer), by comparing with data from five satellite instruments between 2004 and 2020. It was found that although the v3.6 data exhibit a better agreement than v4.1 with respect to the other instruments, v4.1 exhibits much better stability over time than v3.6. The stability of v4.1 makes it suitable for ozone trend studies.
Debora Griffin, Chris A. McLinden, Enrico Dammers, Cristen Adams, Chelsea E. Stockwell, Carsten Warneke, Ilann Bourgeois, Jeff Peischl, Thomas B. Ryerson, Kyle J. Zarzana, Jake P. Rowe, Rainer Volkamer, Christoph Knote, Natalie Kille, Theodore K. Koenig, Christopher F. Lee, Drew Rollins, Pamela S. Rickly, Jack Chen, Lukas Fehr, Adam Bourassa, Doug Degenstein, Katherine Hayden, Cristian Mihele, Sumi N. Wren, John Liggio, Ayodeji Akingunola, and Paul Makar
Atmos. Meas. Tech., 14, 7929–7957, https://doi.org/10.5194/amt-14-7929-2021, https://doi.org/10.5194/amt-14-7929-2021, 2021
Short summary
Short summary
Satellite-derived NOx emissions from biomass burning are estimated with TROPOMI observations. Two common emission estimation methods are applied, and sensitivity tests with model output were performed to determine the accuracy of these methods. The effect of smoke aerosols on TROPOMI NO2 columns is estimated and compared to aircraft observations from four different aircraft campaigns measuring biomass burning plumes in 2018 and 2019 in North America.
Anqi Li, Chris Z. Roth, Adam E. Bourassa, Douglas A. Degenstein, Kristell Pérot, Ole Martin Christensen, and Donal P. Murtagh
Earth Syst. Sci. Data, 13, 5115–5126, https://doi.org/10.5194/essd-13-5115-2021, https://doi.org/10.5194/essd-13-5115-2021, 2021
Short summary
Short summary
The nightglow emission originating from the vibrationally excited hydroxyl layer (about 85 km altitude) has been measured by the infrared imager (IRI) on the Odin satellite for more than 15 years. In this study, we document the retrieval steps, the resulting volume emission rates and the layer characteristics. Finally, we use the monthly zonal averages to demonstrate the fidelity of the data set. This unique, long-term data set will be valuable for studying various topics near the mesopause.
Nathaniel J. Livesey, William G. Read, Lucien Froidevaux, Alyn Lambert, Michelle L. Santee, Michael J. Schwartz, Luis F. Millán, Robert F. Jarnot, Paul A. Wagner, Dale F. Hurst, Kaley A. Walker, Patrick E. Sheese, and Gerald E. Nedoluha
Atmos. Chem. Phys., 21, 15409–15430, https://doi.org/10.5194/acp-21-15409-2021, https://doi.org/10.5194/acp-21-15409-2021, 2021
Short summary
Short summary
The Microwave Limb Sounder (MLS), an instrument on NASA's Aura mission launched in 2004, measures vertical profiles of the temperature and composition of Earth's "middle atmosphere" (the region from ~12 to ~100 km altitude). We describe how, among the 16 trace gases measured by MLS, the measurements of water vapor (H2O) and nitrous oxide (N2O) have started to drift since ~2010. The paper also discusses the origins of this drift and work to ameliorate it in a new version of the MLS dataset.
Daniel Zawada, Ghislain Franssens, Robert Loughman, Antti Mikkonen, Alexei Rozanov, Claudia Emde, Adam Bourassa, Seth Dueck, Hannakaisa Lindqvist, Didier Ramon, Vladimir Rozanov, Emmanuel Dekemper, Erkki Kyrölä, John P. Burrows, Didier Fussen, and Doug Degenstein
Atmos. Meas. Tech., 14, 3953–3972, https://doi.org/10.5194/amt-14-3953-2021, https://doi.org/10.5194/amt-14-3953-2021, 2021
Short summary
Short summary
Satellite measurements of atmospheric composition often rely on computer tools known as radiative transfer models to model the propagation of sunlight within the atmosphere. Here we have performed a detailed inter-comparison of seven different radiative transfer models in a variety of conditions. We have found that the models agree remarkably well, at a level better than previously reported. This result provides confidence in our understanding of atmospheric radiative transfer.
