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Abstract. Storm surges (SSs) cause massive loss of life and property in coastal areas each year. High-spatial-
coverage and long-term SS records are the basis for deepening our understanding of these disasters. Due to
the sparse and uneven distribution of tide gauge stations, such global or quasi-global information can only be
provided by global numerical models, while their simulation products mainly span the most recent decades. In
this paper, for the first time, an all-site modeling framework for a data-driven model was implemented on a quasi-
global scale within areas severely affected by SSs caused by tropical cyclones. Using tide gauge records and
European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis vS (ERAS) data, we generated a
high-spatial-resolution (10 km along the coastline) hourly SS dataset, ASM-SS (all-site modeling storm surge),
within the span 45°S-45° N, whose record length is over 80 years from 1940 to 2020. Assessments indicate
that, for 95th extreme SSs, the precision of the ASM-SS model (the medians of the correlation coefficients, root
mean square errors, and mean biases are 0.63, 0.093, and — 0.050m, respectively) is better than that of the
state-of-the-art global hydrodynamic model (the medians are 0.55, 0.106, and —0.045 m). For annual maximum
SSs, it is more stable than the numerical model, with the overall root mean square error and coefficient of
determination optimizing by 22.3 % and 14.8 %, respectively. This dataset could provide possible alternative
support for coastal communities through relevant SS analysis applications requiring high spatial resolution and
sufficiently long records. The ASM-SS dataset is available at https://doi.org/10.5281/zenodo.14034726 (Yang et
al., 2024a).

et al., 2021), the increasing intensity of tropical cyclones

Extreme sea level events (ESLs), defined as exceptional vari-
ations of sea surface height caused by tides, storm surges, and
sea surface waves (Gregory et al., 2019), lead to severe eco-
nomic losses globally each year (Kron, 2013). Around 680
million people living in low-lying coastal zones with eleva-
tions lower than 10 m above sea level (Portner et al., 2022)
are already directly or indirectly affected by ESLs under cur-
rent climate conditions (Hinkel et al., 2014). Even more con-
cerning is that the impacts of ESLs are expected to intensify
in the future due to the rise in the global sea level (Palmer
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(Knutson et al., 2020), and the growth of coastal populations
(Merkens et al., 2016). Storm surges (SSs) caused by trop-
ical and extratropical cyclones have significant uncertainty
compared to deterministic and predictable tides. Understand-
ing how SSs varied in different regions, interacted with other
components, and responded to climate change in the past can
better prepare coastal communities for incoming ESLs.
High frequency (at least hourly), sufficient spatial cover-
age, and long-term records are important for in-depth SS
analysis. To date, tide gauges (TGs) are the most reliable
source of coastal sea level observations (Marcos et al., 2019).
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However, their distribution is sparse and uneven. For exam-
ple, even though the currently most complete high-frequency
TG collection, the Global Extreme Sea Level Analysis ver-
sion 3 (GESLA-3) dataset, included 5119 stations around the
world, most of them were distributed in North America, Eu-
rope, Japan, and Australia (Haigh et al., 2023). Interpolating
TG observations among different stations cannot accurately
capture the variabilities of SSs (Muis et al., 2016) since they
are affected by many factors, such as storminess, coastline
shape, and bathymetry (Resio and Westerink, 2008). This al-
ways limits in-depth analysis of the spatial characteristics of
SSs from TG records directly, especially on a global or quasi-
global scale. In addition, though some of the oldest TG sta-
tions can date back to the 18th century, only ~ 10 % (554 sta-
tions) of the TG records in the GESLA-3 dataset were longer
than 50 years, which makes it difficult to obtain more detailed
long-term variations in SSs.

Numerical models can provide simulated data with better
spatial coverage by resolving coastal physical processes in-
ducing SSs (Muis et al., 2016, 2023; Lockwood et al., 2024).
A common limitation of numerical models is that they re-
quire accurate and high-resolution bathymetric data for suffi-
ciently precise SS estimations since SSs are significantly af-
fected by water depth in shallow water (Resio and Westerink,
2008). However, such bathymetric data are often unavailable
in nearshore areas (Cid et al., 2018). In addition, in global
or quasi-global SS simulations, the coastal grid resolution of
numerical models is usually set to several kilometers to bal-
ance the computational complexity (Muis et al., 2020; Men-
taschi et al., 2023), which means that nearshore physical fea-
tures with a spatial scale smaller than this resolution cannot
be simulated sufficiently (Parker et al., 2023), hence affecting
the SS precision. Meanwhile, the computational efficiency of
global numerical models tends to affect the lengths of simu-
lated SSs (Muis et al., 2019). For instance, the simulations of
the state-of-the-art Global Tide and Surge Model (GTSM),
though its outputs have been widely used in relevant studies
(Kirezci et al., 2020; Dullaart et al., 2021; Fang et al., 2021;
Yang et al., 2024b), only spanned the most recent decades
from 1979 to 2018 (Muis et al., 2020). This imposed limita-
tions on studies requiring long-term SS records.

