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Abstract. A technique is presented that uses attenuated backscatter profiles from the CALIOP satellite lidar to
estimate cloud base heights of lower-troposphere liquid clouds (cloud base height below approximately 3 km).
Even when clouds are thick enough to attenuate the lidar beam (optical thickness τ&5), the technique provides
cloud base heights by treating the cloud base height of nearby thinner clouds as representative of the surrounding
cloud field. Using ground-based ceilometer data, uncertainty estimates for the cloud base height product at
retrieval resolution are derived as a function of various properties of the CALIOP lidar profiles. Evaluation of the
predicted cloud base heights and their predicted uncertainty using a second statistically independent ceilometer
dataset shows that cloud base heights and uncertainties are biased by less than 10 %. Geographic distributions of
cloud base height and its uncertainty are presented. In some regions, the uncertainty is found to be substantially
smaller than the 480 m uncertainty assumed in the A-Train surface downwelling longwave estimate, potentially
permitting the most uncertain of the radiative fluxes in the climate system to be better constrained. The cloud
base dataset is available at https://doi.org/10.1594/WDCC/CBASE.

1 Introduction

The base height z is an important geometric parameter of a
cloud, controlling the cloud’s longwave radiative emission,
being required in the calculation of the cloud’s subadiabatic-
ity, and setting the level at which aerosol concentration and
updraft speed determine the cloud’s microphysical character-
istics. However, due to the viewing geometry, it is also one of
the most difficult cloud parameters to retrieve from satellites.

Multiple methods have been proposed for satellite deter-
mination of the cloud base height. Zhu et al. (2014) have
used the Visible Infrared Imaging Radiometer Suite aboard
the Suomi National Polar-orbiting Partnership satellite (VI-
IRS; Cao et al., 2014) to estimate cloud base temperature Tb
from the lowest cloud top temperature within a cloud clus-

ter; a reanalysis temperature profile can be used to convert
Tb to z. Using an empirical relationship between geomet-
ric and optical thickness, Fitch et al. (2016) have obtained
z from VIIRS. Cloud geometric thickness (and therefore z if
the cloud top height is known) can be inferred from increased
spectral absorption by O2 within cloud due to multiple scat-
tering (Kokhanovsky and Rozanov, 2005; Lelli and Voun-
tas, 2018). Stereoscopic determination of the height of the
most reflective layer (Naud et al., 2005, 2007) in Multiangle
Imaging Spectroradiometer data (MISR, Diner et al., 1998)
yields information on z, as the lowest layer heights within
a cloud cluster may correspond to the base of a cloud seen
from its side. An evaluation of MISR techniques is described
in Böhm et al. (2018).
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For analyses wishing to combine cloud base information
with other cloud properties retrieved by A-Train satellites,
these methods share the disadvantage that the required instru-
ments are not part of the A-Train. Methods that are applicable
to A-Train satellites are based on Moderate-Resolution Imag-
ing Spectroradiometer (MODIS; Platnick et al., 2017) cloud
properties retrieved near the cloud top and integrated along
moist adiabats to determine the cloud thickness (Meerkoet-
ter and Zinner, 2007; Goren et al., 2018) or on active remote
sensing by CloudSat (2B-GEOPROF; Marchand et al., 2008)
or a combination of CloudSat and CALIOP (2B-GEOPROF-
LIDAR; Mace and Zhang, 2014). Each of these has draw-
backs. The MODIS-derived cloud thickness assumes adia-
batic cloud profiles and therefore cannot be used to con-
strain subadiabaticity; the use of ancillary temperature pro-
file estimates may also be problematic in many cases. Cloud-
Sat misses the small droplets at the base of nonprecipitating
clouds (Sassen and Wang, 2008), and retrievals are further
degraded in the ground clutter region (Tanelli et al., 2008;
Marchand et al., 2008). CALIOP detects the bases of only the
thinnest clouds (τ < 5; Mace and Zhang, 2014); frequently,
it is desirable to know the base height of thick clouds as well.

In this paper, we revisit the CALIOP cloud base deter-
mination. We rely on one central assumption, namely that,
because the lifting condensation level is approximately ho-
mogeneous within an air mass, the cloud bases retrieved
by CALIOP for thin clouds are a good proxy for the cloud
base heights of an entire cloud field, including the optically
thicker clouds within the field. We have designed an algo-
rithm that extrapolates the CALIOP cloud base measure-
ments into locations where CALIOP attenuates before reach-
ing cloud base. This algorithm is called Cloud Base Altitude
Spatial Extrapolator (CBASE). In this paper we evaluate its
performance by comparing CBASE z against z observed by
ground-based ceilometers.