Michaela I. Hegglin, Susann Tegtmeier, John Anderson, Adam E. Bourassa, Samuel Brohede, Doug Degenstein, Lucien Froidevaux, Bernd Funke, John Gille, Yasuko Kasai, Erkki T. Kyrölä, Jerry Lumpe, Donal Murtagh, Jessica L. Neu, Kristell Pérot, Ellis E. Remsberg, Alexei Rozanov, Matthew Toohey, Joachim Urban, Thomas von Clarmann, Kaley A. Walker, Hsiang-Jui Wang, Carlo Arosio, Robert Damadeo, Ryan A. Fuller, Gretchen Lingenfelser, Christopher McLinden, Diane Pendlebury, Chris Roth, Niall J. Ryan, Christopher Sioris, Lesley Smith, and Katja Weigel
Earth Syst. Sci. Data, 13, 1855–1903, https://doi.org/10.5194/essd-13-1855-2021, https://doi.org/10.5194/essd-13-1855-2021, 2021
Short summary
Short summary
An overview of the SPARC Data Initiative is presented, to date the most comprehensive assessment of stratospheric composition measurements spanning 1979–2018. Measurements of 26 chemical constituents obtained from an international suite of space-based limb sounders were compiled into vertically resolved, zonal monthly mean time series. The quality and consistency of these gridded datasets are then evaluated using a climatological validation approach and a range of diagnostics.
Luis F. Millán, Gloria L. Manney, and Zachary D. Lawrence
Atmos. Chem. Phys., 21, 5355–5376, https://doi.org/10.5194/acp-21-5355-2021, https://doi.org/10.5194/acp-21-5355-2021, 2021
Short summary
Short summary
We assess how consistently reanalyses represent potential vorticity (PV) among each other. PV helps describe dynamical processes in the stratosphere because it acts approximately as a tracer of the movement of air parcels; it is extensively used to identify the location of the tropopause and to identify and characterize the stratospheric polar vortex. Overall, PV from all reanalyses agrees well with the reanalysis ensemble mean.
Felix Wrana, Christian von Savigny, Jacob Zalach, and Larry W. Thomason
Atmos. Meas. Tech., 14, 2345–2357, https://doi.org/10.5194/amt-14-2345-2021, https://doi.org/10.5194/amt-14-2345-2021, 2021
Short summary
Short summary
In this paper, we describe a new method for calculating the size of naturally occurring droplets (aerosols) made mostly of sulfuric acid and water that can be found roughly at 20 km altitude in the atmosphere. We use data from the instrument SAGE III/ISS that is mounted on the International Space Station. We show that our method works well, and that the size parameters we calculate are reasonable and can be a valuable addition for a better understanding of aerosols and their effect on climate.
Ghassan Taha, Robert Loughman, Tong Zhu, Larry Thomason, Jayanta Kar, Landon Rieger, and Adam Bourassa
Atmos. Meas. Tech., 14, 1015–1036, https://doi.org/10.5194/amt-14-1015-2021, https://doi.org/10.5194/amt-14-1015-2021, 2021
Short summary
Short summary
This work describes the newly released OMPS LP aerosol extinction profile multi-wavelength Version 2.0 algorithm and dataset. It is shown that the V2.0 aerosols exhibit significant improvements in OMPS LP retrieval performance in the Southern Hemisphere and at lower altitudes. The new product is compared to the SAGE III/ISS, OSIRIS and CALIPSO missions and shown to be of good quality and suitable for scientific studies.
Larry W. Thomason, Mahesh Kovilakam, Anja Schmidt, Christian von Savigny, Travis Knepp, and Landon Rieger
Atmos. Chem. Phys., 21, 1143–1158, https://doi.org/10.5194/acp-21-1143-2021, https://doi.org/10.5194/acp-21-1143-2021, 2021
Short summary
Short summary
Measurements of the impact of volcanic eruptions on stratospheric aerosol loading by space-based instruments show show a fairly well-behaved relationship between the magnitude and the apparent changes to aerosol size over several orders of magnitude. This directly measured relationship provides a unique opportunity to verify the performance of interactive aerosol models used in climate models.
