Articles | Volume 17, issue 4
https://doi.org/10.5194/essd-17-1627-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-1627-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
glenglat: a database of global englacial temperatures
Mylène Jacquemart
CORRESPONDING AUTHOR
Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, Zurich, Switzerland
Swiss Federal Institute of Forest, Snow and Landscape Research (WSL), Sion, Switzerland
Ethan Welty
World Glacier Monitoring Service (WGMS), Department of Geography (GIUZ), University of Zurich (UZH), Zurich, Switzerland
Marcus Gastaldello
Department of Geosciences, University of Fribourg (UniFr), Fribourg, Switzerland
Guillem Carcanade
Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, Zurich, Switzerland
Swiss Federal Institute of Forest, Snow and Landscape Research (WSL), Sion, Switzerland
Related authors
Andrea Manconi, Gwendolyn Dasser, Mylène Jacquemart, Nicolas Oestreicher, Livia Piermattei, and Tazio Strozzi
Abstr. Int. Cartogr. Assoc., 9, 41, https://doi.org/10.5194/ica-abs-9-41-2025, https://doi.org/10.5194/ica-abs-9-41-2025, 2025
Gwendolyn Dasser, Valentin T. Bickel, Marius Rüetschi, Mylène Jacquemart, Mathias Bavay, Elisabeth D. Hafner, Alec van Herwijnen, and Andrea Manconi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1510, https://doi.org/10.5194/egusphere-2024-1510, 2024
Short summary
Short summary
Understanding snowpack wetness is crucial for predicting wet snow avalanches, but detailed data is often limited to certain locations. Using satellite radar, we monitor snow wetness spatially continuously. By combining different radar tracks from Sentinel-1, we improved spatial resolution and tracked snow wetness over several seasons. Our results indicate higher snow wetness to correlate with increased wet snow avalanche activity, suggesting our method can help identify potential risk areas.
Jane Walden, Mylène Jacquemart, Bretwood Higman, Romain Hugonnet, Andrea Manconi, and Daniel Farinotti
EGUsphere, https://doi.org/10.5194/egusphere-2024-1086, https://doi.org/10.5194/egusphere-2024-1086, 2024
Short summary
Short summary
In a study of eight landslides adjacent to glaciers in Alaska, we found that landslide movement increased as the glacier retreated past the landslide at four sites. Movement at other sites coincided with heavy precipitation or increased glacier thinning, and two sites showed little-to-no motion. We suggest that landslides next to water-terminating glaciers may be especially vulnerable to acceleration, which we guess is due to faster retreat rates and water replacing ice at the landslide edge.
Anja Løkkegaard, Kenneth D. Mankoff, Christian Zdanowicz, Gary D. Clow, Martin P. Lüthi, Samuel H. Doyle, Henrik H. Thomsen, David Fisher, Joel Harper, Andy Aschwanden, Bo M. Vinther, Dorthe Dahl-Jensen, Harry Zekollari, Toby Meierbachtol, Ian McDowell, Neil Humphrey, Anne Solgaard, Nanna B. Karlsson, Shfaqat A. Khan, Benjamin Hills, Robert Law, Bryn Hubbard, Poul Christoffersen, Mylène Jacquemart, Julien Seguinot, Robert S. Fausto, and William T. Colgan
The Cryosphere, 17, 3829–3845, https://doi.org/10.5194/tc-17-3829-2023, https://doi.org/10.5194/tc-17-3829-2023, 2023
Short summary
Short summary
This study presents a database compiling 95 ice temperature profiles from the Greenland ice sheet and peripheral ice caps. Ice viscosity and hence ice flow are highly sensitive to ice temperature. To highlight the value of the database in evaluating ice flow simulations, profiles from the Greenland ice sheet are compared to a modeled temperature field. Reoccurring discrepancies between modeled and observed temperatures provide insight on the difficulties faced when simulating ice temperatures.
Maximillian Van Wyk de Vries, Shashank Bhushan, Mylène Jacquemart, César Deschamps-Berger, Etienne Berthier, Simon Gascoin, David E. Shean, Dan H. Shugar, and Andreas Kääb
Nat. Hazards Earth Syst. Sci., 22, 3309–3327, https://doi.org/10.5194/nhess-22-3309-2022, https://doi.org/10.5194/nhess-22-3309-2022, 2022
Short summary
Short summary
On 7 February 2021, a large rock–ice avalanche occurred in Chamoli, Indian Himalaya. The resulting debris flow swept down the nearby valley, leaving over 200 people dead or missing. We use a range of satellite datasets to investigate how the collapse area changed prior to collapse. We show that signs of instability were visible as early 5 years prior to collapse. However, it would likely not have been possible to predict the timing of the event from current satellite datasets.
Andrew Mitchell, Sophia Zubrycky, Scott McDougall, Jordan Aaron, Mylène Jacquemart, Johannes Hübl, Roland Kaitna, and Christoph Graf
Nat. Hazards Earth Syst. Sci., 22, 1627–1654, https://doi.org/10.5194/nhess-22-1627-2022, https://doi.org/10.5194/nhess-22-1627-2022, 2022
Short summary
Short summary
Debris flows are complex, surging movements of sediment and water. Discharge observations from well-studied debris-flow channels were used as inputs for a numerical modelling study of the downstream effects of chaotic inflows. The results show that downstream impacts are sensitive to inflow conditions. Inflow conditions for predictive modelling are highly uncertain, and our method provides a means to estimate the potential variability in future events.
Silvan Leinss, Enrico Bernardini, Mylène Jacquemart, and Mikhail Dokukin
Nat. Hazards Earth Syst. Sci., 21, 1409–1429, https://doi.org/10.5194/nhess-21-1409-2021, https://doi.org/10.5194/nhess-21-1409-2021, 2021
Short summary
Short summary
A cluster of 13 large mass flow events including five detachments of entire valley glaciers was observed in the Petra Pervogo range, Tajikistan, in 1973–2019. The local clustering provides additional understanding of the influence of temperature, seismic activity, and geology. Most events occurred in summer of years with mean annual air temperatures higher than the past 46-year trend. The glaciers rest on weak bedrock and are rather short, making them sensitive to friction loss due to meltwater.
Andreas Kääb, Mylène Jacquemart, Adrien Gilbert, Silvan Leinss, Luc Girod, Christian Huggel, Daniel Falaschi, Felipe Ugalde, Dmitry Petrakov, Sergey Chernomorets, Mikhail Dokukin, Frank Paul, Simon Gascoin, Etienne Berthier, and Jeffrey S. Kargel
The Cryosphere, 15, 1751–1785, https://doi.org/10.5194/tc-15-1751-2021, https://doi.org/10.5194/tc-15-1751-2021, 2021
Short summary
Short summary
Hardly recognized so far, giant catastrophic detachments of glaciers are a rare but great potential for loss of lives and massive damage in mountain regions. Several of the events compiled in our study involve volumes (up to 100 million m3 and more), avalanche speeds (up to 300 km/h), and reaches (tens of kilometres) that are hard to imagine. We show that current climate change is able to enhance associated hazards. For the first time, we elaborate a set of factors that could cause these events.
Mylène Jacquemart and Kristy Tiampo
Nat. Hazards Earth Syst. Sci., 21, 629–642, https://doi.org/10.5194/nhess-21-629-2021, https://doi.org/10.5194/nhess-21-629-2021, 2021
Short summary
Short summary
We used interferometric radar coherence – a data quality indicator typically used to assess the reliability of radar interferometry data – to document the destabilization of the Mud Creek landslide in California, 5 months prior to its catastrophic failure. We calculated a time series of coherence on the slide relative to the surrounding hillslope and suggest that this easy-to-compute metric might be useful for assessing the stability of a hillslope.
Andrea Manconi, Gwendolyn Dasser, Mylène Jacquemart, Nicolas Oestreicher, Livia Piermattei, and Tazio Strozzi
Abstr. Int. Cartogr. Assoc., 9, 41, https://doi.org/10.5194/ica-abs-9-41-2025, https://doi.org/10.5194/ica-abs-9-41-2025, 2025
Marcus Gastaldello, Enrico Mattea, Martin Hoelzle, and Horst Machguth
EGUsphere, https://doi.org/10.5194/egusphere-2024-2892, https://doi.org/10.5194/egusphere-2024-2892, 2024
Short summary
Short summary
Inside the highest glaciers of the Alps lies an invaluable archive of data revealing the Earth's historic climate. However, as the atmosphere warms due to climate change, so does the glaciers' internal temperature – threatening the future longevity of these records. Using our customised Python model, validated by on-site measurements, we show how a doubling in surface melt has caused a warming of 1.5 °C in the past 21 years and explore the challenges of modelling in complex mountainous terrain.
Gwendolyn Dasser, Valentin T. Bickel, Marius Rüetschi, Mylène Jacquemart, Mathias Bavay, Elisabeth D. Hafner, Alec van Herwijnen, and Andrea Manconi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1510, https://doi.org/10.5194/egusphere-2024-1510, 2024
Short summary
Short summary
Understanding snowpack wetness is crucial for predicting wet snow avalanches, but detailed data is often limited to certain locations. Using satellite radar, we monitor snow wetness spatially continuously. By combining different radar tracks from Sentinel-1, we improved spatial resolution and tracked snow wetness over several seasons. Our results indicate higher snow wetness to correlate with increased wet snow avalanche activity, suggesting our method can help identify potential risk areas.