The cloud base of interest in this analysis is the base of
the lowest cloud in each column. Even if CALIOP can also
detect the base heights of other layers in multilayer situa-
tions, it is the base height of the lowest cloud that is of the
greatest interest for many applications (e.g., surface radiation
estimates).

Section 2 of this article describes the data sources used in
determining and evaluating z. In Sect. 3 we describe the al-
gorithm and evaluate its performance, including error statis-
tics. The publicly available processed CBASE output is de-
scribed in Sect. 4. Sections 5 and 6 document the availability
of the code and dataset underlying this paper. We conclude
in Sect. 7 with an outlook on the longstanding questions that
the CBASE dataset can address.

2 Data

Two classes of data are used in this work: cloud lidar data,
from which we intend to derive a global z dataset, and

ground-based observations used as reference measurements
of z to train and evaluate the algorithm by which z is deter-
mined from the satellite data.

Table 1 lists the URLs for all datasets used in this paper.

2.1 CALIOP VFM

The input satellite data to our analysis are from the Cloud–
Aerosol Lidar with Orthogonal Polarization (CALIOP;
Winker et al., 2007) onboard the Cloud–Aerosol Lidar and
Infrared Pathfinder Satellite Observation (CALIPSO) satel-
lite that is part of the A-Train satellite constellation (Stephens
et al., 2002) on a sun-synchronous low-Earth orbit with
Equator crossings at approximately 13:30 local time. The
cloud base product relies on the retrieved vertical feature
mask (VFM; Vaughan et al., 2005). For each CALIOP li-
dar backscatter profile, the VFM identifies features such as
clear air, cloud, aerosol, or planetary surface; this is termed
the “feature type”. (When the lidar beam is completely at-
tenuated, this is reported as a feature type.) In addition to the
feature type, the VFM records the degree of confidence in the
identification (“none” to “high”, termed the “feature type QA
flag”), the thermodynamic phase of a layer identified as cloud
as well as the degree of confidence therein (termed “ice wa-
ter phase” and “ice water phase QA flag”), and the horizontal
distance over which the algorithm had to average to identify
a feature above noise and molecular atmospheric scattering
(“horizontal averaging distance”).

In the present analysis, we use VFM version 4.10
(CALIPSO Science Team, 2016), the current standard re-
lease, for the years 2007 and 2008. The VFM files are ob-
tained from ICARE (http://www.icare.univ-lille1.fr/, last ac-
cess: 4 December 2018).

2.2 Airport ceilometers

For optimizing several parameters of the algorithm, for de-
termining the expected cloud base uncertainty, and for evalu-
ating the trained algorithm, reference measurements of z are
required. The source of these “true” z values in this work
is ground-based cloud observations at airports. Weather ob-
servations at airports are disseminated worldwide in aviation
routine and special weather reports (METARs and SPECIs,
collectively referred to as METARs henceforth; World Mete-
orological Organization, 2013). Apart from providing airport
weather information for aviation, METAR data are used for
assimilation into numerical weather prediction (NWP) mod-
els (e.g., Benjamin et al., 2016; Dee et al., 2011). In many
locations, z reported in METARs is measured by a ceilome-
ter over a period of time (tens of minutes) and then objec-
tively grouped into cloud layers and their respective frac-
tional coverages, using the temporal variation at a fixed point
under an advected cloud field as a proxy for spatial vari-
ability in the cloud field (e.g., Heese et al., 2010). METAR
data are widely distributed and archived; the data for the
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Table 1. Data sources used in this analysis.

Data product URL

CALIOP VFM http://www.icare.univ-lille1.fr/archive?dir=CALIOP/VFM.v4.10/ (last access: 4 December 2018)
ASOS locations http://www.rap.ucar.edu/weather/surface/stations.txt (last access: 4 December 2018)
METAR data https://www.wunderground.com/history/airport/∗ (last access: 4 December 2018)
CBASE https://doi.org/10.1594/WDCC/CBASE

∗ As a first step, ASOS station identifiers within a 100 km great-circle distance of a CALIOP footprint are identified; as a second step, the ICAO identifier
of the ASOS station is then used to query the Weather Underground METAR database.

present analysis were downloaded from the Weather Un-
derground archive (https://www.wunderground.com/history/
airport/, last access: 4 December 2018).

In the US, z is mostly derived automatically by laser
ceilometers that form part of the Automated Surface Observ-
ing Stations (ASOS, National Oceanic and Atmospheric Ad-
ministration, Department of Defense, Federal Aviation Ad-
ministration, and United States Navy, 1998) system; see, e.g.,
An et al. (2017) and Ikeda et al. (2017) for recent examples
of ASOS application to deriving cloud climatologies or NWP
model evaluation. In other parts of the world, the cloud bases
may be estimated by human observers or may be omitted un-
der certain conditions when the lowest cloud base is higher
than 1524 m, complicating objective comparison to satellite
z. To ensure that the ceilometer z values are of high and spa-
tially uniform quality, we restrict ourselves to METARs from
the contiguous continental US.