Unlike numerical models, data-driven models do not need
to resolve coastal physical processes. They obtain the statisti-
cal relationship between SSs (predictand) and relevant atmo-
spheric factors (predictor) through multiple linear regression
(Cid et al., 2018) or artificial intelligence (Nevo et al., 2022;
Bruneau et al., 2020; Ebel et al., 2024; Nearing et al., 2024).
Therefore, the precision of data-driven models is unaffected
by bathymetric data and grid resolution. In addition, long-
term SSs can be reconstructed efficiently after the statisti-
cal relationship is established (Tadesse et al., 2020). How-
ever, the commonly used single-site modeling framework
for data-driven models relies heavily on TGs: it must estab-
lish independent relationships for every TG site by site (Cid
et al., 2017; Bruneau et al., 2020; Tiggeloven et al., 2021)
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and cannot provide any SS information at ungauged coastal
locations. For example, the Global Storm Surge Reconstruc-
tion (GSSR) database, the only publicly released global SS
dataset from the data-driven model, provided SS reconstruc-
tions at 882 points globally, going as far back as 1836, which
benefited the research on long-term trend analysis of SSs
(Tadesse and Wahl, 2021). However, it cannot address issues
caused by the sparseness and uneven distribution of TG sta-
tions. Some studies replaced TG observations with numer-
ical SS simulations to train the data-driven model (the so-
called “surrogate model”) (Lee et al., 2021; Ayyad et al.,
2022; Lockwood et al., 2022). This combination improved
the spatial resolution, but numerical model precision limita-
tions were also transferred to the surrogate model. Moreover,
in theory, surrogate models cannot be better than numerical
models compared to TG observations. Yang et al. (2023) pro-
posed a novel all-site modeling (ASM) framework, which
allowed the data-driven model to reconstruct high-spatial-
coverage SSs in research areas by learning from TG observa-
tions (without SS simulations from numerical models). Al-
though single-site modeling and ASM belong to the data-
driven model, their modeling processes differ. The former
assumes that SS observations at different TGs are indepen-
dent. Therefore, the relationship between predictors and SSs
needs to be learned site by site for every TG; this relation-
ship is unsuitable for other locations. In contrast, the latter
assumes that there is a universal connection between SSs at
different TGs, so all available TGs within the research area
can be pooled into one model to learn the only relationship
between predictors and SSs. This essential difference enables
the ASM framework to reconstruct SSs at any coastal point in
the research area. In addition, the study has shown that ASM
precision is better than that of single-site modeling (Yang
et al., 2023).

High-spatiotemporal-resolution and sufficiently large SS
datasets are important for better analyzing these disasters.
However, the existing SS datasets, whether from TG ob-
servations, numerical model simulations, or data-driven re-
constructions, cannot fulfill all demands simultaneously on
a global or quasi-global scale. ASM provides an opportu-
nity to fix this gap. This research used it to establish a SS
data-driven model in coastal areas within the span ~ 45° S—
~ 45° N that are severely affected by SSs since most destruc-
tive tropical cyclones occur here (Knapp et al., 2010). After
precision assessment by comparing it with TG observations
and the numerical GTSM, we released, for the first time,
a long-term (> 80 years from 1940 to 2020) quasi-global
hourly SS dataset reconstructed from the data-driven model
with high spatial resolution (10 km along the coastline). We
hope that this dataset, the ASM-SS (all-site modeling storm
surge), will provide possible alternative support for coastal
communities to deepen our understanding of SSs and ESLs.
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2 Materials and methods

2.1 Atmospheric data

Atmospheric predictors from 1940 to 2020 were obtained
from the European Centre for Medium-Range Weather Fore-
casts (ECMWF) Reanalysis v5 (ERAS) database (Soci et al.,
2024). This is the fifth-generation ECMWF reanalysis assim-
ilating model data with observations across the world into a
globally complete and consistent dataset, which can provide
hourly atmosphere fields with a 0.25° x0.25° grid. Following
Yang et al. (2023, 2024b), four variables from ERAS5 were
used, including mean sea level pressure (mslp), 10 m east-
ward and northward wind (ul0 and v10), and 2 m tempera-
ture (t2m).

2.2 Tide gauge data

TG observations from 1940 to 2020 came from the high-
frequency (15 min or 1h) GESLA-3 dataset collected from
36 international and national data providers (Haigh et al.,
2023). This dataset unified the time units (to Coordinated
Universal Time) and length units (to meters) of water level
records from different sources. In addition, the analysis flag
was added to each TG record, making it convenient to select
available sea level data. However, a stricter quality control
process is needed since some sites still contain datum jumps
and outliers (Haigh et al., 2023). The detailed TG preprocess-
ing is as follows:

1. Coastal TG stations located between 45°S and 45°N
were selected (excluding the Mediterranean, Black, and
Caspian seas). Additionally, two stations at the south-
ernmost tip of New Zealand were retained, though they
are beyond 45°S.