Jane Walden, Mylène Jacquemart, Bretwood Higman, Romain Hugonnet, Andrea Manconi, and Daniel Farinotti
EGUsphere, https://doi.org/10.5194/egusphere-2024-1086, https://doi.org/10.5194/egusphere-2024-1086, 2024
Short summary
Short summary
In a study of eight landslides adjacent to glaciers in Alaska, we found that landslide movement increased as the glacier retreated past the landslide at four sites. Movement at other sites coincided with heavy precipitation or increased glacier thinning, and two sites showed little-to-no motion. We suggest that landslides next to water-terminating glaciers may be especially vulnerable to acceleration, which we guess is due to faster retreat rates and water replacing ice at the landslide edge.
Anja Løkkegaard, Kenneth D. Mankoff, Christian Zdanowicz, Gary D. Clow, Martin P. Lüthi, Samuel H. Doyle, Henrik H. Thomsen, David Fisher, Joel Harper, Andy Aschwanden, Bo M. Vinther, Dorthe Dahl-Jensen, Harry Zekollari, Toby Meierbachtol, Ian McDowell, Neil Humphrey, Anne Solgaard, Nanna B. Karlsson, Shfaqat A. Khan, Benjamin Hills, Robert Law, Bryn Hubbard, Poul Christoffersen, Mylène Jacquemart, Julien Seguinot, Robert S. Fausto, and William T. Colgan
The Cryosphere, 17, 3829–3845, https://doi.org/10.5194/tc-17-3829-2023, https://doi.org/10.5194/tc-17-3829-2023, 2023
Short summary
Short summary
This study presents a database compiling 95 ice temperature profiles from the Greenland ice sheet and peripheral ice caps. Ice viscosity and hence ice flow are highly sensitive to ice temperature. To highlight the value of the database in evaluating ice flow simulations, profiles from the Greenland ice sheet are compared to a modeled temperature field. Reoccurring discrepancies between modeled and observed temperatures provide insight on the difficulties faced when simulating ice temperatures.
Maximillian Van Wyk de Vries, Shashank Bhushan, Mylène Jacquemart, César Deschamps-Berger, Etienne Berthier, Simon Gascoin, David E. Shean, Dan H. Shugar, and Andreas Kääb
Nat. Hazards Earth Syst. Sci., 22, 3309–3327, https://doi.org/10.5194/nhess-22-3309-2022, https://doi.org/10.5194/nhess-22-3309-2022, 2022
Short summary
Short summary
On 7 February 2021, a large rock–ice avalanche occurred in Chamoli, Indian Himalaya. The resulting debris flow swept down the nearby valley, leaving over 200 people dead or missing. We use a range of satellite datasets to investigate how the collapse area changed prior to collapse. We show that signs of instability were visible as early 5 years prior to collapse. However, it would likely not have been possible to predict the timing of the event from current satellite datasets.
Andrew Mitchell, Sophia Zubrycky, Scott McDougall, Jordan Aaron, Mylène Jacquemart, Johannes Hübl, Roland Kaitna, and Christoph Graf
Nat. Hazards Earth Syst. Sci., 22, 1627–1654, https://doi.org/10.5194/nhess-22-1627-2022, https://doi.org/10.5194/nhess-22-1627-2022, 2022
Short summary
Short summary
Debris flows are complex, surging movements of sediment and water. Discharge observations from well-studied debris-flow channels were used as inputs for a numerical modelling study of the downstream effects of chaotic inflows. The results show that downstream impacts are sensitive to inflow conditions. Inflow conditions for predictive modelling are highly uncertain, and our method provides a means to estimate the potential variability in future events.
Silvan Leinss, Enrico Bernardini, Mylène Jacquemart, and Mikhail Dokukin
Nat. Hazards Earth Syst. Sci., 21, 1409–1429, https://doi.org/10.5194/nhess-21-1409-2021, https://doi.org/10.5194/nhess-21-1409-2021, 2021
Short summary
Short summary
A cluster of 13 large mass flow events including five detachments of entire valley glaciers was observed in the Petra Pervogo range, Tajikistan, in 1973–2019. The local clustering provides additional understanding of the influence of temperature, seismic activity, and geology. Most events occurred in summer of years with mean annual air temperatures higher than the past 46-year trend. The glaciers rest on weak bedrock and are rather short, making them sensitive to friction loss due to meltwater.
Andreas Kääb, Mylène Jacquemart, Adrien Gilbert, Silvan Leinss, Luc Girod, Christian Huggel, Daniel Falaschi, Felipe Ugalde, Dmitry Petrakov, Sergey Chernomorets, Mikhail Dokukin, Frank Paul, Simon Gascoin, Etienne Berthier, and Jeffrey S. Kargel
The Cryosphere, 15, 1751–1785, https://doi.org/10.5194/tc-15-1751-2021, https://doi.org/10.5194/tc-15-1751-2021, 2021
Short summary
Short summary
Hardly recognized so far, giant catastrophic detachments of glaciers are a rare but great potential for loss of lives and massive damage in mountain regions. Several of the events compiled in our study involve volumes (up to 100 million m3 and more), avalanche speeds (up to 300 km/h), and reaches (tens of kilometres) that are hard to imagine. We show that current climate change is able to enhance associated hazards. For the first time, we elaborate a set of factors that could cause these events.
Mylène Jacquemart and Kristy Tiampo
Nat. Hazards Earth Syst. Sci., 21, 629–642, https://doi.org/10.5194/nhess-21-629-2021, https://doi.org/10.5194/nhess-21-629-2021, 2021
Short summary
Short summary
We used interferometric radar coherence – a data quality indicator typically used to assess the reliability of radar interferometry data – to document the destabilization of the Mud Creek landslide in California, 5 months prior to its catastrophic failure. We calculated a time series of coherence on the slide relative to the surrounding hillslope and suggest that this easy-to-compute metric might be useful for assessing the stability of a hillslope.
Related subject area
Domain: ESSD – Ice | Subject: Glaciology
Calving front positions for 42 key glaciers of the Antarctic Peninsula Ice Sheet: a sub-seasonal record from 2013 to 2023 based on deep-learning application to Landsat multi-spectral imagery
Ice thickness and bed topography of Jostedalsbreen ice cap, Norway
PRODEM: an annual series of summer DEMs (2019 through 2022) of the marginal areas of the Greenland Ice Sheet
Smoothed monthly Greenland ice sheet elevation changes during 2003–2023
Climate and ablation observations from automatic ablation and weather stations at A. P. Olsen Ice Cap transect, northeast Greenland, for May 2008 through May 2022
Glaciological and meteorological monitoring at Long Term Ecological Research (LTER) sites Mullwitzkees and Venedigerkees, Austria, 2006–2022
Annual mass changes for each glacier in the world from 1976 to 2023
A high-resolution pan-Arctic meltwater discharge dataset from 1950 to 2021
Glacier-level and gridded mass change in the rivers' sources in the eastern Tibetan Plateau (ETPR) from 1970s to 2000
A newly digitized ice-penetrating radar data set acquired over the Greenland ice sheet in 1971–1979
Multitemporal characterization of a proglacial system: a multidisciplinary approach
Spatial and temporal stable water isotope data from the upper snowpack at the EastGRIP camp site, NE Greenland, sampled in summer 2018
High temporal resolution records of the velocity of Hansbreen, a tidewater glacier in Svalbard
A high-resolution calving front data product for marine-terminating glaciers in Svalbard
Spatial and temporal variability of environmental proxies from the top 120 m of two ice cores in Dronning Maud Land (East Antarctica)
Antarctic Ice Sheet grounding line discharge from 1996 through 2023
Inventory of glaciers and perennial snowfields of the conterminous USA
A comprehensive and version-controlled database of glacial lake outburst floods in High Mountain Asia
Unlocking archival maps of the Hornsund fjord area for monitoring glaciers of the Sørkapp Land peninsula, Svalbard
Antarctic Ice Sheet paleo-constraint database
Ice-core data used for the construction of the Greenland Ice-Core Chronology 2005 and 2021 (GICC05 and GICC21)
Antarctic Bedmap data: Findable, Accessible, Interoperable, and Reusable (FAIR) sharing of 60 years of ice bed, surface, and thickness data
A new inventory of High Mountain Asia surging glaciers derived from multiple elevation datasets since the 1970s
Ice core chemistry database: an Antarctic compilation of sodium and sulfate records spanning the past 2000 years
Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020
Interdecadal glacier inventories in the Karakoram since the 1990s
Landsat- and Sentinel-derived glacial lake dataset in the China–Pakistan Economic Corridor from 1990 to 2020
Processing methodology for the ITS_LIVE Sentinel-1 ice velocity products
Calving fronts and where to find them: a benchmark dataset and methodology for automatic glacier calving front extraction from synthetic aperture radar imagery
Multitemporal glacier inventory revealing four decades of glacier changes in the Ladakh region
A new global dataset of mountain glacier centerlines and lengths
2000 years of annual ice core data from Law Dome, East Antarctica
A 41-year (1979–2019) passive-microwave-derived lake ice phenology data record of the Northern Hemisphere
Rescue and homogenization of 140 years of glacier mass balance data in Switzerland
Erik Loebel, Celia A. Baumhoer, Andreas Dietz, Mirko Scheinert, and Martin Horwath
Earth Syst. Sci. Data, 17, 65–78, https://doi.org/10.5194/essd-17-65-2025, https://doi.org/10.5194/essd-17-65-2025, 2025
Short summary
Short summary
Glacier calving front positions are important for understanding glacier dynamics and constraining ice modelling. We apply a deep-learning framework to multi-spectral Landsat imagery to create a calving front record for 42 key outlet glaciers of the Antarctic Peninsula Ice Sheet. The resulting data product includes 4817 calving front locations from 2013 to 2023 and achieves sub-seasonal temporal resolution.