There are 1645 stations throughout the continental US that
lie within 100 km of a CALIOP footprint. In normal op-
eration, the time resolution of z reports is 1 h, but during
rapidly changing conditions, more frequent updates may be
provided; for comparison to satellite z, the ceilometer ob-
servation closest in time to the satellite overpass is used,
provided that the time difference is less than 1 h. For train-
ing the algorithm, we use ceilometer observations from the
year 2008. For unbiased evaluation of the algorithm perfor-
mance, a statistically independent dataset is required; we use
ceilometer observations from the same stations from the year
2007. Figure 1 shows the locations of these stations along
with the number of satellite–ceilometer z coincidences and
the closest co-location distance during the year 2007.

3 CBASE algorithm development and evaluation

The CBASE algorithm and evaluation proceed in four steps.

1. We determine the cloud base height from all CALIOP
profiles in which the surface generates a return, indicat-
ing that the lidar is not completely attenuated by cloud.
We refer to this as the column zc in the sense that it is
local to the CALIOP column.

2. Using ground-based ceilometer data, we determine the
quality of cloud base height depending on a number

Figure 1. ASOS ceilometers used for CBASE z evaluation. The
size of the marker indicates the number of satellite–ceilometer z
coincidences during the year 2007. Color indicates the closest co-
location distance achieved in 2007.

of properties of the CALIOP profile. Assuming those
properties suffice to determine the quality of the zc esti-
mate, we can then predict the quality of a cloud base
as a function of those factors. The quality metric we
use is the root-mean-square error (RMSE); the cate-
gory RMSE determined from comparison to ceilometer
zc then serves as the (sample) estimate of the predicted
(population) standard deviation of the measurement er-
ror zc− ẑ, i.e., the predicted zc uncertainty. We denote
this column uncertainty as σc. In the language of ma-
chine learning, we refer to this step as training the algo-
rithm on the ceilometer data to predict zc and σc.

3. Based on the predicted quality of each profile cloud
base, we either reject the column cloud base or com-
bine it with other cloud bases within a distance Dmax of
the point of interest to arrive at an estimate of z and σ
at that point. We refer to z and σ as the CBASE cloud
base height and cloud base height uncertainty.

4. Using a statistically independent validation dataset, we
verify that the predicted z and σ are correct.

This section is divided into four subsections, one for each
algorithm step enumerated above.
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3.1 Determination of CALIOP column z

Profile zc is determined from the CALIOP VFM for each pro-
file with a surface return. The rationale is that a surface re-
turn indicates that the lidar did not attenuate within the cloud
and that the lower limit of the layer identified as cloud there-
fore corresponds to the cloud base; Fig. 2 illustrates the idea.
For these profiles, the location, zc, cloud top height, feature
type between the cloud base and the surface, cloud thermo-
dynamic phase, and associated quality assurance flags from
the VFM algorithm are recorded.

3.2 Determination of CALIOP column cloud base quality

We assess the quality of the CALIOP zc using the RMSE
with respect to the ceilometer-observed ẑ. The RMSE is de-
fined as

RMSE=

√√√√ 1
N

N∑
i=1

(
zic− ẑ

)2
. (1)

The sum runs over all CALIOP profiles containing at least
one cloud layer and a surface return that are within 100 km in
horizontal distance of the ceilometer, occurring within 3600 s
of a ceilometer observation, and having their lowest CALIOP
cloud feature within 3 km of the surface. Ceilometer obser-
vations are only used if the observation closest in time to the
CALIPSO overpass contains a cloud within 3 km of the sur-
face. This height limit is imposed because a subset of the
ceilometers has a range limit of 3810 m, and all ceilome-
ters report ceilings above 3048 m with reduced granularity
(152.4 m); the 3 km threshold is safely below these ceilome-
ter limitations and mimics the International Satellite Cloud
Climatology Project (ISCCP; Rossow and Schiffer, 1999)
definition of low cloud (p > 680 hPa).

The following metrics, which are useful for a qualitative
assessment of the quality of the satellite cloud base, are also
calculated but play no quantitative role in the algorithm:

correlation coefficient between the CALIOP cloud base
and ground-based observation of the cloud base (we use
the Pearson correlation coefficient, ideally unity);

linear regression slope and intercept (ideally 1 and 0, re-
spectively);

retrieval bias, defined as

bias=
1
N

N∑
i=1

(
zic− ẑ

)
(2)

(ideally 0).