2. For the case where TG data were provided by dif-
ferent sources covering similar periods, the file with
longer records was kept. For the case where the sea
level time series for the same site was split into different
files, these were merged to obtain the longest possible
records.

3. TG data were resampled to hourly, and the analysis
flag = 1 (meaning “use’’) was used to filter out the avail-
able data for each TG. Datum jumps caused by earth-
quakes or changes in instrument were adjusted, and ob-
vious outliers were removed through visual inspection.
Then, 1315 stations with lengths longer than 1 year re-
mained (Fig. 1).

4. After removing the interannual mean sea level variabil-
ity from TG data through the annual moving average,
the SS time series can be obtained by subtracting tides
estimated from the Utide (Unified Tidal Analysis and
Prediction Functions) package (Codiga, 2011), which
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can select the most important components from 146
tidal constituents through an automated decision tree.

5. Finally, a 12h moving average was applied to the
SS data to limit possible remaining tidal signals
(Tiggeloven et al., 2021; Yang et al., 2023), which are
generally generated by small phase shifts in predicted
tides due to the difficulty in obtaining perfect and com-
pletely accurate estimates through harmonic analysis
(Horsburgh and Wilson, 2007).

2.3 Surge data simulated from a numerical model

Numerical model SSs came from GTSM version 3 global
simulation forced with mean sea level pressure and wind
from ERAS (1979-2018), whose SS precision has been eval-
uated extensively and shown to have fair to good agree-
ment with TG observations (Bloemendaal et al., 2019; Muis
et al., 2020; Parker et al., 2023; Yang et al., 2023). This
model was solved based on the Delft3D Flexible Mesh Suite
(Kernkamp et al., 2011), with the unstructured grid reso-
lution from 2.5km (1.25km in Europe) along the coast to
25 km in the deep ocean (Muis et al., 2020). It provided out-
puts both in the ocean and along the coastline; the latter’s
resolution was resampled to approximately every 20 km per
coastal point to limit the data volume (Muis et al., 2020).
Note that GTSM SSs were only used to assess our ASM data-
driven model; they were not used in the training process of
the latter.

2.4 Coastline contour data

The Global Self-consistent, Hierarchical, High-resolution
Geography (GSHHG version 2.3.7) shoreline database (Wes-
sel and Smith, 1996) was used to generate coastal nodes for
ASM-SS in the research area (45° S—45° N). The shoreline
of this dataset was developed from the World Vector Shore-
lines and Atlas of the Cryosphere, providing five different-
resolution coastline contours (crude, low, intermediate, high,
and full). We used the high-resolution data (~ 300 m). After
smoothing the shoreline with a window of 50 points, coastal
nodes with a 10 km resolution were sampled evenly from the
smoothed coastline. Figure 2 shows their distribution. The to-
tal number of nodes is 20 440: western Europe (200), Africa
(2806), North America (3165), South America (2218), Ocea-
nia (3471), and Asia (8580).

2.5 All-site modeling framework

Full details of the ASM can be found in Yang et al.(2023).
Here, a brief description of its modeling processes is pro-
vided, assuming that there are six available TGs within
45°S-45°N (Fig. 3a):

1. Obtaining predictors (Fig. 3b). Four atmospheric data
(mslp, ul0, v10, and t2m) for each TG station are ex-
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Figure 1. The distribution and data length of selected tide gauges.
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Figure 2. The distribution of coastal nodes for reconstructed storm surges.

tracted from the ERAS5 dataset through linear inter-
polation. Changes in sea level pressure and wind are
the main factors in generating SSs (Woodworth et al.,
2019). Adding temperature variations considers the ef-
fects of thermal expansion and contraction. Meanwhile,
following Yang et al. (2023, 2024b), another three vari-
ables (longitude, latitude, and time stamp) are consid-
ered since the geographical locations and record lengths
of TGs are different. Hence, the predictor matrix for
each TG consists of seven columns: mslp, ul0, v10,
t2m, longitude, latitude, and time.

All-site modeling (Fig. 3c). Predictor matrices and SSs
of all six TG stations are stacked into one predictor ma-
trix and one SS matrix. Then, the eXtreme Gradient
Boosting Tree (XGBoost) (Chen and Guestrin, 2016) is
used to learn the relationship between these two matri-
ces. XGBoost is a residual machine learning model that
generates a new decision tree using SS residuals from
the previous tree. Therefore, the new tree will pay more
attention to training where the residual errors are signif-
icant, making it suitable for modeling SS extremes.