Mette K. Gillespie, Liss M. Andreassen, Matthias Huss, Simon de Villiers, Kamilla H. Sjursen, Jostein Aasen, Jostein Bakke, Jan M. Cederstrøm, Hallgeir Elvehøy, Bjarne Kjøllmoen, Even Loe, Marte Meland, Kjetil Melvold, Sigurd D. Nerhus, Torgeir O. Røthe, Eivind W. N. Støren, Kåre Øst, and Jacob C. Yde
Earth Syst. Sci. Data, 16, 5799–5825, https://doi.org/10.5194/essd-16-5799-2024, https://doi.org/10.5194/essd-16-5799-2024, 2024
Short summary
Short summary
We present an extensive ice thickness dataset from Jostedalsbreen ice cap that will serve as a baseline for future studies of regional climate-induced change. Results show that Jostedalsbreen currently (~2020) has a maximum ice thickness of ~630 m, a mean ice thickness of 154 ± 22 m and an ice volume of 70.6 ±10.2 km3. Ice of less than 50 m thickness covers two narrow regions of Jostedalsbreen, and the ice cap is likely to separate into three parts in a warming climate.
Mai Winstrup, Heidi Ranndal, Signe Hillerup Larsen, Sebastian B. Simonsen, Kenneth D. Mankoff, Robert S. Fausto, and Louise Sandberg Sørensen
Earth Syst. Sci. Data, 16, 5405–5428, https://doi.org/10.5194/essd-16-5405-2024, https://doi.org/10.5194/essd-16-5405-2024, 2024
Short summary
Short summary
Surface topography across the marginal zone of the Greenland Ice Sheet is constantly evolving. Here we present an annual series (2019–2022) of summer digital elevation models (PRODEMs) for the Greenland Ice Sheet margin, covering all outlet glaciers from the ice sheet. The PRODEMs are based on fusion of CryoSat-2 radar altimetry and ICESat-2 laser altimetry. With their high spatial and temporal resolution, the PRODEMs will enable detailed studies of the changes in marginal ice sheet elevations.
Shfaqat A. Khan, Helene Seroussi, Mathieu Morlighem, William Colgan, Veit Helm, Gong Cheng, Danjal Berg, Valentina R. Barletta, Nicolaj K. Larsen, William Kochtitzky, Michiel van den Broeke, Kurt H. Kjær, Andy Aschwanden, Brice Noël, Jason E. Box, Joseph A. MacGregor, Robert S. Fausto, Kenneth D. Mankoff, Ian M. Howat, Kuba Oniszk, Dominik Fahrner, Anja Løkkegaard, Eigil Y. H. Lippert, and Javed Hassan
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-348, https://doi.org/10.5194/essd-2024-348, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
The surface elevation of the Greenland Ice Sheet is changing due to surface mass balance processes and ice dynamics, each exhibiting distinct spatiotemporal patterns. Here, we employ satellite and airborne altimetry data with fine spatial (1 km) and temporal (monthly) resolutions to document this spatiotemporal evolution from 2003 to 2023. This dataset of fine-resolution altimetry data in both space and time will support studies of ice mass loss and useful for GIS ice sheet modelling.
Signe Hillerup Larsen, Daniel Binder, Anja Rutishauser, Bernhard Hynek, Robert Schjøtt Fausto, and Michele Citterio
Earth Syst. Sci. Data, 16, 4103–4118, https://doi.org/10.5194/essd-16-4103-2024, https://doi.org/10.5194/essd-16-4103-2024, 2024
Short summary
Short summary
The Greenland Ecosystem Monitoring programme has been running since 1995. In 2008, the Glaciological monitoring sub-program GlacioBasis was initiated at the Zackenberg site in northeast Greenland, with a transect of three weather stations on the A. P. Olsen Ice Cap. In 2022, the weather stations were replaced with a more standardized set up. Here, we provide the reprocessed and quality-checked data from 2008 to 2022, i.e., the first 15 years of continued monitoring.
Lea Hartl, Bernd Seiser, Martin Stocker-Waldhuber, Anna Baldo, Marcela Violeta Lauria, and Andrea Fischer
Earth Syst. Sci. Data, 16, 4077–4101, https://doi.org/10.5194/essd-16-4077-2024, https://doi.org/10.5194/essd-16-4077-2024, 2024
Short summary
Short summary
Glaciers in the Alps are receding at unprecedented rates. To understand how this affects the hydrology and ecosystems of the affected regions, it is important to measure glacier mass balance and ensure that records of field surveys are kept in standardized formats and well-documented. We describe glaciological measurements of ice ablation and snow accumulation gathered at Mullwitzkees and Venedigerkees, two glaciers in the Austrian Alps, since 2007 and 2012, respectively.
Ines Dussaillant, Romain Hugonnet, Matthias Huss, Etienne Berthier, Jacqueline Bannwart, Frank Paul, and Michael Zemp
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-323, https://doi.org/10.5194/essd-2024-323, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Our research observes glacier mass changes worldwide from 1976 to 2023, revealing an alarming increase in melt, especially in the last decade and a record year 2023. By combining field and satellite observations, we provide annual mass changes for all glaciers in the world, showing significant contributing to global sea level rise. This work underscores the need for ongoing local monitoring and global climate action to mitigate the effects of glacier loss and its broader environmental impacts.
Adam Igneczi and Jonathan Louis Bamber
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-169, https://doi.org/10.5194/essd-2024-169, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Freshwater from Arctic land ice loss strongly impacts the Arctic and North Atlantic oceans. Datasets describing this freshwater discharge have low resolution and do not cover the entire Arctic. We statistically enhanced coarse resolution climate model data – from ~6 km to 250 m – and routed meltwater towards the coastlines, to provide high resolution data that is covering all Arctic regions. This approach has far lower computational requirements than running climate models at high resolution.
Yu Zhu, Shiyin Liu, Junfeng Wei, Kunpeng Wu, Tobias Bolch, Junli Xu, Wanqin Guo, Zongli Jiang, Fuming Xie, Ying Yi, Donghui Shangguan, Xiaojun Yao, and Zhen Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-255, https://doi.org/10.5194/essd-2024-255, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
This study compiled a near-complete inventory of glacier mass changes across the eastern Tibetan Plateau using topographical maps. This data enhances our understanding of glacier change variability before 2000. When combined with existing research, our dataset provides a nearly five-decade record of mass balance, aiding hydrological simulations and assessments of mountain glacier contributions to sea-level rise.
Nanna B. Karlsson, Dustin M. Schroeder, Louise Sandberg Sørensen, Winnie Chu, Jørgen Dall, Natalia H. Andersen, Reese Dobson, Emma J. Mackie, Simon J. Köhn, Jillian E. Steinmetz, Angelo S. Tarzona, Thomas O. Teisberg, and Niels Skou
Earth Syst. Sci. Data, 16, 3333–3344, https://doi.org/10.5194/essd-16-3333-2024, https://doi.org/10.5194/essd-16-3333-2024, 2024
Short summary
Short summary
In the 1970s, more than 177 000 km of observations were acquired from airborne radar over the Greenland ice sheet. The radar data contain information on not only the thickness of the ice, but also the properties of the ice itself. This information was recorded on film rolls and subsequently stored. In this study, we document the digitization of these film rolls that shed new and unprecedented detailed light on the Greenland ice sheet 50 years ago.
Elisabetta Corte, Andrea Ajmar, Carlo Camporeale, Alberto Cina, Velio Coviello, Fabio Giulio Tonolo, Alberto Godio, Myrta Maria Macelloni, Stefania Tamea, and Andrea Vergnano
Earth Syst. Sci. Data, 16, 3283–3306, https://doi.org/10.5194/essd-16-3283-2024, https://doi.org/10.5194/essd-16-3283-2024, 2024
Short summary
Short summary
The study presents a set of multitemporal geospatial surveys and the continuous monitoring of water flows in a large proglacial area (4 km2) of the northwestern Alps. Activities were developed using a multidisciplinary approach and merge geomatic, hydraulic, and geophysical methods. The goal is to allow researchers to characterize, monitor, and model a number of physical processes and interconnected phenomena, with a broader perspective and deeper understanding than a single-discipline approach.
Alexandra M. Zuhr, Sonja Wahl, Hans Christian Steen-Larsen, Maria Hörhold, Hanno Meyer, Vasileios Gkinis, and Thomas Laepple
Earth Syst. Sci. Data, 16, 1861–1874, https://doi.org/10.5194/essd-16-1861-2024, https://doi.org/10.5194/essd-16-1861-2024, 2024
Short summary
Short summary
We present stable water isotope data from the accumulation zone of the Greenland ice sheet. A spatial sampling scheme covering 39 m and three depth layers was carried out between 14 May and 3 August 2018. The data suggest spatial and temporal variability related to meteorological conditions, such as wind-driven snow redistribution and vapour–snow exchange processes. The data can be used to study the formation of the stable water isotopes signal, which is seen as a climate proxy.
Małgorzata Błaszczyk, Bartłomiej Luks, Michał Pętlicki, Dariusz Puczko, Dariusz Ignatiuk, Michał Laska, Jacek Jania, and Piotr Głowacki
Earth Syst. Sci. Data, 16, 1847–1860, https://doi.org/10.5194/essd-16-1847-2024, https://doi.org/10.5194/essd-16-1847-2024, 2024
Short summary
Short summary
Understanding the glacier response to accelerated climate warming in the Arctic requires data obtained in the field. Here, we present a dataset of velocity measurements of Hansbreen, a tidewater glacier in Svalbard. The glacier's velocity was measured with GPS at 16 stakes mounted on the glacier's surface. The measurements were conducted from about 1 week to about 1 month. The dataset offers unique material for validating numerical models of glacier dynamics and satellite-derived products.