Kimberlee Dubé, Adam Bourassa, Daniel Zawada, Douglas Degenstein, Robert Damadeo, David Flittner, and William Randel
Atmos. Meas. Tech., 14, 557–566, https://doi.org/10.5194/amt-14-557-2021, https://doi.org/10.5194/amt-14-557-2021, 2021
Short summary
Short summary
SAGE III/ISS measures profiles of NO2; however the algorithm to convert raw measurements to NO2 concentration neglects variations caused by changes in chemistry over the course of a day. We devised a procedure to account for these diurnal variations and assess their impact on NO2 measurements from SAGE III/ISS. We find that the new NO2 concentration is more than 10 % lower than NO2 from the standard algorithm below 30 km, showing that this effect is important to consider at lower altitudes.
Tuomas Häkkilä, Pekka T. Verronen, Luis Millán, Monika E. Szeląg, Niilo Kalakoski, and Antti Kero
Ann. Geophys., 38, 1299–1312, https://doi.org/10.5194/angeo-38-1299-2020, https://doi.org/10.5194/angeo-38-1299-2020, 2020
Short summary
Short summary
The atmospheric impacts of energetic particle precipitation (EPP) can be useful in understanding the uncertainties of measuring the precipitation. Hence, information on how strong of an EPP flux has observable atmospheric impacts is needed. In this study, we find such threshold flux values using odd hydrogen concentrations from both satellite observations and model simulations. We consider the effects of solar proton events and radiation belt electron precipitation in the middle atmosphere.
Anqi Li, Chris Z. Roth, Kristell Pérot, Ole Martin Christensen, Adam Bourassa, Doug A. Degenstein, and Donal P. Murtagh
Atmos. Meas. Tech., 13, 6215–6236, https://doi.org/10.5194/amt-13-6215-2020, https://doi.org/10.5194/amt-13-6215-2020, 2020
Short summary
Short summary
The OSIRIS IR imager, one of the instruments on the Odin satellite, routinely measures the oxygen airglow at 1.27 μm. In this study, we primarily focus on the steps done for retrieving the calibrated IRA band limb radiance, the volume emission rate of O2(a1∆g) and finally the ozone number density. Specifically, we use a novel approach to address the issue of the measurements that were made close to the local sunrise, where the O2(a1∆g) diverges from the equilibrium state.
Juan-Carlos Antuña-Marrero, Graham W. Mann, Philippe Keckhut, Sergey Avdyushin, Bruno Nardi, and Larry W. Thomason
Earth Syst. Sci. Data, 12, 2843–2851, https://doi.org/10.5194/essd-12-2843-2020, https://doi.org/10.5194/essd-12-2843-2020, 2020
Short summary
Short summary
We report the recovery of lidar measurements of the 1991 Pinatubo eruption. Two Soviet ships crossing the tropical Atlantic in July–September 1991 and January–February 1992 measured the vertical profile of the Pinatubo cloud at different points in its spatio-temporal evolution. The datasets provide valuable new information on the eruption's impacts on climate, with the SAGE-II satellite measurements not able to measure most of the lower half of the Pinatubo cloud in the tropics in this period.
Luis Millán, Richard Roy, and Matthew Lebsock
Atmos. Meas. Tech., 13, 5193–5205, https://doi.org/10.5194/amt-13-5193-2020, https://doi.org/10.5194/amt-13-5193-2020, 2020
Short summary
Short summary
This paper describes the feasibility of using a differential absorption radar technique for the remote sensing of total column water vapor from a spaceborne platform.