CALIOP’s ability to detect cloud base depends on the
properties of the cloud. Therefore, we expect that the zc qual-
ity will vary among different cloud profiles. We expect that
measuring the quality as a function of various properties of

Figure 2. Schematic of CALIOP cloud base determination and
evaluation strategy. In optically thick clouds (a, b), the lidar atten-
uates significantly within the cloud, rendering the cloud base infor-
mation unreliable. However, z of thin clouds (c) can be used as a
proxy for thick clouds in a cloud field with homogeneous z.

the CALIOP column will allow us to predict the quality of
other columns with the same combination of properties. The
properties that are easily accessible in a single column and
have substantial effects on quality are

– horizontal distance D from the ceilometer,

– number of column cloud bases within horizontal dis-
tance Dmax,

– CALIOP VFM feature quality assurance flag,

– geometric thickness of the lowest cloud layer,

– CALIOP thermodynamic phase determination of the
lowest cloud,

– feature type, if any, detected between the lowest cloud
and the surface, and

– horizontal averaging distance required for CALIOP
cloud feature detection.

For illustrative purposes, Fig. 3 and Table 2 summarize the
joint distribution of CALIOP and ceilometer zc faceted by
the CALIOP VFM feature quality assurance flag.

Based on determining the retrieval quality as a function
of one variable at a time (integrating over the sample distri-
bution of the remaining variables), the following classes of
CALIOP profiles are discarded:

– CALIOP VFM quality assurance worse than “high”,
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Figure 3. Scatter plots of CALIOP versus ceilometer cloud base height faceted by the CALIOP VFM QA flag; all CALIOP profiles meeting
the temporal and spatial collocation requirements with a METAR enter into this plot. Color indicates the number of CALIOP profiles within
each bin of ceilometer and CALIOP z; black lines are contours of the empirical joint probability density; the red line is a linear least-squares
fit, with the 95 % confidence interval shaded in light red; the blue line is a generalized additive model regression (Wood, 2011), with the 95 %
confidence interval shaded in light blue (due to the large dataset, the line width exceeds the confidence intervals in these plots); the dashed
gray line is the one-to-one line. Statistics of the relationship between CALIOP and ceilometer base heights are provided in Table 2.

Table 2. Statistics of the relationship between ceilometer and CALIOP cloud base height faceted by the CALIOP VFM QA flag. Shown are
the number of CALIOP profiles n, the product-moment correlation coefficient r between CALIOP and ceilometer z, the RMSE, bias, and
linear least-squares fit parameters.

QA flag n r RMSE (m) Bias (m) Fit

None 1 410 553 0.192 1.05× 103
−471. ẑ= 0.193z+ 1.03× 103 m

Low 301 250 0.471 710. −115. ẑ= 0.456z+ 650.m
Medium 212 723 0.502 707. −77.1 ẑ= 0.476z+ 602.m
High 2 877 967 0.554 629. 9.85 ẑ= 0.526z+ 485.m

– “invalid” or “no signal” layers between the surface and
the lowest cloud layer (indicating that although the sur-
face may generate a detectable return, the lidar is suf-
ficiently attenuated that the cloud base, which scatters
less strongly than the surface, is unreliable),

– minimum CALIOP cloud detection horizontal averag-
ing distance within the lowest cloud layer greater than
1 km (indicating that, although average cloud properties
are known at the averaging length scale, those proper-
ties may not be representative of the particular CALIOP
footprint under consideration), or

– thermodynamic phase of the lowest layer determined to
be other than liquid by the CALIOP VFM algorithm
(the reason for this is that not enough such columns ex-
ist to determine the RMSE reliably in each of the cate-
gories defined below).

Figure 4 and Table 3 summarize the joint distribution of
CALIOP profile zc and ceilometer ẑ after these selection cri-
teria for comparison with the unfiltered joint distributions in
Fig. 3.

The remaining variables are discretized roughly into quin-
tiles of their distribution within the VFM dataset with the
following boundaries:

– horizontal distance D from the ceilometer, with bound-
aries 0, 40, 60, 75, 88, and 100 km (distance greater than
100 km is discarded);

– number of CALIOP columns n with a cloud layer and a
surface return within 100 km in horizontal distance from
the ceilometer, with boundaries at 0, 175, 250, 325, and
400 (multiplicity greater than 400 is accepted); and

– geometric thickness 1z of the lowest cloud layer, with
boundaries at 0, 0.25, 0.45, 0.625, and 1 km (thickness
greater than 1 km is accepted).

