Journal cover Journal topic
Earth System Science Data The data publishing journal
Journal topic

Journal metrics

Journal metrics

  • IF value: 9.197 IF 9.197
  • IF 5-year value: 9.612 IF 5-year
    9.612
  • CiteScore value: 12.5 CiteScore
    12.5
  • SNIP value: 3.137 SNIP 3.137
  • IPP value: 9.49 IPP 9.49
  • SJR value: 4.532 SJR 4.532
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 48 Scimago H
    index 48
  • h5-index value: 35 h5-index 35
ESSD | Articles | Volume 10, issue 4
Earth Syst. Sci. Data, 10, 2279–2293, 2018
https://doi.org/10.5194/essd-10-2279-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Earth Syst. Sci. Data, 10, 2279–2293, 2018
https://doi.org/10.5194/essd-10-2279-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

  14 Dec 2018

14 Dec 2018

Using CALIOP to estimate cloud-field base height and its uncertainty: the Cloud Base Altitude Spatial Extrapolator (CBASE) algorithm and dataset

Johannes Mülmenstädt et al.

Related authors

Constraining the Twomey effect from satellite observations: Issues and perspectives
Johannes Quaas, Antti Arola, Brian Cairns, Matthew Christensen, Hartwig Deneke, Annica M. L. Ekman, Graham Feingold, Ann Fridlind, Edward Gryspeerdt, Otto Hasekamp, Zhanqing Li, Antti Lipponen, Po-Lun Ma, Johannes Mülmenstädt, Athanasios Nenes, Joyce Penner, Daniel Rosenfeld, Roland Schrödner, Kenneth Sinclair, Odran Sourdeval, Philip Stier, Matthias Tesche, Bastiaan van Diedenhoven, and Manfred Wendisch
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-279,https://doi.org/10.5194/acp-2020-279, 2020
Preprint under review for ACP
Short summary
A new classification of satellite-derived liquid water cloud regimes at cloud scale
Claudia Unglaub, Karoline Block, Johannes Mülmenstädt, Odran Sourdeval, and Johannes Quaas
Atmos. Chem. Phys., 20, 2407–2418, https://doi.org/10.5194/acp-20-2407-2020,https://doi.org/10.5194/acp-20-2407-2020, 2020
Short summary
Surprising similarities in model and observational aerosol radiative forcing estimates
Edward Gryspeerdt, Johannes Mülmenstädt, Andrew Gettelman, Florent F. Malavelle, Hugh Morrison, David Neubauer, Daniel G. Partridge, Philip Stier, Toshihiko Takemura, Hailong Wang, Minghuai Wang, and Kai Zhang
Atmos. Chem. Phys., 20, 613–623, https://doi.org/10.5194/acp-20-613-2020,https://doi.org/10.5194/acp-20-613-2020, 2020
Short summary
Separating radiative forcing by aerosol–cloud interactions and rapid cloud adjustments in the ECHAM–HAMMOZ aerosol–climate model using the method of partial radiative perturbations
Johannes Mülmenstädt, Edward Gryspeerdt, Marc Salzmann, Po-Lun Ma, Sudhakar Dipu, and Johannes Quaas
Atmos. Chem. Phys., 19, 15415–15429, https://doi.org/10.5194/acp-19-15415-2019,https://doi.org/10.5194/acp-19-15415-2019, 2019
Short summary
Arctic clouds in ECHAM6 and their sensitivity to cloud microphysics and surface fluxes
Jan Kretzschmar, Marc Salzmann, Johannes Mülmenstädt, and Johannes Quaas
Atmos. Chem. Phys., 19, 10571–10589, https://doi.org/10.5194/acp-19-10571-2019,https://doi.org/10.5194/acp-19-10571-2019, 2019
Short summary