Cited articles
Aquila, V., Oman, L. D., Stolarski, R., Douglass, A. R., and Newman, P. A.: The
Response of Ozone and Nitrogen Dioxide to the Eruption of Mt. Pinatubo at
Southern and Northern Midlatitudes, J. Atmos. Sci., 70,
894–900, https://doi.org/10.1175/JAS-D-12-0143.1, 2013. a, b
Aubry, T. J., Toohey, M., Marshall, L., Schmidt, A., and Jellinek, A. M.: A New
Volcanic Stratospheric Sulfate Aerosol Forcing Emulator (EVA_H): Comparison
With Interactive Stratospheric Aerosol Models, J. Geophys. Res.-Atmos., 125, e2019JD031 303, https://doi.org/10.1029/2019JD031303, 2020. a
Berdahl, M. and Robock, A.: Northern Hemispheric cryosphere response to
volcanic eruptions in the Paleoclimate Modeling Intercomparison Project 3
last millennium simulations, J. Geophys. Res.-Atmos.,
118, 12 359–12 370, https://doi.org/10.1002/2013JD019914, 2013. a
Bourassa, A. E., Rieger, L. A., Lloyd, N. D., and Degenstein, D. A.: Odin-OSIRIS stratospheric aerosol data product and SAGE III intercomparison, Atmos. Chem. Phys., 12, 605–614, https://doi.org/10.5194/acp-12-605-2012, 2012. a
Bourassa, A. E., Rieger, L. A., Zawada, D. J., Khaykin, S., Thomason, L. W.,
and Degenstein, D. A.: Satellite Limb Observations of Unprecedented Forest
Fire Aerosol in the Stratosphere, J. Geophys. Res.-Atmos., 124, 9510–9519, https://doi.org/10.1029/2019JD030607, 2019. a
Damadeo, R. P., Zawodny, J. M., Thomason, L. W., and Iyer, N.: SAGE version 7.0 algorithm: application to SAGE II, Atmos. Meas. Tech., 6, 3539–3561, https://doi.org/10.5194/amt-6-3539-2013, 2013. a
Eyring, V. and Lamarque, J.-F.: Brief Report on the IGAC/SPARC Workshop on
Global Chemistry-Climate Modeling and Evaluation, Tech. Rep. 39, SPARC,
Davos, Switzerland, 2012. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a, b
Fahey, D. W., Kawa, S. R., Woodbridge, E. L., Tin, P., Wilson, J. C., Jonsson, H. H., Dye, J. E., Baumgardner, D., Borrmann, S., Toohey, D. W., Avallone, L. M., Proffitt, M. H., Margitan, J., Loewenstein, M., Podolske, J. R., Salawitch, R. J., Wofsy, S. C., Ko, M. K. W., Anderson, D. E., Schoeberl, M. R., and Chan, K. R.: In situ Measurements Constraining the Role of Sulphate Aerosols in Mid-latitude Ozone Depletion, Nature, 363, 509–514, https://doi.org/10.1038/363509a0, 1993. a
Fyfe, J. C., von Salzen, K., Cole, J. N. S., Gillett, N. P., and Vernier,
J.-P.: Surface response to stratospheric aerosol changes in a coupled
atmosphere–ocean model, Geophys. Res. Lett., 40, 584–588,
https://doi.org/10.1002/grl.50156, 2013. a
Hansen, J., Lacis, A., Ruedy, R., and Sato, M.: Potential climate impact of
Mount Pinatubo eruption, Geophys. Res. Lett., 19, 215–218,
https://doi.org/10.1029/91GL02788, 1992. a
Haywood, J., Jones, A., Bellouin, N., and Stephenson, D.: Asymmetric forcing
from stratospheric aerosols impacts Sahelian rainfall, Nat. Clim. Change, 3,
660–665, 2013. a
Hofmann, D. J. and Solomon, S.: Ozone destruction through heterogeneous
chemistry following the eruption of El Chichon, J. Geophys. Res. Atmos, 94,
5029–5041, 1989. a
Iles, C. E., Hegerl, G. C., Schurer, A. P., and Zhang, X.: The effect of
volcanic eruptions on global precipitation, J. Geophys. Res.-Atmos., 118, 8770–8786, https://doi.org/10.1002/jgrd.50678, 2013. a
Illingworth, A. J., Barker, H. W., Beljaars, A., Ceccaldi, M., Chepfer, H.,
Clerbaux, N., Cole, J., Delanoë, J., Domenech, C., Donovan, D. P.,
Fukuda, S., Hirakata, M., Hogan, R. J., Huenerbein, A., Kollias, P., Kubota,