Tian Li, Konrad Heidler, Lichao Mou, Ádám Ignéczi, Xiao Xiang Zhu, and Jonathan L. Bamber
Earth Syst. Sci. Data, 16, 919–939, https://doi.org/10.5194/essd-16-919-2024, https://doi.org/10.5194/essd-16-919-2024, 2024
Short summary
Short summary
Our study uses deep learning to produce a new high-resolution calving front dataset for 149 marine-terminating glaciers in Svalbard from 1985 to 2023, containing 124 919 terminus traces. This dataset offers insights into understanding calving mechanisms and can help improve glacier frontal ablation estimates as a component of the integrated mass balance assessment.
Sarah Wauthy, Jean-Louis Tison, Mana Inoue, Saïda El Amri, Sainan Sun, François Fripiat, Philippe Claeys, and Frank Pattyn
Earth Syst. Sci. Data, 16, 35–58, https://doi.org/10.5194/essd-16-35-2024, https://doi.org/10.5194/essd-16-35-2024, 2024
Short summary
Short summary
The datasets presented are the density, water isotopes, ions, and conductivity measurements, as well as age models and surface mass balance (SMB) from the top 120 m of two ice cores drilled on adjacent ice rises in Dronning Maud Land, dating from the late 18th century. They offer many development possibilities for the interpretation of paleo-profiles and for addressing the mechanisms behind the spatial and temporal variability of SMB and proxies observed at the regional scale in East Antarctica.
Benjamin Joseph Davison, Anna Elizabeth Hogg, Thomas Slater, and Richard Rigby
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-448, https://doi.org/10.5194/essd-2023-448, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
Grounding line discharge is a measure of the amount of ice entering the ocean from an ice mass. This paper describes a dataset of grounding line discharge for the Antarctic Ice Sheet and each of its glaciers. The dataset shows that Antarctic Ice Sheet grounding line discharge has increased since 1996.
Andrew G. Fountain, Bryce Glenn, and Christopher Mcneil
Earth Syst. Sci. Data, 15, 4077–4104, https://doi.org/10.5194/essd-15-4077-2023, https://doi.org/10.5194/essd-15-4077-2023, 2023
Short summary
Short summary
Glaciers are rapidly shrinking globally. To identify past change and provide a baseline for future change, we inventoried the extent of glaciers and perennial snowfields across the western USA excluding Alaska. Using mostly aerial imagery, we digitized the outlines of all glaciers and perennial snowfields equal to or larger than 0.01 km2 using a geographical information system. We identified 1331 (366.52 km2) glaciers and 1176 (31.00 km2) snowfields.
Finu Shrestha, Jakob F. Steiner, Reeju Shrestha, Yathartha Dhungel, Sharad P. Joshi, Sam Inglis, Arshad Ashraf, Sher Wali, Khwaja M. Walizada, and Taigang Zhang
Earth Syst. Sci. Data, 15, 3941–3961, https://doi.org/10.5194/essd-15-3941-2023, https://doi.org/10.5194/essd-15-3941-2023, 2023
Short summary
Short summary
A new inventory of glacial lake outburst floods (GLOFs) in High Mountain Asia found 697 events, causing 906 deaths, 3 times more than previously reported. This study provides insights into the contributing factors behind GLOFs on a regional scale and highlights the need for interdisciplinary approaches, including scientific communities and local knowledge, to understand GLOF risks in Asia. This study allows integration with other datasets, enabling future local and regional risk assessments.
Justyna Dudek and Michał Pętlicki
Earth Syst. Sci. Data, 15, 3869–3889, https://doi.org/10.5194/essd-15-3869-2023, https://doi.org/10.5194/essd-15-3869-2023, 2023
Short summary
Short summary
In our research, we evaluate the potential of archival maps of Hornsund fjord area, southern Spitsbergen, published by the Polish Academy of Sciences for studying glacier changes. Our analysis concerning glaciers in the north-western part of the Sørkapp Land peninsula revealed that, in the period 1961–2010, a maximum lowering of their surface was about 100 m for the largest land-terminating glaciers and over 120 m for glaciers terminating in the ocean (above the line marking their 1984 extents).
Benoit S. Lecavalier, Lev Tarasov, Greg Balco, Perry Spector, Claus-Dieter Hillenbrand, Christo Buizert, Catherine Ritz, Marion Leduc-Leballeur, Robert Mulvaney, Pippa L. Whitehouse, Michael J. Bentley, and Jonathan Bamber
Earth Syst. Sci. Data, 15, 3573–3596, https://doi.org/10.5194/essd-15-3573-2023, https://doi.org/10.5194/essd-15-3573-2023, 2023
Short summary
Short summary
The Antarctic Ice Sheet Evolution constraint database version 2 (AntICE2) consists of a large variety of observations that constrain the evolution of the Antarctic Ice Sheet over the last glacial cycle. This includes observations of past ice sheet extent, past ice thickness, past relative sea level, borehole temperature profiles, and present-day bedrock displacement rates. The database is intended to improve our understanding of past Antarctic changes and for ice sheet model calibrations.
Sune Olander Rasmussen, Dorthe Dahl-Jensen, Hubertus Fischer, Katrin Fuhrer, Steffen Bo Hansen, Margareta Hansson, Christine S. Hvidberg, Ulf Jonsell, Sepp Kipfstuhl, Urs Ruth, Jakob Schwander, Marie-Louise Siggaard-Andersen, Giulia Sinnl, Jørgen Peder Steffensen, Anders M. Svensson, and Bo M. Vinther
Earth Syst. Sci. Data, 15, 3351–3364, https://doi.org/10.5194/essd-15-3351-2023, https://doi.org/10.5194/essd-15-3351-2023, 2023
Short summary
Short summary
Timescales are essential for interpreting palaeoclimate data. The data series presented here were used for annual-layer identification when constructing the timescales named the Greenland Ice-Core Chronology 2005 (GICC05) and the revised version GICC21. Hopefully, these high-resolution data sets will be useful also for other purposes.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Lei Guo, Jia Li, Amaury Dehecq, Zhiwei Li, Xin Li, and Jianjun Zhu
Earth Syst. Sci. Data, 15, 2841–2861, https://doi.org/10.5194/essd-15-2841-2023, https://doi.org/10.5194/essd-15-2841-2023, 2023
Short summary
Short summary
We established a new inventory of surging glaciers across High Mountain Asia based on glacier elevation changes and morphological changes during 1970s–2020. A total of 890 surging and 336 probably or possibly surging glaciers were identified. Compared to the most recent inventory, this one incorporates 253 previously unidentified surging glaciers. Our results demonstrate a more widespread surge behavior in HMA and find that surging glaciers are prone to have steeper slopes than non-surging ones.
Elizabeth R. Thomas, Diana O. Vladimirova, Dieter R. Tetzner, B. Daniel Emanuelsson, Nathan Chellman, Daniel A. Dixon, Hugues Goosse, Mackenzie M. Grieman, Amy C. F. King, Michael Sigl, Danielle G. Udy, Tessa R. Vance, Dominic A. Winski, V. Holly L. Winton, Nancy A. N. Bertler, Akira Hori, Chavarukonam M. Laluraj, Joseph R. McConnell, Yuko Motizuki, Kazuya Takahashi, Hideaki Motoyama, Yoichi Nakai, Franciéle Schwanck, Jefferson Cardia Simões, Filipe Gaudie Ley Lindau, Mirko Severi, Rita Traversi, Sarah Wauthy, Cunde Xiao, Jiao Yang, Ellen Mosely-Thompson, Tamara V. Khodzher, Ludmila P. Golobokova, and Alexey A. Ekaykin
Earth Syst. Sci. Data, 15, 2517–2532, https://doi.org/10.5194/essd-15-2517-2023, https://doi.org/10.5194/essd-15-2517-2023, 2023
Short summary
Short summary
The concentration of sodium and sulfate measured in Antarctic ice cores is related to changes in both sea ice and winds. Here we have compiled a database of sodium and sulfate records from 105 ice core sites in Antarctica. The records span all, or part, of the past 2000 years. The records will improve our understanding of how winds and sea ice have changed in the past and how they have influenced the climate of Antarctica over the past 2000 years.
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
Fuming Xie, Shiyin Liu, Yongpeng Gao, Yu Zhu, Tobias Bolch, Andreas Kääb, Shimei Duan, Wenfei Miao, Jianfang Kang, Yaonan Zhang, Xiran Pan, Caixia Qin, Kunpeng Wu, Miaomiao Qi, Xianhe Zhang, Ying Yi, Fengze Han, Xiaojun Yao, Qiao Liu, Xin Wang, Zongli Jiang, Donghui Shangguan, Yong Zhang, Richard Grünwald, Muhammad Adnan, Jyoti Karki, and Muhammad Saifullah
Earth Syst. Sci. Data, 15, 847–867, https://doi.org/10.5194/essd-15-847-2023, https://doi.org/10.5194/essd-15-847-2023, 2023
Short summary
Short summary
In this study, first we generated inventories which allowed us to systematically detect glacier change patterns in the Karakoram range. We found that, by the 2020s, there were approximately 10 500 glaciers in the Karakoram mountains covering an area of 22 510.73 km2, of which ~ 10.2 % is covered by debris. During the past 30 years (from 1990 to 2020), the total glacier cover area in Karakoram remained relatively stable, with a slight increase in area of 23.5 km2.