We can now consider the joint distribution of CALIOP and
ceilometer cloud bases for each combination of the above
variables to derive the RMSE of each combination. Through-
out this work, we use cloud base height above ground level
(AGL); using height above mean sea level would intro-
duce an intrinsic correlation between satellite and ceilome-
ter cloud base height due to the varying terrain height, which
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Figure 4. As in Fig. 3, but applying all requirements listed in Sect. 3.3.

Table 3. As in Table 2, but applying all requirements listed in Sect. 3.3.

QA flag n r RMSE (m) Bias (m) Fit

None 189 554 0.573 635. −77.3 ẑ= 0.557z+ 549.m
Low 177 058 0.566 634. −154. ẑ= 0.556z+ 567.m
Medium 135 943 0.600 615. −113. ẑ= 0.587z+ 511.m
High 2 136 337 0.624 577. −36.8 ẑ= 0.581z+ 470.m

Figure 5. Density estimates of the projection of the SVM correc-
tion function. The training dataset (ceilometer overpasses in 2008)
is used as the ensemble for performing the projection.

would lead to an unrealistically positive assessment. To con-
vert cloud base heights to AGL height, we subtract the sur-
face elevation contained in the CALIOP VFM data files,

which in turn comes from the CloudSat R05 surface digital
elevation model.

When calculating aggregate statistics such as the RMSE,
a further consideration comes into play. zc above ground
is positive-definite, which imposes a physical phase-space
boundary. Due to this boundary, the satellite zc estimate is in-
trinsically biased high (negative excursions due to symmetric
random error may be removed by the phase-space boundary,
but positive excursions are not), and the bias decreases with
increasing satellite zc estimate (when true zc is high, it is less
likely that measurement error would lead to a negative AGL
zc). Since this effect constitutes a bias rather than a random
error, it cannot be eliminated by averaging over large sample
sizes, but instead needs to be corrected for. Since the effect
is nonlinear in zc, a nonlinear correction method is required.
Our choice of nonlinear bias correction is the support vec-
tor machine (SVM; Cortes and Vapnik, 1995). The SVM is
a machine-learning algorithm formulated to learn classifica-
tion (Cortes and Vapnik, 1995) or regression (Vapnik, 1995)
tasks from a training dataset, discarding outliers and accom-
modating nonlinear functions (e.g., Smola and Scholkopf,
2004). We train an ε-regression SVM, implemented as an
R package (Meyer et al., 2018) using the LIBSVM library
(Chang and Lin, 2011), separately for eachD, n, and1z cat-
egory, using the 2008 ceilometer overpass training dataset.
The correction function is not trivial to represent because of
its dependence on zc,D, n, and1z (which can be correlated).
To reduce the dimensionality of this multivariate correction,
we have used the training dataset (with its joint distribution
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Figure 6. Density estimates of the projection of σc(D,n,1z) onto each of the uncertainty predictor variables. The training dataset (ceilometer
overpasses in 2008) is used as the ensemble for performing the projection.

Figure 7. Scatter plot of CBASE versus ceilometer z for all A-Train
overpasses over the contiguous US available for 2007; for descrip-
tion of the plot elements, see Fig. 3. The linear fit has a slope of 0.98
and an intercept of 33.96 m.

Figure 8. Distribution function of cloud base error divided by pre-
dicted uncertainty; for the ideal case of unbiased z and unbiased
uncertainty, the distribution would be Gaussian with zero mean and
unit standard deviation. The superimposed least-squares Gaussian
fit (blue line) has a mean of 0.04 and standard deviation of 1.06.

of zc, D, n, and 1z) to calculate an ensemble of correction
factors that can be expected in a realistic sample of clouds,
shown in Figure 5. The full multivariate correction function,
implemented in R, is available from Mülmenstädt (2018).

Following bias correction, the sample RMSE is calcu-
lated for each combination of D, n, and 1z. The sample
RMSE is taken as an estimate of the statistical uncertainty σc
(D,n,1z) on the CALIOP profile zc. Note thatD and1z ex-
ist for each profile, whereas n is defined for the group of suit-
able profiles around the point of interest. Since the predicted

www.earth-syst-sci-data.net/10/2279/2018/ Earth Syst. Sci. Data, 10, 2279–2293, 2018
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Figure 9. Scatter plot of 2B-GEOPROF-LIDAR versus ceilometer z faceted by the source of the cloud base (radar only or lidar only; due
to their rare occurrence, combined radar–lidar base heights are not shown). For description of the plot elements, see Fig. 3. Statistics of the
relationship between 2B-GEOPROF-LIDAR and ceilometer base heights are provided in Table 5.

uncertainty is multivariate, it is also nontrivial to visualize.
We again use the training dataset as an ensemble on which to
perform one-dimensional projections of σc (D,n,1z) onto
each of the predictor variables. These projected σc density
estimates are shown in Fig. 6. The full multivariate σc pre-
diction function, implemented in R, is available from Mül-
menstädt (2018).