T., Nakajima, T., Nakajima, T. Y., Nishizawa, T., Ohno, Y., Okamoto, H., Oki,
R., Sato, K., Satoh, M., Shephard, M. W., Velázquez-Blázquez, A.,
Wandinger, U., Wehr, T., and van Zadelhoff, G.-J.: The EarthCARE Satellite:
The Next Step Forward in Global Measurements of Clouds, Aerosols,
Precipitation, and Radiation, B. Am. Meteorol. Soc., 96, 1311–1332, https://doi.org/10.1175/BAMS-D-12-00227.1, 2015. a
Jäger, H. and Deshler, T.: Lidar backscatter to extinction, mass and area
conversions for stratospheric aerosols based on midlatitude balloonborne size
distribution measurements, Geophys. Res. Lett., 29, 35-1–35-4,
https://doi.org/10.1029/2002GL015609, 1929, 2002. a
Jäger, H. and Deshler, T.: Correction to “Lidar backscatter to extinction,
mass and area conversions for stratospheric aerosols based on midlatitude
balloonborne size distribution measurements”, Geophys. Res. Lett., 30,
1382, https://doi.org/10.1029/2003GL017189, 2003. a
Kar, J., Lee, K.-P., Vaughan, M. A., Tackett, J. L., Trepte, C. R., Winker, D. M., Lucker, P. L., and Getzewich, B. J.: CALIPSO level 3 stratospheric aerosol profile product: version 1.00 algorithm description and initial assessment, Atmos. Meas. Tech., 12, 6173–6191, https://doi.org/10.5194/amt-12-6173-2019, 2019. a, b, c, d, e, f, g, h
Kremser, S., Thomason, L. W., von Hobe, M., Hermann, M., Deshler, T., Timmreck,
C., Toohey, M., Stenke, A., Schwarz, J. P., Weigel, R., Fueglistaler, S.,
Prata, F. J., Vernier, J.-P., Schlager, H., Barnes, J. E.,
Antuña-Marrero, J.-C., Fairlie, D., Palm, M., Mahieu, E., Notholt, J.,
Rex, M., Bingen, C., Vanhellemont, F., Bourassa, A., Plane, J. M. C., Klocke,
D., Carn, S. A., Clarisse, L., Trickl, T., Neely, R., James, A. D., Rieger,
L., Wilson, J. C., and Meland, B.: Stratospheric aerosol—Observations,
processes, and impact on climate, Rev. Geophys., 54, 278–335,
https://doi.org/10.1002/2015RG000511, 2016. a
Manney, G. L., Daffer, W. H., Zawodny, J. M., Bernath, P. F., Hoppel, K. W.,
Walker, K. A., Knosp, B. W., Boone, C., Remsberg, E. E., Santee, M. L.,
Harvey, V. L., Pawson, S., Jackson, D. R., Deaver, L., McElroy, C. T.,
McLinden, C. A., Drummond, J. R., Pumphrey, H. C., Lambert, A., Schwartz,
M. J., Froidevaux, L., McLeod, S., Takacs, L. L., Suarez, M. J., Trepte,
C. R., Cuddy, D. C., Livesey, N. J., Harwood, R. S., and Waters, J. W.: Solar
occultation satellite data and derived meteorological products: Sampling
issues and comparisons with Aura Microwave Limb Sounder, J. Geophys. Res.-Atmos., 112, https://doi.org/10.1029/2007JD008709, 2007. a
Massie, S. T., Gille, J. C., Edwards, D. P., Bailey, P. L., Lyjak, L. V.,
Craig, C. A., Cavanaugh, C. P., Mergenthaler, J. L., Roche, A. E., Kumer,
J. B., Lambert, A., Grainger, R. G., Rodgers, C. D., Taylor, F. W.,
Russell III, J. M., Park, J. H., Deshler, T., Hervig, M. E., Fishbein, E. F.,
Waters, J. W., and Lahoz, W. A.: Validation studies using multiwavelength
Cryogenic Limb Array Etalon Spectrometer (CLAES) observations of
stratospheric aerosol, J. Geophys. Res.-Atmos., 101,
9757–9773, https://doi.org/10.1029/95JD03225, 1996. a, b
Mills, M. J., Schmidt, A., Easter, R., Solomon, S., Kinnison, D. E., Ghan, S. J., Neely, R. R., Marsh, D. R., Conley, A., Bardeen, C. G., and Gettelman, A.: Global volcanic aerosol properties derived from emissions, 1990–2014, using CESM1(WACCM), J. Geophys. Res.-Atmos., 121, 2332–2348, https://doi.org/10.1002/2015JD024290, 2016. a, b