Muchu Lesi, Yong Nie, Dan Hirsh Shugar, Jida Wang, Qian Deng, Huayong Chen, and Jianrong Fan
Earth Syst. Sci. Data, 14, 5489–5512, https://doi.org/10.5194/essd-14-5489-2022, https://doi.org/10.5194/essd-14-5489-2022, 2022
Short summary
Short summary
The China–Pakistan Economic Corridor plays a vital role in foreign trade and faces threats from water shortage and water-related hazards. An up-to-date glacial lake dataset with critical parameters is basic for water resource and flood risk research, which is absent from the corridor. This study created a glacial lake dataset in 2020 from Landsat and Sentinel images from 1990–2000, using a threshold-based mapping method. Our dataset has the potential to be widely applied.
Yang Lei, Alex S. Gardner, and Piyush Agram
Earth Syst. Sci. Data, 14, 5111–5137, https://doi.org/10.5194/essd-14-5111-2022, https://doi.org/10.5194/essd-14-5111-2022, 2022
Short summary
Short summary
This work describes NASA MEaSUREs ITS_LIVE project's Version 2 Sentinel-1 image-pair ice velocity product and processing methodology. We show the refined offset tracking algorithm, autoRIFT, calibration for Sentinel-1 geolocation biases and correction of the ionosphere streaking problems. Validation was performed over three typical test sites covering the globe by comparing with other similar global and regional products.
Nora Gourmelon, Thorsten Seehaus, Matthias Braun, Andreas Maier, and Vincent Christlein
Earth Syst. Sci. Data, 14, 4287–4313, https://doi.org/10.5194/essd-14-4287-2022, https://doi.org/10.5194/essd-14-4287-2022, 2022
Short summary
Short summary
Ice loss of glaciers shows in retreating calving fronts (i.e., the position where icebergs break off the glacier and drift into the ocean). This paper presents a benchmark dataset for calving front delineation in synthetic aperture radar (SAR) images. The dataset can be used to train and test deep learning techniques, which automate the monitoring of the calving front. Provided example models achieve front delineations with an average distance of 887 m to the correct calving front.
Mohd Soheb, Alagappan Ramanathan, Anshuman Bhardwaj, Millie Coleman, Brice R. Rea, Matteo Spagnolo, Shaktiman Singh, and Lydia Sam
Earth Syst. Sci. Data, 14, 4171–4185, https://doi.org/10.5194/essd-14-4171-2022, https://doi.org/10.5194/essd-14-4171-2022, 2022
Short summary
Short summary
This study provides a multi-temporal inventory of glaciers in the Ladakh region. The study records data on 2257 glaciers (>0.5 km2) covering an area of ~7923 ± 106 km2 which is equivalent to ~89 % of the total glacierised area of the Ladakh region. It will benefit both the scientific community and the administration of the Union Territory of Ladakh, in developing efficient mitigation and adaptation strategies by improving the projections of change on timescales relevant to policymakers.
Dahong Zhang, Gang Zhou, Wen Li, Shiqiang Zhang, Xiaojun Yao, and Shimei Wei
Earth Syst. Sci. Data, 14, 3889–3913, https://doi.org/10.5194/essd-14-3889-2022, https://doi.org/10.5194/essd-14-3889-2022, 2022
Short summary
Short summary
The length of a glacier is a key determinant of its geometry; glacier centerlines are crucial inputs for many glaciological applications. Based on the European allocation theory, we present a new global dataset that includes the centerlines and lengths of 198 137 mountain glaciers. The accuracy of the glacier centerlines was 89.68 %. The constructed dataset comprises 17 sub-datasets which contain the centerlines and lengths of glacier tributaries.
Lenneke M. Jong, Christopher T. Plummer, Jason L. Roberts, Andrew D. Moy, Mark A. J. Curran, Tessa R. Vance, Joel B. Pedro, Chelsea A. Long, Meredith Nation, Paul A. Mayewski, and Tas D. van Ommen
Earth Syst. Sci. Data, 14, 3313–3328, https://doi.org/10.5194/essd-14-3313-2022, https://doi.org/10.5194/essd-14-3313-2022, 2022
Short summary
Short summary
Ice core records from Law Dome in East Antarctica, collected over the the last 3 decades, provide high-resolution data for studies of the climate of Antarctica, Australia and the Southern and Indo-Pacific oceans. Here, we present a set of annually dated records from Law Dome covering the last 2000 years. This dataset provides an update and extensions both forward and back in time of previously published subsets of the data, bringing them together into a coherent set with improved dating.
Yu Cai, Claude R. Duguay, and Chang-Qing Ke
Earth Syst. Sci. Data, 14, 3329–3347, https://doi.org/10.5194/essd-14-3329-2022, https://doi.org/10.5194/essd-14-3329-2022, 2022
Short summary
Short summary
Seasonal ice cover is one of the important attributes of lakes in middle- and high-latitude regions. This study used passive microwave brightness temperature measurements to extract the ice phenology for 56 lakes across the Northern Hemisphere from 1979 to 2019. A threshold algorithm was applied according to the differences in brightness temperature between lake ice and open water. The dataset will provide valuable information about the changing ice cover of lakes over the last 4 decades.
Lea Geibel, Matthias Huss, Claudia Kurzböck, Elias Hodel, Andreas Bauder, and Daniel Farinotti
Earth Syst. Sci. Data, 14, 3293–3312, https://doi.org/10.5194/essd-14-3293-2022, https://doi.org/10.5194/essd-14-3293-2022, 2022
Short summary
Short summary
Glacier monitoring in Switzerland started in the 19th century, providing exceptional data series documenting snow accumulation and ice melt. Raw point observations of surface mass balance have, however, never been systematically compiled so far, including complete metadata. Here, we present an extensive dataset with more than 60 000 point observations of surface mass balance covering 60 Swiss glaciers and almost 140 years, promoting a better understanding of the drivers of recent glacier change.
Cited articles
Abermann, J., Steiner, J. F., Prinz, R., Wecht, M., and Lisager, P.: The Red Rock ice cliff revisited – six decades of frontal, mass and area changes in the Nunatarssuaq area, northwest Greenland, J. Glaciol., 66, 567–576, https://doi.org/10.1017/jog.2020.28, 2020. a
Agassiz, L.: From the temperature of the interior of the glacier, in: New studies and experiments on current glaciers: their structure, their progression and their physical actions on the ground, Victor Masson, 419–434, https://gallica.bnf.fr/ark:/12148/bpt6k97697182/f454.item (last access: 7 April 2024), 1847. a, b, c
Aizen, V., Bren, D., Kreutz, K., and Wake, C.: Paleo-climate and glaciological reconstruction in Central Asia through the collection and analysis of ice cores and instrumental data from the Tien Shan, Tech. rep., Regents of The University of California Santa Barbara (US), https://doi.org/10.2172/794067, 2001. a
An, W., Hou, S., Zhang, W., Wang, Y., Liu, Y., Wu, S., and Pang, H.: Significant recent warming over the northern Tibetan Plateau from ice core δ18O records, Clim. Past, 12, 201–211, https://doi.org/10.5194/cp-12-201-2016, 2016. a
Aristarain, A. J. and Delmas, R.: First glaciological studies on the James Ross Island Ice Cap, Antarctic Peninsula, J. Glaciol., 27, 371–379, https://doi.org/10.3189/S0022143000011412, 1981. a
Arkhipov, S. M., Mikhalenko, V. N., Kunakhovich, M. G., Dikikh, A. N., and Nagornov, O. V.: Thermal regime, conditions of ice formation and accumulation on Grigoriev Glacier (Tien Shan) in 1962–2001, Data of Glaciological Studies, 96, 77–83, http://geolibrary.ru/sites/default/files/2021-01/96.pdf#page=78 (last access: 7 April 2024), 2004. a
Arktisk Institute: Danish scientific work in Greenland, 1957, Polar Rec., 9, 452–454, https://doi.org/10.1017/S0032247400066432, 1959. a, b
Arktisk Institute: Danish scientific work in Greenland, 1958, Polar Rec., 10, 38–40, https://doi.org/10.1017/S0032247400050609, 1960. a, b
Barandun, M.: A novel approach to estimate glacier mass balance in the Tien Shan and Pamir based on transient snowline observations, Ph.D. thesis, University of Fribourg, Department of Geosciences, https://folia.unifr.ch/global/documents/307523 (last access: 7 April 2024), 2018. a