. Reconstruction (Fig. 3d). SSs can be estimated for any
target node along the coastline by inputting the cor-
responding predictor matrix of that location into the
model established in step 2.
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2.6 Model performance metrics

Three model performance metrics are used to evaluate the
differences between reconstructed and observed SS levels:
Pearson product-moment correlation coefficient (CORR),
root mean square error (RMSE), and mean bias (MB):

CORR =
SN (SSL;; — SSL;)(SSLo; — SSLo) )
\/ SN (SSLy; — SSLr)z\/ SN (SSLo; — SSL,)?
N 2
N (SSL;; —SSL,
RMSEZ\/ZlZI( 1,1 o,z) , (2)
N
MB = -3 (sSL, — SSL 3
— NZ:’:I( T 0)’ ( )

where N is the length of the evaluation time series. SSL; ;
and SSL, ; indicate the reconstructed and observed SS levels,
respectively. SSL; and SSL, are their average values.

3 Results

3.1 ASM evaluation at tide gauges

The k-fold cross-validation strategy was chosen to evaluate
the ASM at TGs; 823 TG stations with time lengths exceed-
ing 10 years between 1940 and 2020 were randomly divided
into 10 parts (i.e., 10-fold cross-validation), with the last part
containing 85 TGs. Each time, nine of the parts were used
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Figure 3. The modeling processes of the ASM framework.

for training. After the model was established, predictor ma-
trices of the excluded TGs were inputted into the model to
obtain their SSs. The SSs of all of the TGs can be estimated
once each part has been excluded. Then, we compared the
reconstructed entire surge time series (evaluating the over-
all variation trend) and the 95th percentile SSs (assessing
extreme events) with TG observations. As shown in Fig. 4
and Table 1, we divided the research area into 15 subregions
(ER: the equatorial region, WEU: western Europe, NAF:
northern Africa, SWA: southwestern Africa, SEA: south-
eastern Africa, WNA: western North America, ENA: east-
ern North America, CA: Central America, SWS: southwest-

https://doi.org/10.5194/essd-17-2793-2025

ern South America, SES: southeastern South America, WAS:
western Asia, EAS: eastern Asia, SAS: southern Asia, NOC:
northern Oceania, and SOC: southern Oceania) for more de-
tailed assessment information. Note that the equatorial region
(~ 6°S—~ 6° N) was separated as an independent area since
it has almost no tropical cyclones.

Figure 4a—c and Table 1 show that, on a quasi-global scale
(i.e., for ALL TGs), the median CORR of the entire time se-
ries of surges is 0.78, the RMSE is 0.063 m, and the MB is
0.014 m. In comparison, the reconstruction precision for ex-
treme events (> 95th percentile) is lower: the CORR is 0.59,
the RMSE is 0.094 m, and the MB is —0.052 m (indicating a

Earth Syst. Sci. Data, 17, 2793-2807, 2025
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Figure 4. ASM evaluation at tide gauges from 1940 to 2020. (a—c)

Entire surge and 95th extreme evaluation statistics for the different

regions. (d—i) Distributions of the evaluation metrics. The gray lines are tropical cyclone paths from Gahtan et al. (2024).

slight underestimation of the magnitudes of extreme events).
At the regional scale, there are differences between subre-
gions (Fig. 4d—i). In areas with almost no tropical cyclones,
including ER, SWA, SWS, and SES, the precision is low for
both entire surges and 95th extremes. For other places, the
precision of estimated SSs is better in regions with a rel-
atively high density of TG stations, such as WEU, WNA,

Earth Syst. Sci. Data, 17, 2793-2807, 2025

ENA, EAS, NOC, and SOC. This result is consistent with
the conclusion of Yang et al. (2024b) that reducing the spa-
tial interval of TG stations can benefit the estimation of SSs,
especially the extremes.

It is necessary to evaluate temporal variations in recon-
structed SSs further since their length is over 80 years, during
which time the number of TG stations and the quality of the
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L. Yang et al.: ASM-SS: the first quasi-global high-spatial-resolution coastal storm surge dataset

2799

Table 1. The medians of the evaluation statistics for the different regions in Fig. 4.

Median of CORRs \

Median of RMSEs (m) \

Median of MBs (m)

Entire surges

95th extremes ‘ Entire surges

95th extremes ‘ Entire surges ~ 95th extremes

ALL 0.78 0.59 0.063
ER 0.39 0.20 0.054
WEU 0.87 0.68 0.050
NAF 0.76 0.55 0.036
SWA 0.25 0.19 0.074
SEA 0.61 0.43 0.070
WNA 0.83 0.69 0.044
ENA 0.84 0.75 0.073
CA 0.30 0.19 0.072
SWS 0.29 0.25 0.061
SES 0.29 0.15 0.141
WAS 0.09 0.17 0.091
EAS 0.81 0.62 0.054
SAS 0.34 0.24 0.060
NOC 0.62 0.54 0.068
SOC 0.83 0.53 0.064