Minnis, P., Harrison, E., Stowe, L., Gibson, G., Denn, F., Doelling, D., and
Smith, W.: Radiative climate forcing by the Mount Pinatubo eruption, Science,
259, 1411–1415, 1993. a
Peterson, D. A., Campbell, J. R., Hyer, E. J., Fromm, M. D., Kablick, G. P.,
Cossuth, J. H., and DeLand, M. T.: Wildfire‐driven thunderstorms cause a
volcano‐like stratospheric injection of smoke, npj Climate and Atmospheric
Science, 30, 2018. a
Ridley, D. A., Solomon, S., Barnes, J. E., Burlakov, V. D., Deshler, T., Dolgii, S. I., Herber, A. B., Nagai, T., Neely III, R. R., Nevzorov, A. V., Ritter, C., Sakai, T., Santer, B. D., Sato, M., Schmidt, A., Uchino, O., and Vernier, J. P.: Total volcanic stratospheric aerosol optical depths and implications for global climate change, Geophys. Res. Lett., 41, 7763–7769, https://doi.org/10.1002/2014GL061541, 2014. a
Rieger, L. A., Bourassa, A. E., and Degenstein, D. A.: Merging the OSIRIS and
SAGE II stratospheric aerosol records, J. Geophys. Res. Atmos., 120,
8890–8904, https://doi.org/10.1002/2015JD023133, 2015. a
Rieger, L. A., Zawada, D. J., Bourassa, A. E., and Degenstein, D. A.: A
Multiwavelength Retrieval Approach for Improved OSIRIS Aerosol Extinction
Retrievals, J. Geophys. Res.-Atmos., 124, 7286–7307,
https://doi.org/10.1029/2018JD029897,
2019. a, b, c, d
Rieger, L. A., Cole, J. N. S., Fyfe, J. C., Po-Chedley, S., Cameron-Smith, P. J., Durack, P. J., Gillett, N. P., and Tang, Q.: Quantifying CanESM5 and EAMv1 sensitivities to Mt. Pinatubo volcanic forcing for the CMIP6 historical experiment, Geosci. Model Dev., 13, 4831–4843, https://doi.org/10.5194/gmd-13-4831-2020, 2020. a
Robock, A.: Volcanic eruptions and climate, Rev. Geophys., 38,
191–219, https://doi.org/10.1029/1998RG000054, 2000. a
Robock, A. and Mao, J.: The Volcanic Signal in Surface Temperature
Observations, J. Climate, 8, 1086–1103, 1995. a
Schmidt, A., Mills, M. J., Ghan, S., Gregory, J. M., Allan, R. P., Andrews, T.,
Bardeen, C. G., Conley, A., Forster, P. M., Gettelman, A., Portmann, R. W.,
Solomon, S., and Toon, O. B.: Volcanic Radiative Forcing From 1979 to 2015,
J. Geophys. Res.-Atmos., 123, 12 491–12 508,
https://doi.org/10.1029/2018JD028776, 2018. a
Solomon, S., Portmann, R. W., Garcia, R. R., Thomason, L. W., Poole, L. R., and McCormick, M. P.: The role of aerosol variations in anthropogenic ozone depletion at northern midlatitudes, J. Geophys. Res., 101, 6713–6727, https://doi.org/10.1029/95JD03353, 1996. a
Solomon, S., Daniel, J. S., Neely III, R. R., Vernier, J.-P., Dutton, E. G., and Thomason, L. W.: The persistently variable “Background” stratospheric aerosol layer and global climate change, Science, 333, 866–870, https://doi.org/10.1126/science.1206027, 2011. a
Stenchikov, G. L., Hamilton, K., Stouffer, R. J., Robock, A., Ramaswamy, V., Santer, B., and Graf, H.-F.: Arctic Oscillation response to volcanic eruptions in the IPCC AR4 climate models, J. Geophys. Res., 111, D07107, https://doi.org/10.1029/2005JD006286, 2006. a
Stocker, M., Ladstädter, F., Wilhelmsen, H., and Steiner, A. K.:
Quantifying Stratospheric Temperature Signals and Climate Imprints From
Post-2000 Volcanic Eruptions, Geophys. Res. Lett., 46,
12 486–12 494, https://doi.org/10.1029/2019GL084396, 2019. a
Thomason, L. W.: Toward a combined SAGE II-HALOE aerosol climatology: an evaluation of HALOE version 19 stratospheric aerosol extinction coefficient observations, Atmos. Chem. Phys., 12, 8177–8188, https://doi.org/10.5194/acp-12-8177-2012, 2012. a, b