Baranowski, S.: Glaciological investigations and glaciomorphological observations made in 1970 on Werenskiold Glacier and in its forefield, Vol. 1, in: Results of investigations of the Polish Scientific Spitsbergen Expeditions 1970–1974, edited by: Baranowski, S. and Jahn, A., no. 251 in Acta Universitatis Wratislaviensis, Państwowe Wydawnictwo Naukowe, 69–94, 1975. a
Barbash, V. R., Govorukha, L. S., and Zotikov, I. A.: On the temperature state of the thickness of the Vavilov Ice Cap, in: Studies of the ice cover and periglacial of Severnaya Zemlya, no. 367 in Proceedings of AARI, Arctic and Antarctic Research Institute, 54–57, 1981. a
Beaudon, E., Moore, J. C., Martma, T., Pohjola, V. A., van de Wal, R. S. W., Kohler, J., and Isaksson, E.: Lomonosovfonna and Holtedahlfonna ice cores reveal east–west disparities of the Spitsbergen environment since AD 1700, J. Glaciol., 59, 1069–1083, https://doi.org/10.3189/2013JoG12J203, 2013. a
Blatter, H.: On the thermal regime of an Arctic valley glacier: A study of White Glacier, Axel Heiberg Island, N.W.T., Canada, J. Glaciol., 33, 200–211, https://doi.org/10.3189/S0022143000008704, 1987. a, b, c
Blatter, H. and Haeberli, W.: Modelling temperature distribution in Alpine glaciers, Ann. Glaciol., 5, 18–22, https://doi.org/10.3189/1984AoG5-1-18-22, 1984. a, b
Blatter, H. and Hutter, K.: Polythermal conditions in arctic glaciers, J. Glaciol., 37, 261–269, https://doi.org/10.3189/S0022143000007279, 1991. a
Blatter, H. and Kappenberger, G.: Mass balance and thermal regime of Laika Ice Cap, Coburg Island, N.W.T., Canada, J. Glaciol., 34, 102–110, https://doi.org/10.3189/S0022143000009126, 1988. a
Bohleber, P.: Alpine ice cores as climate and environmental archives, in: Oxford Research Encyclopedia of Climate Science, Oxford University Press, ISBN 978-0-19-022862-0, https://doi.org/10.1093/acrefore/9780190228620.013.743, 2019. a
Bohleber, P., Erhardt, T., Spaulding, N., Hoffmann, H., Fischer, H., and Mayewski, P.: Temperature and mineral dust variability recorded in two low-accumulation Alpine ice cores over the last millennium, Clim. Past, 14, 21–37, https://doi.org/10.5194/cp-14-21-2018, 2018. a
Bonnaveira, H., Taupin, J.-D., Godoi, M.-A., Ginot, P., Pourchet, M., Schotterer, U., and Stichler, W.: Etat d'avancement de l'analyse des carottes de glace du Chimborazo (Equateur), Tech. rep., IRD, INAMHI, PSI, LGGE, LSCE, https://www.researchgate.net/publication/282170525_Etat_d'avancement_de_l'analyse_des_carottes_de_glace_du_Chimborazo_Equateur (last access: 7 April 2024), 2011. a
Cai, B., Huang, M., and Xie, Z.: A preliminary research on the temperature in deep borehole of Glacier No. 1, Ürümqi River headwaters, Kexue Tongbao, 33, 2054–2056, https://doi.org/10.1360/sb1988-33-24-2054, 1988. a
Carturan, L., De Blasi, F., Dinale, R., Dragà, G., Gabrielli, P., Mair, V., Seppi, R., Tonidandel, D., Zanoner, T., Zendrini, T. L., and Dalla Fontana, G.: Data from air, englacial and permafrost temperature measurements on Mt. Ortles (eastern European Alps) (version 2.0), Zenodo [data set], https://doi.org/10.5281/ZENODO.8330289, 2023a. a, b, c
Carturan, L., De Blasi, F., Dinale, R., Dragà, G., Gabrielli, P., Mair, V., Seppi, R., Tonidandel, D., Zanoner, T., Zendrini, T. L., and Dalla Fontana, G.: Modern air, englacial and permafrost temperatures at high altitude on Mt Ortles (3905 m a.s.l.), in the eastern European Alps, Earth Syst. Sci. Data, 15, 4661–4688, https://doi.org/10.5194/essd-15-4661-2023, 2023b. a, b
Chernov, R. A., Vasilyeva, T. V., and Kudikov, A. V.: Temperature regime of upper layer of the glacier East Grönfjordbreen (West Svalbard), Ice and Snow, 131, 38–46, https://doi.org/10.15356/2076-6734-2015-3-38-46, 2015. a
Clarke, G. K. C. and Jarvis, G. T.: Post-surge temperatures in Steele Glacier, Yukon Territory, Canada, J. Glaciol., 16, 261–268, https://doi.org/10.3189/S0022143000031580, 1976. a
Clarke, G. K. C., Collins, S. G., and Thompson, D. E.: Flow, thermal structure, and subglacial conditions of a surge-type glacier, Can. J. Earth Sci., 21, 232–240, https://doi.org/10.1139/e84-024, 1984. a, b
Clarke, G. K. C., Fischer, D. A., and Waddington, E. D.: Wind pumping: A potentially significant heat source in ice sheets, in: The Physical Basis of Ice Sheet Modelling (Proceedings of the Vancouver Symposium, August 1987), Publication, International Association of Hydrological Sciences, 169–180, https://iahs.info/uploads/dms/7236.169-180-170-Clarke.pdf (last access: 7 April 2024), 1987. a, b
Classen, D. F.: Thermal drilling and deep ice-temperature measurements on the Fox Glacier, Yukon, Master's thesis, University of British Columbia, https://doi.org/10.14288/1.0302225, 1970. a, b
Classen, D. F.: Temperature profiles for the Barnes Ice Cap surge zone, J. Glaciol., 18, 391–405, https://doi.org/10.3189/S0022143000021079, 1977. a
Classen, D. F. and Clarke, G. K. C.: Basal hot spot on a surge type glacier, Nature, 229, 481–483, https://doi.org/10.1038/229481a0, 1971. a
Colgan, W., Sommers, A., Rajaram, H., Abdalati, W., and Frahm, J.: Considering thermal-viscous collapse of the Greenland ice sheet, Earth's Future, 3, 252–267, https://doi.org/10.1002/2015EF000301, 2015. a
Collins, S. G.: Survey of the Rusty Glacier area, Yukon Territory, Canada, 1967–70, J. Glaciol., 11, 235–253, https://doi.org/10.3189/S0022143000022231, 1972. a
Copland, L., Sharp, M. J., Nienow, P., and Bingham, R. G.: The distribution of basal motion beneath a High Arctic polythermal glacier, J. Glaciol., 49, 407–414, https://doi.org/10.3189/172756503781830511, 2003. a, b
Crossley, D. J. and Clarke, G. K. C.: Gravity and shallow-ice temperature measurements on the Rusty Glacier, in: Icefield Ranges Research Project Scientific Results, edited by: Bushnell, V. C. and Ragle, R. H., American Geophysical Society, Arctic Institute of North America, vol. 3, 93–101, https://archives-ftp.gov.yk.ca/library/normal/Icefield_Ranges_Research_Project_v3.pdf#page=109.00 (last access: 7 April 2024), 1972. a
Darms, G. A.: Snow temperatures on Colle Gnifetti: Compilation and analysis of existing and new temperature profiles, Master's thesis, Universität Zürich, Geographisches Institut, https://uzb.swisscovery.slsp.ch/discovery/delivery/41SLSP_UZB:UZB/12464857880005508 (last access: 7 April 2024), 2009. a, b
Davaa, G.: Glacier monitoring in Mongolia, Global Cryosphere Watch (GCW) 2nd Asia CryoNet Meeting in Salekhard, Russian Federation, 2–5 February 2016. a
Deeley, R. M. and Woodward, H.: The viscosity of ice, P. Roy. Soc. A-Math. Phy., 81, 250–259, https://doi.org/10.1098/rspa.1908.0077, 1908. a
Delcourt, C., Van Liefferinge, B., Nolan, M., and Pattyn, F.: The climate memory of an Arctic polythermal glacier, J. Glaciol., 59, 1084–1092, https://doi.org/10.3189/2013JoG12J109, 2013. a
Di Stefano, E., Baccolo, G., Clemenza, M., Delmonte, B., Fiorini, D., Garzonio, R., Schwikowski, M., and Maggi, V.: Temporal markers in a temperate ice core: insights from 3H and 137Cs profiles from the Adamello Glacier, The Cryosphere, 18, 2865–2874, https://doi.org/10.5194/tc-18-2865-2024, 2024. a
Diez, A., Eisen, O., Hofstede, C., Bohleber, P., and Polom, U.: Joint interpretation of explosive and vibroseismic surveys on cold firn for the investigation of ice properties, Ann. Glaciol., 54, 201–210, https://doi.org/10.3189/2013AoG64A200, 2013. a
Dolgushin, L. D.: Main particuliarities of glaciation of Central Asia according to the latest data, in: General Assembly of Helsinki, 25 July–6 August 1960, Publication, International Association of Scientific Hydrology, 348–358, https://iahs.info/uploads/dms/1796.348-358-54-Dolgushin-opt.pdf, 1961. a, b, c
Du, J., He, Y., Li, S., Wang, S., Niu, H., Xin, H., and Pu, T.: Mass balance and near-surface ice temperature structure of Baishui Glacier No.1 in Mt. Yulong, J. Geograph. Sci., 23, 668–678, https://doi.org/10.1007/s11442-013-1036-4, 2013. a
Eisen, O., Bauder, A., Lüthi, M., Riesen, P., and Funk, M.: Deducing the thermal structure in the tongue of Gornergletscher, Switzerland, from radar surveys and borehole measurements, Ann. Glaciol., 50, 63–70, https://doi.org/10.3189/172756409789097612, 2009. a
European Space Agency: Copernicus Global Digital Elevation Model, OpenTopography [data set], https://doi.org/10.5069/G9028PQB, 2024. a