0.094 0.014 —0.052
0.120 0.002 —0.106
0.069 0.011 —0.020
0.059 0.004 —0.031
0.080 0.029 —0.046
0.105 0.012 —0.087
0.055 0.018 —0.019
0.117 0.016 —0.053
0.116 0.027 —0.098
0.098 0.017 —0.088
0.312 0.011 —0.303
0.131 0.016 —0.083
0.077 0.013 —0.037
0.107 0.012 —0.099
0.101 0.013 —0.056
0.093 0.017 —0.046

atmospheric data change. As shown in Fig. 5, the precision
of ASM at the TGs in each subregion was calculated every
10 years (excluding TGs with less than 1 year of data in a
given decade). Results indicate that the overall precision (i.e.,
for ALL TGs) of entire surges and 95th extremes gradually
increased from 1940 to 2020. Possible reasons are as follows:
on the one hand, ASM is affected by the spatial resolution
of TGs (Yang et al., 2024b). The increase in TGs in recent
decades (Haigh et al., 2023) has enhanced its precision. On
the other hand, the quality of the ERAS data has improved
as more satellite data have been assimilated since the 1970s
(Soci et al., 2024), which benefits the data-driven model. At
the regional scale, for entire surges, Fig. Sa indicates that, ex-
cept for SWA (CORR decreases) and WAS (CORR remains
unchanged), the CORRs of the other subregions present an
upward trend: Fig. 5b shows the RMSE in SES increases,
while the RMSEs in the other regions decrease. Figure S5c
shows that the MBs of the subregions have gradually been
optimized (excluding WAS). For 95th extremes, in terms of
CORRs (Fig. 5d), WEU, NAF, WNA, ENA, EAS, NOC, and
SOC show an upward trend, whereas there is no obvious pat-
tern in the other regions. For RMSEs (Fig. 5e), ER, SEA, and
SES present an increasing trend, while the other regions de-
crease. For MBs (Fig. 5f), the underestimation of SSs in ER
and SAS rises, and there is no noticeable change in WNA
and SES. MBs in WEU, NAF, ENA, WAS, EAS, NOC, and
SOC are optimized, while there is no clear pattern in SWA,
SEA, CA, and SWS.

https://doi.org/10.5194/essd-17-2793-2025

3.2 ASM comparison with a numerical model at the tide
gauge scale

Since GTSM provided numerical surges from 1979 to 2018,
ASM data in the same period were extracted from SSs recon-
structed in Sect. 3.1. In addition, since points of GTSM did
not completely coincide with TG stations, linear interpola-
tion was used to interpolate GTSM SSs to the corresponding
TG locations. Figure 6 and Table 2 give the 95th extreme
comparison results between ASM, GTSM, and TG observa-
tions.

It can be seen from Fig. 6a—c and Table 2 that, on the quasi-
global scale, ASM (the medians of CORRs, RMSEs, and
MBs for the 95th extremes are 0.63, 0.093, and —0.050m,
respectively) outperforms the numerical GTSM (the medi-
ans are 0.55, 0.106, and —0.045m). At the regional scale
(Fig. 6d-i), ASM and GTSM perform poorly in areas with
no tropical cyclones (ER, SWA, SWS, and SES), indicat-
ing that, in addition to meteorological factors, oceanographic
processes in these regions contribute to the extremes (Cid
et al., 2017; Woodworth et al., 2019). For areas severely
affected by tropical cyclones (such as WEU, WNA, ENA,
EAS, NOC, and SOC), ASM and GTSM are more precise.
Moreover, the CORRs and RMSEs of ASM are better than
those of GTSM in these subregions, while the MBs of GTSM
are closer to 0 m in WEU, NOC, and SOC (Fig. 6a—c). How-
ever, GTSM appears to overestimate extremes in some ar-
eas, such as NOC and SOC (Fig. 6i). For further insight,
Fig. 7 presents scatter density plots of ASM and GTSM an-
nual maximum SSs compared with TG records. Of the 15
subregions, the determination coefficient (R?) of ASM in 10
of them is better than that of GTSM (Fig. 7b-i, k, and o);
the RMSE of ASM is smaller than that of GTSM in 12 ar-
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Figure 5. Temporal variations of the ASM precision at tide gauges from 1940 to 2020. (a—c) Entire surge evaluation statistics for the different
regions every 10 years. (d—f) The 95th extreme evaluation statistics for the different regions every 10 years.