Thomason, L. W.: Global Space-based Stratospheric Aerosol Climatology Version
2.0, NASA Langley Atmospheric Science Data Center DAAC,
https://doi.org/10.5067/glossac-l3-v2.0, 2020. a, b
Thomason, L. W. and Vernier, J.-P.: Improved SAGE II cloud/aerosol categorization and observations of the Asian tropopause aerosol layer: 1989–2005, Atmos. Chem. Phys., 13, 4605–4616, https://doi.org/10.5194/acp-13-4605-2013, 2013. a, b
Thomason, L. W., Burton, S. P., Luo, B.-P., and Peter, T.: SAGE II measurements of stratospheric aerosol properties at non-volcanic levels, Atmos. Chem. Phys., 8, 983–995, https://doi.org/10.5194/acp-8-983-2008, 2008. a, b
Thomason, L. W., Moore, J. R., Pitts, M. C., Zawodny, J. M., and Chiou, E. W.: An evaluation of the SAGE III version 4 aerosol extinction coefficient and water vapor data products, Atmos. Chem. Phys., 10, 2159–2173, https://doi.org/10.5194/acp-10-2159-2010, 2010. a
Thomason, L. W., Ernest, N., Millán, L., Rieger, L., Bourassa, A., Vernier,
J.-P., Manney, G., Luo, B., Arfeuille, F., and Peter, T.: A global
space-based stratospheric aerosol climatology: 1979–2016, Earth Syst. Sci. Data, 10, 469–492, https://doi.org/10.5194/essd-10-469-2018, 2018.
a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t
Timmreck, C., Mann, G. W., Aquila, V., Hommel, R., Lee, L. A., Schmidt, A., Brühl, C., Carn, S., Chin, M., Dhomse, S. S., Diehl, T., English, J. M., Mills, M. J., Neely, R., Sheng, J., Toohey, M., and Weisenstein, D.: The Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP): motivation and experimental design, Geosci. Model Dev., 11, 2581–2608, https://doi.org/10.5194/gmd-11-2581-2018, 2018. a
Vernier, J. P., Pommereau, J. P., Garnier, A., Pelon, J., Larsen, N., Nielsen, J., Christensen, T., Cairo, F., Thomason, L. W., Leblanc, T., and McDermid, I. S.: Tropical stratospheric aerosol layer from CALIPSO lidar observations, J. Geophys. Res.-Atmos., 114, D4, https://doi.org/10.1029/2009JD011946, 2009. a
Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z., Hunt,
W. H., and Young, S. A.: Overview of the CALIPSO mission and CALIOP data
processing algorithms, J. Atm. Ocean. Techn., 26, 2310–2323, 2009. a
Zanchettin, D., Khodri, M., Timmreck, C., Toohey, M., Schmidt, A., Gerber, E. P., Hegerl, G., Robock, A., Pausata, F. S. R., Ball, W. T., Bauer, S. E., Bekki, S., Dhomse, S. S., LeGrande, A. N., Mann, G. W., Marshall, L., Mills, M., Marchand, M., Niemeier, U., Poulain, V., Rozanov, E., Rubino, A., Stenke, A., Tsigaridis, K., and Tummon, F.: The Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP): experimental design and forcing input data for CMIP6, Geosci. Model Dev., 9, 2701–2719, https://doi.org/10.5194/gmd-9-2701-2016, 2016. a
Short summary
A robust stratospheric aerosol climatology is important as many global climate models (GCMs) make use of observed aerosol properties to prescribe aerosols in the stratosphere. Here, we present version 2.0 of the GloSSAC data set in which a new methodology is used for the post-2005 data that improves the quality of data in the lower stratosphere, which includes an improved 1020 nm extinction. Additionally, size information from multiwavelength measurements of SAGE III/ISS is provided.
A robust stratospheric aerosol climatology is important as many global climate models (GCMs)...
Altmetrics
Final-revised paper
Preprint