Articles | Volume 17, issue 6
https://doi.org/10.5194/essd-17-2793-2025
https://doi.org/10.5194/essd-17-2793-2025
Data description paper
 | 
20 Jun 2025
Data description paper |  | 20 Jun 2025

ASM-SS: the first quasi-global high-spatial-resolution coastal storm surge dataset reconstructed from tide gauge records

Lianjun Yang, Taoyong Jin, and Weiping Jiang

Related authors

Arctic Sea Surface Determination with Combined CryoSat-2 and ICESat-2 Data
Guodong Chen, Weiping Jiang, Zhijie Zhang, Taoyong Jin, and Dawei Li
EGUsphere, https://doi.org/10.5194/egusphere-2023-3030,https://doi.org/10.5194/egusphere-2023-3030, 2024
Preprint archived
Short summary
A method to enhance the detecting of geostrophic current and its temporal variations with SWOT swath data
Jiasheng Shi, Taoyong Jin, Mao Zhou, Xiangcheng Wan, and Weiping Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2022-1018,https://doi.org/10.5194/egusphere-2022-1018, 2022
Preprint withdrawn
Short summary
SGD-SM 2.0: an improved seamless global daily soil moisture long-term dataset from 2002 to 2022
Qiang Zhang, Qiangqiang Yuan, Taoyong Jin, Meiping Song, and Fujun Sun
Earth Syst. Sci. Data, 14, 4473–4488, https://doi.org/10.5194/essd-14-4473-2022,https://doi.org/10.5194/essd-14-4473-2022, 2022
Short summary

Related subject area

Domain: ESSD – Ocean | Subject: Physical oceanography
Expendable bathythermograph (XBT) data collected along the Southern Ocean chokepoint between Aotearoa / New Zealand and Antarctica, 1994–2024
Giuseppe Aulicino, Antonino Ian Ferola, Laura Fortunato, Giorgio Budillon, Pasquale Castagno, Pierpaolo Falco, Giannetta Fusco, Naomi Krauzig, Giancarlo Spezie, Enrico Zambianchi, and Yuri Cotroneo
Earth Syst. Sci. Data, 17, 2625–2640, https://doi.org/10.5194/essd-17-2625-2025,https://doi.org/10.5194/essd-17-2625-2025, 2025
Short summary
HHU24SWDSCS: a shallow-water depth model over island areas in the South China Sea retrieved from satellite-derived bathymetry
Yihao Wu, Hongkai Shi, Dongzhen Jia, Ole Baltazar Andersen, Xiufeng He, Zhicai Luo, Yu Li, Shiyuan Chen, Xiaohuan Si, Sisu Diao, Yihuang Shi, and Yanglin Chen
Earth Syst. Sci. Data, 17, 2463–2488, https://doi.org/10.5194/essd-17-2463-2025,https://doi.org/10.5194/essd-17-2463-2025, 2025
Short summary
Gap-filled sub-surface mooring dataset off Western Australia during 2010–2023
Toan Bui, Ming Feng, and Christopher C. Chapman
Earth Syst. Sci. Data, 17, 1693–1705, https://doi.org/10.5194/essd-17-1693-2025,https://doi.org/10.5194/essd-17-1693-2025, 2025
Short summary
The International Altimetry Service 2024 (IAS2024) coastal sea level dataset and first evaluations
Fukai Peng, Xiaoli Deng, Yunzhong Shen, and Xiao Cheng
Earth Syst. Sci. Data, 17, 1441–1460, https://doi.org/10.5194/essd-17-1441-2025,https://doi.org/10.5194/essd-17-1441-2025, 2025
Short summary
Global ocean surface heat fluxes derived from the maximum entropy production framework accounting for ocean heat storage and Bowen ratio adjustments
Yong Yang, Huaiwei Sun, Jingfeng Wang, Wenxin Zhang, Gang Zhao, Weiguang Wang, Lei Cheng, Lu Chen, Hui Qin, and Zhanzhang Cai
Earth Syst. Sci. Data, 17, 1191–1216, https://doi.org/10.5194/essd-17-1191-2025,https://doi.org/10.5194/essd-17-1191-2025, 2025
Short summary

Cited articles

Ayyad, M., Hajj, M. R., and Marsooli, R.: Machine learning-based assessment of storm surge in the New York metropolitan area, Sci. Rep.-UK, 12, 19215, https://doi.org/10.1038/s41598-022-23627-6, 2022. 
Bloemendaal, N., Muis, S., Haarsma, R. J., Verlaan, M., Irazoqui Apecechea, M., De Moel, H., Ward, P. J., and Aerts, J. C. J. H.: Global modeling of tropical cyclone storm surges using high-resolution forecasts, Clim. Dynam., 52, 5031–5044, https://doi.org/10.1007/s00382-018-4430-x, 2019. 
Bruneau, N., Polton, J., Williams, J., and Holt, J.: Estimation of global coastal sea level extremes using neural networks, Environ. Res. Lett., 15, 074030, https://doi.org/10.1088/1748-9326/ab89d6, 2020. 
Chen, T. and Guestrin, C.: XGBoost: A Scalable Tree Boosting System, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13–17 August 2016, San Francisco, California, USA, 785–794, https://doi.org/10.1145/2939672.2939785, 2016. 
Cid, A., Camus, P., Castanedo, S., Méndez, F. J., and Medina, R.: Global reconstructed daily surge levels from the 20th Century Reanalysis (1871–2010), Global Planet. Change, 148, 9–21, https://doi.org/10.1016/j.gloplacha.2016.11.006, 2017. 
Download
Short summary
Storm surges (SSs) cause massive loss of life and property in coastal areas each year. High-spatial-resolution and long-term SS records are important for assessing such events. However, tide gauges can provide limited SS information due to sparse and uneven distributions. Based on artificial intelligence technology and tide gauges, a high-spatial-coverage SS dataset was generated for the period from 1940 to 2020, which can provide possible alternative support for deepening our understanding of SSs.
Share
Altmetrics
Final-revised paper
Preprint