eas (Fig. 7b—j, m, o, and p). However, there are two sub-
regions where the R?> and RMSE of ASM are worse than
those of GTSM (Fig. 71 and n), possibly because the avail-
able TGs are sparse, especially in WAS. On a quasi-global
scale, ASM’s overall RMSE and R? improvements compared
to GTSM are 22.3 % (from 0.184 to 0.143m) and 14.8 %
(from 0.61 to 0.70), respectively (Fig. 7a), which means that
ASM is more stable than GTSM. The reason why ASM out-
performs GTSM could be two main aspects. For the global
numerical GTSM, as mentioned in the Introduction section,
the accuracy and spatial resolution of bathymetric data in the
nearshore area limit the precision of SSs. Meanwhile, the
grid with a resolution of several kilometers affects the effec-
tive simulation of small-scale physical factors. For the ASM
data-driven model, the training process is based on TG ob-
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servations. TGs are the most accurate source for sea level
monitoring, and their records can be considered to include
effects from all spatial-scale physical processes. In addition,
the machine learning method XGBoost is a residual model
that pays more attention to where residual errors are signifi-
cant, which also benefits the estimation of extreme SSs.

3.3 ASM comparison with a numerical model at the
coastal scale

As mentioned in the Introduction section, though ASM and
single-site modeling belong to the data-driven model, the for-
mer can provide SS information for ungauged points since
their basic ideas differ. This advantage of ASM allows us to
compare the data-driven model and numerical model on a
quasi-global scale with high spatial resolution. In this sec-
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Figure 6. ASM comparison with the numerical model at tide gauges from 1979 to 2018. (a—¢) ASM and GTSM 95th extreme evaluation
statistics for the different regions. (d—i) Distributions of the evaluation metrics. The gray lines are tropical cyclone paths from Gahtan et al.
(2024).

tion, the ASM was trained based on all 1315 TGs within Note that, since both ASM and GTSM SSs were estimated,
the research area with records longer than 1 year from 1940 we used GTSM as the baseline here. As shown in Fig. 8
to 2020 (Fig. 1). Then SSs from 1979 to 2018 were recon- and Table 3, there are noticeable differences between ASM
structed to all coastal points of GTSM to assess their differ- and GTSM. On the quasi-global scale, the medians of the
ences (Fig. 8 and Table 3). CORRs, RMSEs, and MBs of the entire surges (95th ex-

Figure 8 and Table 3 give the comparison results be- tremes) between them are 0.32 (0.23), 0.084m (0.138 m),
tween ASM and GTSM entire surges and 95th extremes. and —0.056 m (—0.126 m), respectively (Fig. 8a—c). The neg-

https://doi.org/10.5194/essd-17-2793-2025 Earth Syst. Sci. Data, 17, 2793-2807, 2025



2802 L. Yang et al.: ASM-SS: the first quasi-global high-spatial-resolution coastal storm surge dataset
ALL: ASM - GESLA ALL: GTSM - GESLA ER: ASM - GESLA ER: GTSM - GESLA WEU: ASM - GESLA  WEU: GTSM - GESLA
E 457 R=0.70 AT R=061 ) MO R 046 R>=0.33. 20| R=0.63 | =022 e
Na) MSE=0.143 m RMSE— 0. 184 m RMSE=0.115m RMSE=0.134 m " | RMSE=0.085 m RMSE=0.187 m .
< 0.8 fot
< 15
E 0.5 yd
3 10 s e S B
< b 0.2
2 ) R 0.5
= ol # @] ; I Bl ©
0.0 15 30 45 00 I's 30 45 00 02 05 08 10 00 02 05 08 10 00 05 10 15 20 00 05 10 15 20
. NAF: ASM - GESLA NAEF: GTSM GESLA SWA: ASM - GESLA SWA: GTSM - GESLA SEA: ASM - GESLA SEA: GTSM - GESLA
g Tl rR=042! R>=0.21 R?>=0.35 R*=0.30 R*=0.70 R?=0.50
\; 0 RMSE= 0.064 m RMSE=0.413 m 091 RMSE=0.112m RMSE=0.121 m o 0.9 { -RMSE=0:101 RMSE=0.119
[~ I N R
g 06 06
< - -
g 0.6 (/
— 03 . 03
D o3l A0 . ﬁié: )
E % 0.0 *; ——————— el 00]
0o PR (d)y Q) ] ®
00 03 06 09 1200 03 06 09 12 00 03 06 09 00 03 06 09 00 03 06 09 00 03 06 09
WNA: ASM GESLA WNA: GTSM - GESLA ENA: ASM - GESLA  ENA: GTSM - GESLA CA: ASM - GESLA CA: GTSM - GESLA
~ 167 =05 024" 451 Re=0:69 e — . R T A1 Re=004
é MSE= 0.060 m MSE= 0 158 m MSE=0.176 m RMSE=0.216 m RMSE=0.108 m RMSE=0.147 m
12 : . 2 :
é S/ so 30
< 08 . 08 B o
< o4 Lsf- 0.4 :
ks 0.0l & e . 5‘" l :
= ool At @® | oo atr. P @)
00 04 08 12 16 00 04 08 12 16 0.0 15 30 45 00 1’5 30 45 00 04 08 12 16 00 04 08 12 16
SWS: ASM - GESLA SWS: GTSM - GESLA SES: ASM - GESLA SES: GTSM - GESLA WAS: ASM - GESLA WAS: GTSM GESLA
g 08 R*=0.30 R*=0.41 R?=0.78 R*=0.54 R*=0.08 R*=0.56 |
~ RMSE=0.108 m RMSE=0.109m = . RMSE= 0.366 m RMSE= 0.324 m RMSE= 0:164 m RMSE= 0. 085 m
é Y . 1.2 1 0.6 b
g .
< o 3 S £ S S OO 04
2 y
-“g’ - 0.4 - 02
= o . ) 3
/ / )] 004 A : k) 001 | )
00 02 04 06 08 00 02 04 06 08 00 04 08 12 00 04 08 12 00 02 04 06 00 02 04 06
EAS: ASM - GESLA EAS: GTSM GESLA SAS: ASM - GESLA SAS: GTSM - GESLA NOC: ASM GESLA  NOC: GTSM GESLA
’é 2.01R*=037 RZ* 0. 42 R*=0.50 R?>=0.58 4.01R2>=0: 44 7 2= 0 33
= RMSE=0.119 n RMSE—p 128 1.5{ RMSE=0 183 m | RMSE=0.160 m RMSE— 0.152 1 2MSE— 0.286
< bl 3.0 : |
E T R s e A
= b 2.0
L
E ! 0.5
§ s
' A ()] oo} @] ool L y ©)
00 05 10 15 20 00 05 10 15 00 05 10 15 00 10 20 30 40 00 10 20 30 40
SOC: GISM - GESL A Observed Amax (m) Observed Amax (m)
2= (.7
MSE=