3.3 Combination of column cloud bases

CALIOP z only exists sporadically, when CALIOP happens
to hit a sufficiently thin cloud. To infer the z at a point of
interest that does not necessarily coincide with the location
of a thin-cloud CALIOP column, we proceed as follows. We
first select all CALIOP column zc measurements within a
horizontal distance Dmax = 100 km of the point that satisfy
the additional quality cuts described in Sect. 3.2.

For each remaining column zc,i , we determine the pre-
dicted uncertainty σc,i based on the categories established in
the previous section. We determine a combined z

z=

n∑
i

wizc
i

n∑
i

wi

(3)

with weights

wi =
1
σ 2

c,i
(4)

(optimal weights for uncorrelated least squares). The sum is
calculated over the n zc estimates within Dmax that satisfy
all criteria listed in the previous subsection. In practice, the
individual measurements of cloud base are highly correlated
with fairly similar σi . The cloud base estimate by Eq. (3) with
weights given by Eq. (4) remains unbiased even in the pres-
ence of correlations. However, for the combined cloud base
uncertainty, the uncorrelated weights would yield a biased
estimate in the presence of correlations. The expression

σ 2
=

1
n

n∑
i

σ 2
c,i (5)

yields acceptable results, as would be expected for highly
correlated and fairly similar σc,i .

3.4 Evaluation of CBASE z and σ

Having trained the algorithm on data from the year 2008, we
evaluate it using a statistically independent dataset from the
year 2007. In the evaluation dataset, the true (i.e., ceilometer-
measured) ẑ is known in addition to the estimated z and the
estimated cloud base uncertainty σ , determined according
to the procedure described in the previous section. Figure 7
shows the joint distribution of CBASE z and ceilometer-
observed ẑ.

For satellite-derived measurements of z that are unbiased
with respect to the ceilometer-observed ẑ and have correctly
estimated uncertainties σ , the probability density function of
the quantity (z− ẑ)/σ has zero mean and unit standard devi-
ation. In our evaluation dataset, we find a mean of 0.04 and a
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Table 4. CBASE cloud base statistics by decile of predicted uncertainty; see Table 2 for a description of the statistics provided.

Predicted σ (m) n r RMSE (m) Bias (m) Fit

(167,427] 2624 0.741 404. −46.9 ẑ= 1.03z+ 28.0 m
(427,453] 2624 0.719 429. −28.4 ẑ= 1.06z− 32.0 m
(453,469] 2624 0.703 461. −18.8 ẑ= 1.09z− 87.7 m
(469,484] 2624 0.685 463. −17.8 ẑ= 1.03z− 18.3 m
(484,497] 2624 0.628 506. −6.06 ẑ= 0.976z+ 33.4 m
(497,508] 2624 0.574 547. −8.73 ẑ= 0.986z+ 25.5 m
(508,522] 2624 0.596 547. −14.1 ẑ= 1.01z+ 5.37 m
(522,541] 2624 0.572 562. −9.26 ẑ= 0.967z+ 49.6 m
(541,573] 2624 0.502 639. −22.7 ẑ= 0.939z+ 96.8 m
(573,748] 2624 0.447 720. 7.36 ẑ= 0.829z+ 197.m

standard deviation of 1.06, shown in Fig. 8; this corresponds
to a z bias of 4 % and uncertainty bias of 6 %, both relative to
the predicted uncertainty. Thus, we find that both the cloud
base estimate and the uncertainty estimate are unbiased at
better than the 10 % level.

As a further test of the reliability of the expected uncer-
tainty, we divide the validation dataset into deciles of the
expected uncertainty. Table 4 shows that the actual RMSE
within each decile is within 10 % of the expected uncertainty
(with the exception of the highest-uncertainty decile) and that
linear regressions within each decile are close to the one-to-
one line.

To check that the algorithm satisfies its design constraints
(i.e., to ensure that we made no methodological error when
implementing the algorithm), we have also verified that lin-
ear regression between z and ẑ has zero intercept and unit
slope and that the quantity (z− ẑ)/σ has zero mean and unit
standard deviation when this validation is performed on the
training dataset.