Related subject area

Atmosphere – Meteorology
University of Kentucky measurements of wind, temperature, pressure and humidity in support of LAPSE-RATE using multisite fixed-wing and rotorcraft unmanned aerial systems
Sean C. C. Bailey, Michael P. Sama, Caleb A. Canter, L. Felipe Pampolini, Zachary S. Lippay, Travis J. Schuyler, Jonathan D. Hamilton, Sean B. MacPhee, Isaac S. Rowe, Christopher D. Sanders, Virginia G. Smith, Christina N. Vezzi, Harrison M. Wight, Jesse B. Hoagg, Marcelo I. Guzman, and Suzanne Weaver Smith
Earth Syst. Sci. Data, 12, 1759–1773, https://doi.org/10.5194/essd-12-1759-2020,https://doi.org/10.5194/essd-12-1759-2020, 2020
Short summary
Rescue and quality control of sub-daily meteorological data collected at Montevergine Observatory (Southern Apennines), 1884–1963
Vincenzo Capozzi, Yuri Cotroneo, Pasquale Castagno, Carmela De Vivo, and Giorgio Budillon
Earth Syst. Sci. Data, 12, 1467–1487, https://doi.org/10.5194/essd-12-1467-2020,https://doi.org/10.5194/essd-12-1467-2020, 2020
Short summary
High-resolution (1 km) Polar WRF output for 79° N Glacier and the northeast of Greenland from 2014 to 2018
Jenny V. Turton, Thomas Mölg, and Emily Collier
Earth Syst. Sci. Data, 12, 1191–1202, https://doi.org/10.5194/essd-12-1191-2020,https://doi.org/10.5194/essd-12-1191-2020, 2020
Short summary
Early instrumental meteorological observations in Switzerland: 1708–1873
Yuri Brugnara, Lucas Pfister, Leonie Villiger, Christian Rohr, Francesco Alessandro Isotta, and Stefan Brönnimann
Earth Syst. Sci. Data, 12, 1179–1190, https://doi.org/10.5194/essd-12-1179-2020,https://doi.org/10.5194/essd-12-1179-2020, 2020
Short summary
In situ airborne measurements of atmospheric and sea surface parameters related to offshore wind parks in the German Bight
Astrid Lampert, Konrad Bärfuss, Andreas Platis, Simon Siedersleben, Bughsin Djath, Beatriz Cañadillas, Robert Hunger, Rudolf Hankers, Mark Bitter, Thomas Feuerle, Helmut Schulz, Thomas Rausch, Maik Angermann, Alexander Schwithal, Jens Bange, Johannes Schulz-Stellenfleth, Thomas Neumann, and Stefan Emeis
Earth Syst. Sci. Data, 12, 935–946, https://doi.org/10.5194/essd-12-935-2020,https://doi.org/10.5194/essd-12-935-2020, 2020
Short summary

Cited articles

An, N., Wang, K., Zhou, C., and Pinker, R. T.: Observed Variability of Cloud Frequency and Cloud-Base Height within 3600 m above the Surface over the Contiguous United States, J. Climate, 30, 3725–3742, https://doi.org/10.1175/JCLI-D-16-0559.1, 2017. a
Benjamin, S. G., Weygandt, S. S., Brown, J. M., Hu, M., Alexander, C. R., Smirnova, T. G., Olson, J. B., James, E. P., Dowell, D. C., Grell, G. A., Lin, H., Peckham, S. E., Smith, T. L., Moninger, W. R., Kenyon, J. S., and Manikin, G. S.: A North American Hourly Assimilation and Model Forecast Cycle: The Rapid Refresh, Mon. Weather Rev., 144, 1669–1694, https://doi.org/10.1175/MWR-D-15-0242.1, 2016. a
Böhm, C., Sourdeval, O., Mülmenstädt, J., Quaas, J., and Crewell, S.: Cloud base height retrieval from multi-angle satellite data, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-317, in review, 2018. a
CALIPSO Science Team: CALIPSO/CALIOP Level 2, Vertical Feature Mask Data, version 4.10, https://doi.org/10.5067/CALIOP/CALIPSO/LID_L2_VFM-Standard-V4-10, 2016. a
Cao, C., De Luccia, F. J., Xiong, X., Wolfe, R., and Weng, F.: Early On-Orbit Performance of the Visible Infrared Imaging Radiometer Suite Onboard the Suomi National Polar-Orbiting Partnership (S-NPP) Satellite, IEEE Trans. Geosci. Remote Sens., 52, 1142–1156, https://doi.org/10.1109/TGRS.2013.2247768, 2014. a
Download
Short summary
One of the key pieces of information about a cloud is how high its base is. Unlike cloud top, cloud base is hard to observe from a satellite perspective – the cloud blocks the view. But without using satellites, it is difficult to compile global datasets. Here we describe how we worked around the limitations of a cloud-detecting laser satellite to observe global cloud base heights. This dataset will expand our knowledge of the cloudy atmosphere and its interaction with the planetary surface.
One of the key pieces of information about a cloud is how high its base is. Unlike cloud top,...
Citation