Faillettaz, J., Sornette, D., and Funk, M.: Numerical modeling of a gravity-driven instability of a cold hanging glacier: reanalysis of the 1895 break-off of Altelsgletscher, Switzerland, J. Glaciol., 57, 817–831, https://doi.org/10.3189/002214311798043852, 2011. a
Fisher, D. A., Koerner, R. M., Bourgeois, J. C., Zielinski, G., Wake, C., Hammer, C. U., Clausen, H. B., Gundestrup, N., Johnsen, S., Goto-Azuma, K., Hondoh, T., Blake, E., and Gerasimoff, M.: Penny Ice Cap cores, Baffin Island, Canada, and the Wisconsinan Foxe Dome connection: Two states of Hudson Bay ice cover, Science, 279, 692–695, https://doi.org/10.1126/science.279.5351.692, 1998. a
Flowers, G. E., Roux, N., Pimentel, S., and Schoof, C. G.: Present dynamics and future prognosis of a slowly surging glacier, The Cryosphere, 5, 299–313, https://doi.org/10.5194/tc-5-299-2011, 2011. a
Fristrup, B.: Danish glaciological investigations in the International Geophysical Year, Polarforschung, 30, 3–11, https://doi.org/10.2312/polarforschung.30.1-2.3, 1960a. a, b, c, d
Fristrup, B.: Studies of four glaciers in Greenland, Danish Journal of Geography, 59, 89–102, https://tidsskrift.dk/geografisktidsskrift/article/view/46529 (last access: 7 April 2024), 1960b. a
Fristrup, B.: Danish glaciological investigations in Greenland, in: Geology of the Arctic: Proceedings of the First International Symposium on Arctic Geology, edited by: Raasch, G. O., University of Toronto Press, 2, 735–746, https://doi.org/10.3138/9781487584962-001, 1961. a, b, c, d
Fritzsche, D., Wilhelms, F., Savatyugin, L. M., Pinglot, J. F., Meyer, H., Hubberten, H.-W., and Miller, H.: A new deep ice core from Akademii Nauk Ice Cap, Severnaya Zemlya, Eurasian Arctic: first results, Ann. Glaciol., 35, 25–28, https://doi.org/10.3189/172756402781816645, 2002. a
Fujii, Y., Nishio, F., and Kameda, T.: Snow and ice observation at Sofisky Glacier in the Altai Mountains, Russia, Seppyo, 62, 549–556, https://doi.org/10.5331/seppyo.62.549, 2000. a
Fujii, Y., Kameda, T., Nishio, F., Suzuki, K., Kohno, M., Nakazawa, F., Uetake, J., Savatyugin, L. M., Arkhipov, S. M., Ponomarev, I. A., and Mikhailov, N. N.: Outline of Japan-Russia joint glaciological research on Sofiyskiy Glacier, Russian Altai Mountains in 2000 and 2001, Bulletin of Glaciological Research, 19, 53–58, https://kitami-it.repo.nii.ac.jp/records/6854 (last access: 7 April 2024), 2002. a
Gabrielli, P., Carturan, L., Gabrieli, J., Dinale, R., Krainer, K., Hausmann, H., Davis, M., Zagorodnov, V., Seppi, R., Barbante, C., Dalla Fontana, G., and Thompson, L. G.: Atmospheric warming threatens the untapped glacial archive of Ortles Mountain, South Tyrol, J. Glaciol., 56, 843–853, https://doi.org/10.3189/002214310794457263, 2010. a
Gabrielli, P., Barbante, C., Carturan, L., Cozzi, G., Dalla Fontana, G., Dinale, R., Dragà, G., Gabrieli, J., Kehrwald, N., Mair, V., Mikhalenko, V., Piffer, G., Rinaldi, M., Seppi, R., Spolaor, A., Thompson, L. G., and Tonidandel, D.: Discovery of cold ice in a new drilling site in the eastern European Alps, Physical Geography and Quaternary Dynamics, 35, 101–105, https://doi.org/10.4461/GFDQ.2012.35.10, 2012. a
Gabrielli, P., Barbante, C., Bertagna, G., Bertó, M., Binder, D., Carton, A., Carturan, L., Cazorzi, F., Cozzi, G., Dalla Fontana, G., Davis, M., De Blasi, F., Dinale, R., Dragà, G., Dreossi, G., Festi, D., Frezzotti, M., Gabrieli, J., Galos, S. P., Ginot, P., Heidenwolf, P., Jenk, T. M., Kehrwald, N., Kenny, D., Magand, O., Mair, V., Mikhalenko, V., Lin, P. N., Oeggl, K., Piffer, G., Rinaldi, M., Schotterer, U., Schwikowski, M., Seppi, R., Spolaor, A., Stenni, B., Tonidandel, D., Uglietti, C., Zagorodnov, V., Zanoner, T., and Zennaro, P.: Age of the Mt. Ortles ice cores, the Tyrolean Iceman and glaciation of the highest summit of South Tyrol since the Northern Hemisphere Climatic Optimum, The Cryosphere, 10, 2779–2797, https://doi.org/10.5194/tc-10-2779-2016, 2016. a, b, c
Gilbert, A.: Modeling the thermal regime of glaciers: applications to the study of glacial risk and the quantification of climate changes at high altitude, Ph.D. thesis, Université de Grenoble, https://theses.hal.science/tel-01061854 (last access: 7 April 2024), 2013. a
Gilbert, A. and Vincent, C.: Atmospheric temperature changes over the 20th century at very high elevations in the European Alps from englacial temperatures, Geophys. Res. Lett., 40, 2102–2108, https://doi.org/10.1002/grl.50401, 2013. a, b, c
Gilbert, A., Wagnon, P., Vincent, C., Ginot, P., and Funk, M.: Atmospheric warming at a high‐elevation tropical site revealed by englacial temperatures at Illimani, Bolivia (6340 m above sea level, 16°S, 67°W), J. Geophys. Res.-Atmos., 115, D10109, https://doi.org/10.1029/2009JD012961, 2010. a, b, c, d
Gilbert, A., Vincent, C., Wagnon, P., Thibert, E., and Rabatel, A.: The influence of snow cover thickness on the thermal regime of Tête Rousse Glacier (Mont Blanc range, 3200 m a.s.l.): Consequences for outburst flood hazards and glacier response to climate change, J. Geophys. Res.-Earth, 117, F04018, https://doi.org/10.1029/2011JF002258, 2012. a, b, c
Gilbert, A., Vincent, C., Gagliardini, O., Krug, J., and Berthier, E.: Assessment of thermal change in cold avalanching glaciers in relation to climate warming, Geophys. Res. Lett., 42, 6382–6390, https://doi.org/10.1002/2015GL064838, 2015. a, b
Gilbert, A., Flowers, G. E., Miller, G. H., Rabus, B. T., Van Wychen, W., Gardner, A. S., and Copland, L.: Sensitivity of Barnes Ice Cap, Baffin Island, Canada, to climate state and internal dynamics, J. Geophys. Res.-Earth, 121, 1516–1539, https://doi.org/10.1002/2016JF003839, 2016. a
Gilbert, A., Leinss, S., Kargel, J., Kääb, A., Gascoin, S., Leonard, G., Berthier, E., Karki, A., and Yao, T.: Mechanisms leading to the 2016 giant twin glacier collapses, Aru Range, Tibet, The Cryosphere, 12, 2883–2900, https://doi.org/10.5194/tc-12-2883-2018, 2018. a
Gilbert, A., Sinisalo, A., Gurung, T. R., Fujita, K., Maharjan, S. B., Sherpa, T. C., and Fukuda, T.: The influence of water percolation through crevasses on the thermal regime of a Himalayan mountain glacier, The Cryosphere, 14, 1273–1288, https://doi.org/10.5194/tc-14-1273-2020, 2020. a
Ginot, P., Stampfli, F., Stampfli, D., Schwikowski, M., and Gäggeler, H. W.: FELICS, a new ice core drilling system for high-altitude glaciers, Memoirs of National Institute of Polar Research Special Issue, 56, 38–48, https://nipr.repo.nii.ac.jp/records/2428 (last access: 7 April 2024), 2002. a
Ginot, P., Kull, C., Schotterer, U., Schwikowski, M., and Gäggeler, H. W.: Glacier mass balance reconstruction by sublimation induced enrichment of chemical species on Cerro Tapado (Chilean Andes), Clim. Past, 2, 21–30, https://doi.org/10.5194/cp-2-21-2006, 2006. a
Glen, J. W.: The stability of ice-dammed lakes and other water-filled holes in glaciers, J. Glaciol., 2, 316–318, https://doi.org/10.3189/S0022143000025132, 1954. a
Goel, V., Brown, J., and Matsuoka, K.: In-situ tempetatures in the top 20 m of firn near the summit of Blåskimen Island, Western Dronning Maud Land, Norwegian Polar Institute [data set], https://doi.org/10.21334/NPOLAR.2017.3845E964, 2017a. a
Goel, V., Brown, J., and Matsuoka, K.: Glaciological settings and recent mass balance of Blåskimen Island in Dronning Maud Land, Antarctica, The Cryosphere, 11, 2883–2896, https://doi.org/10.5194/tc-11-2883-2017, 2017b. a
Google: Google Colaboratory [code], https://colab.research.google.com (last access: 7 April 2025), 2025. a
Grześ, M.: Non-cored hot point drills on Hans Glacier (Spitsbergen), method and first results, Pol. Polar Res., 1, 75–85, https://journals.pan.pl/dlibra/publication/127922/edition/111611 (last access: 7 April 2024), 1980. a
GTN-G: GTN-G Glacier Regions (GlacReg), Global Terrestrial Network for Glaciers [data set], https://doi.org/10.5904/gtng-glacreg-2017-07, 2017. a
Gäggeler, H., von Gunten, H. R., Rössler, E., Oeschger, H., and Schotterer, U.: 210Pb-dating of cold alpine firn/ice cores from Colle Gnifetti, Switzerland, J. Glaciol., 29, 165–177, https://doi.org/10.3189/S0022143000005220, 1983. a
Haeberli, W. and Alean, J.: Temperature and accumulation of high altitude firn in the Alps, Ann. Glaciol., 6, 161–163, https://doi.org/10.3189/1985AoG6-1-161-163, 1985. a, b