It is possible that z estimates outside North America could
have greater biases or greater uncertainty than this evalu-
ation leads us to believe. This would be the case if con-
tinental clouds over North America are not representative
of clouds elsewhere in a way that is not accounted for by
the cloud properties considered by the uncertainty estimate.
Since the validation sample spans an entire year on a conti-
nental scale, we expect that most cloud morphologies are in-
cluded. However, cloud types that occur predominantly over
ocean, namely marine stratocumulus with horizontally ex-
tensive but vertically thin liquid-phase anvils, present a par-
ticular challenge to the method. Due to the typical z uncer-
tainty of several hundred meters, the method is unlikely to
be applied to stratocumulus cloud; nevertheless, a marine-
cloud validation dataset would be desirable. For the present
work, no suitable marine-cloud evaluation dataset was avail-
able; ship-based z observations were either based on human
observers with coarse vertical resolution and a precision that
is difficult to characterize or available only over a limited du-
ration at limited locations, resulting in a severely statistics-
limited set of coincidences with the CALIOP track.

Figure 10. Scatter plot of 2B-GEOPROF-LIDAR lidar-only versus
CBASE z. For description of the plot elements, see Fig. 3; because
both cloud base measures have comparable uncertainty, linear re-
gression is a misleading diagnostic (Pitkanen et al., 2016) and has
not been included. The mean difference between 2B-GEOPROF-
LIDAR and CBASE is 0.05 km, the root-mean-square difference is
0.41 km, and the correlation coefficient is 0.79.

3.5 Comparative evaluation of CBASE and
2B-GEOPROF-LIDAR

Comparison with 2B-GEOPROF-LIDAR cloud bases (ver-
sion P2_R04_E02, based on the 2B-GEOPROF and CALIOP
VFM products) is shown in Fig. 9. 2B-GEOPROF-LIDAR
distinguishes among radar-only, lidar-only, and radar–lidar
combined cloud bases; the last category is rare for warm
clouds and is not shown. For radar-only clouds, the mean er-
ror is large because the radar z predominantly clusters around
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Figure 11. Geographic distribution of mean z above ground level. Statistics are calculated within each 5◦× 5◦ latitude–longitude box and
separately for CALIOP daytime (a) and nighttime (b) overpasses.

the top of the ground clutter region with little dependence on
the actual z.

Lidar-only 2B-GEOPROF-LIDAR cloud base performs
comparably to the CBASE cloud base on average; this is
to be expected, as the underlying physical measurement
(the CALIOP attenuated backscatter) is the same for all
three products considered (2B-GEOPROF-LIDAR, CALIOP
VFM, and CBASE). Figure 10 shows the relationship be-
tween CBASE z and the 2B-GEOPROF-LIDAR cloud base
closest to the ceilometer for each overpass. The CBASE z

for low clouds tends to be higher than the 2B-GEOPROF-
LIDAR estimate because the CBASE algorithm has been de-
signed to agree with ceilometer heights, which also tend to be
higher than the 2B-GEOPROF-LIDAR estimate (see Fig. 9).
Otherwise, the relationship is fairly close (linear correlation
coefficient of 0.79), again as expected due to the similarity in
the underlying measurement.

Unlike 2B-GEOPROF-LIDAR and the CALIOP VFM,
CBASE provides a validated point-by-point uncertainty esti-
mate, which allows an analysis to select only low-uncertainty

Figure 12. Distribution of predicted z uncertainty σ .

cases or to statistically weight z according to uncertainty, as
appropriate for the application.
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Figure 13. Cloud base uncertainty quantiles. Statistics are calculated within each 5◦× 5◦ latitude–longitude box. Panels (a) and (b) show
statistics of daytime and nighttime retrievals, respectively; daytime and nighttime are defined by the CALIOP VFM product.

4 Results

Geographic distributions of the mean z are shown for day-
time and nighttime CALIPSO overpasses in Fig. 11. Over
most of the globe, especially over land, daytime z is higher
than nighttime z, consistent with the diurnal deepening of
the planetary boundary layer. Figures 12 and 13 show the
distribution of z uncertainties. A larger fraction of night-
time cloud bases falls into the lowest uncertainty range (200
to 350 m), while the the nighttime uncertainty distribution

peaks slightly higher than the daytime uncertainty distribu-
tion and features a substantial tail above 500 m that is not
present in the daytime distribution. CALIOP benefits from
a higher signal-to-noise ratio during nighttime, which may
lead to lower σ , but this effect would be convoluted with
potential differences between daytime and nighttime clouds
that can lead to different z uncertainties. Training a poten-
tial future update of the algorithm on daytime and nighttime
profiles separately may reduce σ .

www.earth-syst-sci-data.net/10/2279/2018/ Earth Syst. Sci. Data, 10, 2279–2293, 2018



2290 J. Mülmenstädt et al.: Cloud base heights from CALIOP

Table 5. Statistics of the relationship between ceilometer and 2B-GEOPROF-LIDAR z; see Table 2 for a description of the statistics provided.