Modeled Amax (m)

0.180 m

0.6

0.0 12 1.8 24

00 06 12 1.8 24

Observed Amax (m)
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Table 2. The medians of the evaluation statistics for the different regions in Fig. 6.

Median of CORRs

Median of RMSEs (m)

Median of MBs (m)

ASM-GESLA GTSM-GESLA ‘ ASM-GESLA GTSM-GESLA ‘ ASM-GESLA GTSM-GESLA

ALL 0.63 0.55 0.093 0.106 —0.050 —0.045
ER 0.20 0.10 0.122 0.075 —0.106 —0.026
WEU 0.72 0.62 0.066 0.071 —0.019 —0.001
NAF 0.53 0.46 0.057 0.044 —0.025 0.003
SWA 0.20 0.30 0.081 0.087 —0.048 —0.063
SEA 0.44 0.35 0.103 0.076 —0.087 —0.058
WNA 0.72 0.58 0.054 0.085 —0.019 —0.061
ENA 0.77 0.72 0.112 0.138 —0.052 —0.072
CA 0.21 0.19 0.116 0.122 —0.107 —0.106
SWS 0.25 0.14 0.098 0.105 —0.088 —0.086
SES 0.21 0.24 0.340 0.155 —0.329 —0.123
WAS 0.17 0.22 0.131 0.077 —0.083 —0.056
EAS 0.66 0.59 0.071 0.096 —0.036 —0.041
SAS 0.27 0.29 0.107 0.092 —0.099 —0.045
NOC 0.58 0.48 0.095 0.113 —0.057 0.017
SOoC 0.57 0.47 0.088 0.102 —0.047 —0.010
Table 3. The medians of the evaluation statistics for the different regions in Fig. 8.
Median of CORRs \ Median of RMSEs (m) \ Median of MBs (m)

Entire surges

95th extremes ‘ Entire surges

95th extremes ‘ Entire surges

95th extremes

ALL 0.32 0.23 0.084
ER 0.19 0.09 0.085
WEU 0.89 0.70 0.058
NAF 0.28 0.10 0.060
SWA 0.37 0.12 0.068
SEA 0.30 0.36 0.114
WNA 0.70 0.70 0.055
ENA 0.48 0.52 0.073
CA 0.38 0.28 0.063
SWS 0.30 0.09 0.043
SES 0.42 0.11 0.118
WAS 0.28 0.12 0.090
EAS 0.47 0.40 0.132
SAS 0.29 0.25 0.100
NOC 0.22 0.22 0.100
SOC 0.82 0.39 0.095