Base type n r RMSE (m) Bias (m) Fit

Radar 15 061 0.265 782. 98.1 ẑ= 0.461z+ 466.m
Lidar 12 813 0.564 594. 16.3 ẑ= 0.555z+ 399.m

Figure 14. Uncertainty on the surface downwelling longwave radiation F↓surf under two assumptions of z uncertainty: (a) constant 400 m
uncertainty globally and (b) uncertainty achievable by selecting a high-quality subset of CBASE z.
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As an example application, we consider the surface down-
welling longwave radiation F↓surf, which is strongly affected
by cloud base temperature. Henderson et al. (2013) derive
a global F↓surf sensitivity to z of 1.5 W m−2 for a z per-
turbation of one CloudSat height bin (240 m); as Table 5
and Fig. 9 show, the CloudSat σ specifically for the low
clouds at the focus of the present work is likely greater than
240 m, which corroborates the 480 m uncertainty estimate of
Kato et al. (2011). To arrive at a conservative estimate of
the improvement in F↓surf uncertainty that might be possi-
ble by utilizing the CBASE predicted σ , we compare two
F
↓

surf uncertainty distributions: one based on a globally con-
stant 400 m σ (Fig. 14a) and one with the CBASE σ achiev-
able by selecting the highest-quality percentile of the CBASE
dataset (Fig. 14b). This selection provides a σ of approx-
imately 250 m in the extratropics as well as the nighttime
tropical continents and stratocumulus regions and approxi-
mately 400 m throughout the tropics during daytime, accord-
ing to Fig. 13. Globally, the F↓surf uncertainty is reduced from
3.1 to 1.8 W m−2, assuming that the z uncertainty contribu-
tion to the F↓surf uncertainty is dominated by low clouds. Im-
provements are especially large in the marine stratocumu-
lus regions and the extratropical oceans, where extensive low
cloud often overlies cool air with relatively low longwave
emission by water vapor. The selection reduces the available
statistics by a factor of 100, but analyses based on A-Train
data are usually not statistics limited.

5 Code availability

The source code used to produce the dataset and evaluation
plots is available from Mülmenstädt (2018).

6 Data availability

The CBASE z and σ dataset (Mülmenstädt et al., 2018)
spanning the years 2007 and 2008 is freely available at
Deutsches Klimarechenzentrum (DKRZ) under the DOI
https://doi.org/10.1594/WDCC/CBASE. The dataset is pro-
vided in two spatial resolutions corresponding to different
window sizes within which CALIOP profiles are combined:
Dmax = 40 km and Dmax = 100 km. CBASE provides two
files for each CALIOP VFM input file: one using a 40 km
window to detect the cloud field base height and one us-
ing a 100 km window. (The input CALIOP VFM dataset
is organized by the daytime (D) and nighttime (N) half of
each orbit.) The file name pattern is CBASE-{40|100}.<
date>T<time>{D|N}.nc (identical to the input
CALIOP VFM file name with the exception of the prod-
uct name and file-type extension). Files are organized into
subdirectories by half orbit start date. In case no cloud base
heights are detected within a half-orbit, no output file is pro-
duced. Otherwise, each CALIOP VFM input file results in a
40 km resolution and a 100 km resolution CBASE file. The

measurement quality is reported as a quantitative uncertainty
estimate for each cloud field.

7 Conclusions

We have presented the CBASE algorithm, which derives the
cloud base height z from CALIOP lidar profiles. This algo-
rithm produces z not only for thin clouds but also for clouds
thick enough to attenuate the lidar (optical thickness τ&5),
based on the assumed mesoscale homogeneity of cloud base
height within an air mass. In addition to the z estimate, the
CBASE algorithm supplies an expected uncertainty σ on z.
The CBASE dataset is available for the years 2007 and 2008
at https://doi.org/10.1594/WDCC/CBASE.

CBASE z and σ have been evaluated using ground-based
airport ceilometers over the contiguous US using a data sam-
ple unbiased by the training of the algorithm. The evalua-
tion showed that z and σ are unbiased at the level better than
10 %: the bias on z is 4 %, and the bias on the uncertainty is
6 %, both relative to the expected uncertainty.

The performance of CBASE z is similar to that of 2B-
GEOPROF-LIDAR lidar-only z when validated against the
same collocated ceilometer measurements, which is based
on the same underlying physical measurement. However,
the validated z uncertainty provided by CBASE allows for
selection of only accurate cloud base heights or for sta-
tistical weighting of z according to expected uncertainty.
This, in turn, makes the CBASE z useful for pressing prob-
lems in climate research that require accurate knowledge of
cloud geometry, such as surface downwelling longwave ra-
diation or cloud subadiabaticity, which will be presented in
future work.
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