0.138 —0.056 —0.126
0.127 -0.076 —0.123
0.090 —0.039 —0.073
0.118 —0.022 —0.112
0.060 0.030 —0.050
0.176 —0.105 —0.172
0.080 —0.025 —0.023
0.144 —0.009 —0.091
0.098 —0.037 —0.083
0.060 —0.008 —0.044
0.204 —0.059 —0.180
0.174 —0.040 —0.167
0.225 —0.065 —-0.212
0.148 —0.083 —0.143
0.159 —0.074 —0.149
0.154 —0.068 —0.140
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ative MBs indicate that ASM tends to give lower SS es-
timates than GTSM, which is consistent with the conclu-
sion from the comparison with TGs in Sect. 3.2. From a re-
gional perspective, the agreement between ASM and GTSM
(Fig. 8d, f, and h for entire surges and Fig. 8e, g, and i for 95th
extremes) is better in WEU, SEA, WNA, ENA, EAS, and
SOC. For the other places, on the one hand, both ASM and
GTSM showed relatively poor agreement with TG observa-
tions in Sect. 3.2 (Fig. 6d—i); on the other hand, there are also
visible discrepancies between ASM and GTSM (Fig. 8d-i).
Possible reasons could be as follows: for ASM, its extreme
SS reconstruction is affected by the distribution and spatial

https://doi.org/10.5194/essd-17-2793-2025

intervals of TG stations (Yang et al., 2024b). For GTSM, the
grid resolution and the bathymetric data’s precision also im-
pact the simulation results. Additionally, neither of them con-
siders sea level variations caused by runoff and precipitation.
Nevertheless, the precision of ASM and GTSM for these re-
gions needs further improvement in the future.

4 Data availability

The ASM-SS quasi-global storm surge dataset was gen-
erated from the ASM data-driven model established in
Sect. 3.3. The dataset is available month by month

Earth Syst. Sci. Data, 17, 2793-2807, 2025
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cyclone paths from Gahtan et al. (2024).

at https://doi.org/10.5281/zenodo.14034726 (Yang et al.,
2024a) as NetCDF files from 1940 to 2020. Each file includes
five parameters: longitude, latitude, nodes, time, and surge
level. Longitude and latitude are the location information of
nodes in degrees. The time unit is accumulated hours since
1900-01-01 00:00:00. The surge levels are given in meters.

Earth Syst. Sci. Data, 17, 2793-2807, 2025

Users can use longitude, latitude, and time as keywords to
select surge levels at nodes of interest within a target period.
In addition, the spatial resolution of the nodes is 10 km along
the coastline (as shown in Fig. 2). Since the sea surface varies
rapidly during tropical cyclones, the temporal resolution of
surge levels is set to hourly. Though this temporal resolution

https://doi.org/10.5194/essd-17-2793-2025
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increases the data volume, it can provide sufficient informa-
tion for users who want to analyze high-frequency variations
of storm surges during extreme events.

5 Conclusion and discussion

High-spatial-coverage and long-term SS records are the ba-
sis for deepening our understanding and better preparing
coastal communities for incoming ESLs. However, high-
spatial-resolution SS information on a global or quasi-global
scale can only be simulated by global numerical models due
to the sparse and uneven distribution of TG stations. Here,
based on the ASM framework, we established a SS data-
driven model using observations from TGs between 45°S
and 45° N. Then, for the first time, a high-spatial-resolution
(every 10km per node along the coastline), long-term (over
80 years from 1940 to 2020), quasi-global (within 45° S—
45°N), and hourly data-driven SS dataset (ASM-SS) was
reconstructed from this ASM. Evaluation results indicate
that, for 95th extreme SSs, this model (the medians of the
CORRs, RMSEs, and MBs are 0.63, 0.093, and —0.050m,
respectively) is better than the state-of-the-art hydrodynamic
GTSM (the medians are 0.55, 0.106, and —0.045 m); for an-
nual maximum SSs, ASM is more stable than GTSM, with
the overall RMSE and coefficient of determination optimiz-
ing by 22.3 % and 14.8 %, respectively. This dataset could
provide possible alternative support aside from numerical
models for coastal communities to analyze variations of SSs,
the contribution of SSs to ESLs, and other relevant applica-
tions.

Nonetheless, several details of this model can be studied
more deeply in our future work: (1) generally speaking, trop-
ical cyclones are accompanied by heavy rainfall when they
make landfall, which might affect sea surface height. In ad-
dition, the impact of river runoff in estuarine areas may need
to be considered. (2) The distribution and spatial intervals
of TG stations have been proven to affect the precision of
ASM (Yang et al., 2024b). Because establishing and main-
taining a permanent TG network with high spatial cover-
age in coastal regions is expensive and complex, it is nec-
essary to consider integrating various water level observa-
tion technologies, such as Global Navigation Satellite Sys-
tem reflectometry (GNSS-R) and satellite altimetry. (3) From
the predictor side, several studies showed that ERAS data
tend to relatively underestimate higher wind speeds (Graham
et al., 2019; Xiong et al., 2022), which may lead to underes-
timations of extreme SSs. Therefore, the atmospheric predic-
tors can also be optimized through multisource data fusion,
such as considering wind speeds obtained from spaceborne
GNSS-R (e.g., the Cyclone Global Navigation Satellite Sys-
tem) or cyclone information obtained from remote sensing
satellites.
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