Haeberli, W. and Funk, M.: Borehole temperatures at the Colle Gnifetti core-drilling site (Monte Rosa, Swiss Alps), J. Glaciol., 37, 37–46, https://doi.org/10.3189/S0022143000042775, 1991. a
Haeberli, W., Frauenfelder, R., Kääb, A., and Wagner, S.: Characteristics and potential climatic significance of “miniature ice caps” (crest- and cornice-type low-altitude ice archives), J. Glaciol., 50, 129–136, https://doi.org/10.3189/172756504781830330, 2004. a
Hagen, J. O.: Temperature distribution in Brøggerbreen, Lovenbreen and Kongsvegen, Northwest Spitsbergen, in: Field Workshop on Glaciological Research in Svalbard: Current Problems at the Polish Polar Station, Hornsund, Spitsbergen 26-30 April 1992, Uniwersytet Śląski, https://opus.us.edu.pl/info/book/USL18f37e0cd7a14ae7b83e6f9b37ce7dc2 (last access: 7 April 2024), 1992. a, b, c
Hager, P.: Glaziologische Untersuchungen am Gipfelgrat des Vadret dal Corvatsch: Thermik und Oberflächenprozesse, Master's thesis, Universität Zürich, Geographisches Institut, 2002. a
Hammer, C. U.: Ice core drilling, in: Report on activities and results 1993–1995 for Hans Tavsen Ice Cap Project – Glacier and Climate Change Research, North Greenland, edited by: Reeh, N., NMRs (Nordisk Minister Råd) miljøforskningsprogram – klimaforskning, Dansk Polar Center, 16–28, 1995. a
Han, J., Wen, J., Shang, X., and Jin, H.: Temperature distribution in Collins Ice Cap, King George Island, Antarctica, Chinese Journal of Polar Research, 7, 62–69, https://journal.chinare.org.cn/CN/Y1995/V7/I1/62 (last access: 7 April 2024), 1995. a
Han, Y., Jun, S. J., Miyahara, M., Lee, H.-G., Ahn, J., Woong, C. J., Hur, S. D., and Hong, S. B.: Shallow ice-core drilling on Styx Glacier, northern Victoria Land, Antarctica in the 2014-2015 summer, Journal of the Geological Society of Korea, 51, 343–355, https://doi.org/10.14770/jgsk.2015.51.3.343, 2015. a
Harrison, W. D.: Temperature of a temperate glacier, J. Glaciol., 11, 15–29, https://doi.org/10.3189/S0022143000022450, 1972. a, b
Harrison, W. D., Mayo, L. R., and Trabant, D. C.: Temperature measurements on Black Rapids Glacier, Alaska, 1973, in: Climate of the Arctic: Twenty-Fourth Alaska Science Conference, 15–17 August 1973: Fairbanks, edited by: Weller, G. and Bowling, S. A., University of Alaska, Geophysical Institute, 350–352, https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=9dbf174017ca2945dec1f6266164b9707cdd33f3, 1975. a, b
Hasholt, B.: A new map of the Mitdluagkat glacier – a preliminary report, Danish Journal of Geography, 87, 19–21, https://tidsskrift.dk/geografisktidsskrift/article/view/44411 (last access: 7 April 2024), 1987. a
Hattersley-Smith, G.: Studies of englacial profiles in the Lake Hazen area of Northern Ellesmere Island, J. Glaciol., 3, 610–625, https://doi.org/10.3189/S002214300002373X, 1960. a, b
Heim, A., Pasquier, L. D., and Forel, F. A.: Die Gletscherlawine an der Altels am 11. September 1895, Zürcher und Furrer, https://www.google.com/books/edition/Die_Gletscherlawine_an_der_Altels_am_11/wak3ZUof9yUC (last access: 7 April 2024), google-Books-ID: wak3ZUof9yUC, 1895. a
Herren, P.-A., Eichler, A., Machguth, H., Papina, T., Tobler, L., Zapf, A., and Schwikowski, M.: The onset of Neoglaciation 6000 years ago in western Mongolia revealed by an ice core from the Tsambagarav mountain range, Quaternary Sci. Rev., 69, 59–68, https://doi.org/10.1016/j.quascirev.2013.02.025, 2013. a
Hodgkins, R., Hagen, J. O., and Hamran, S.-E.: 20th century mass balance and thermal regime change at Scott Turnerbreen, Svalbard, Ann. Glaciol., 28, 216–220, https://doi.org/10.3189/172756499781821986, 1999. a
Hoelzle, M.: Englacial temperature, in: The Swiss Glaciers 2003/04 and 2004/05, no. 125-126 in: Glaciological Report, edited by: Bauder, A. and Rüegg, R., Swiss Academy of Sciences (SCNAT), Cryospheric Commission (EKK), 71–74, https://doi.glamos.ch/pubs/glrep/glrep_125-126.html (last access: 7 April 2024), 2009. a
Hoelzle, M.: Englacial temperature, in: The Swiss Glaciers 2007/08 and 2008/09, no. 129-130 in: Glaciological Report, edited by: Bauder, A., Steffen, S., and Usselmann, S., Swiss Academy of Sciences (SCNAT), Cryospheric Commission (EKK), 69–73, https://doi.org/10.18752/glrep_129-130, 2014. a, b
Hoelzle, M.: Englacial temperature, in: The Swiss Glaciers 2013/14 and 2014/15, edited by: Bauder, A., no. 135–136 in Glaciological Report, pp. 93–98, Swiss Academy of Sciences (SCNAT), Cryospheric Commission (EKK), https://doi.org/10.18752/glrep_135-136, 2017. a, b
Hoelzle, M.: Englacial temperature, in: The Swiss Glaciers 2019/20 and 2020/21, edited by Bauder, A., Huss, M., and Linsbauer, A., no. 141-142 in Glaciological Report, Swiss Academy of Sciences (SCNAT), Cryospheric Commission (EKK), 115–119, https://doi.org/10.18752/glrep_141-142, 2022. a
Hoelzle, M., Darms, G., Lüthi, M. P., and Suter, S.: Evidence of accelerated englacial warming in the Monte Rosa area, Switzerland/Italy, The Cryosphere, 5, 231–243, https://doi.org/10.5194/tc-5-231-2011, 2011. a, b, c
Hoelzle, M., Huss, M., Kronenberg, M., Machguth, H., and Mattea, E.: Englacial temperature, in: The Swiss Glaciers 2017/18 and 2018/19, edited by Bauder, A., Huss, M., and Linsbauer, A., no. 139-140 in Glaciological Report, Swiss Academy of Sciences (SCNAT), Cryospheric Commission (EKK), 111–115, https://doi.org/10.18752/glrep_139-140, 2020. a, b
Hooke, R. L.: Pleistocene ice at the base of the Barnes Ice Cap, Baffin Island, N.W.T., Canada, J. Glaciol., 17, 49–59, https://doi.org/10.3189/S0022143000030719, 1976. a
Hooke, R. L., Alexander Jr., E. C., and Gustafson, R. J.: Temperature profiles in the Barnes Ice Cap, Baffin Island, Canada, and heat flux from the subglacial terrane, Can. J. Earth Sci., 17, 1174–1188, https://doi.org/10.1139/e80-124, 1980. a
Hou, S., Qin, D., Jouzel, J., Masson-Delmotte, V., von Grafenstein, U., Landais, A., Caillon, N., and Chappellaz, J.: Age of Himalayan bottom ice cores, J. Glaciol., 50, 467–468, https://doi.org/10.3189/172756504781829981, 2004. a
Hou, S., Chappellaz, J., Jouzel, J., Chu, P. C., Masson-Delmotte, V., Qin, D., Raynaud, D., Mayewski, P. A., Lipenkov, V. Y., and Kang, S.: Summer temperature trend over the past two millennia using air content in Himalayan ice, Clim. Past, 3, 89–95, https://doi.org/10.5194/cp-3-89-2007, 2007. a
Hou, S., Jenk, T. M., Zhang, W., Wang, C., Wu, S., Wang, Y., Pang, H., and Schwikowski, M.: Age ranges of the Tibetan ice cores with emphasis on the Chongce ice cores, western Kunlun Mountains, The Cryosphere, 12, 2341–2348, https://doi.org/10.5194/tc-12-2341-2018, 2018. a
Huang, M.: On the temperature distribution of glaciers in China, J. Glaciol., 36, 210–216, https://doi.org/10.3189/S002214300000945X, 1990. a, b, c, d
Hubbard, B., Miles, K., Doyle, S., Quincey, D., and Miles, E.: Ice temperature time-series from sensors installed in boreholes drilled into Khumbu Glacier, Nepal, in 2017 and 2018 as part of EverDrill research project (version 2.0), NERC EDS UK Polar Data Centre [data set], https://doi.org/10.5285/32ECD5F4-1F00-4EEB-BD1E-5EAFFB60F556, 2021. a
Hughes, T. P. and Seligman, G.: The temperature, melt water movement and density increase in the névé of an Alpine glacier, Geophys. J. Int., 4, 616–647, https://doi.org/10.1111/j.1365-246X.1939.tb02922.x, 1939. a, b
Huss, M. and Fischer, M.: Sensitivity of very small glaciers in the Swiss Alps to future climate change, Front. Earth Sci., 4, 34, https://doi.org/10.3389/feart.2016.00034, 2016. a
Huwaldt, J. A.: Plot Digitizer (version 2.6.9), SourceForge [code], https://plotdigitizer.sourceforge.net (last access: 7 April 2024), 2020. a
Iida, H., Watanabe, O., and Takikawa, M.: First results from Himalayan Glacier Boring Project in 1981–1982: Part II. Studies on internal structure and transformation process from snow to ice of Yala Glacier, Langtang Himal, Nepal, Bull. Glacier Res., 2, 25–33, https://web.seppyo.org/bgr/pdf/2/BGR2P25.PDF (last access: 7 April 2024), 1984. a
Irvine-Fynn, T. D. L., Hodson, A. J., Moorman, B. J., Vatne, G., and Hubbard, A. L.: Polythermal glacier hydrology: a review, Rev. Geophys., 49, RG4002, https://doi.org/10.1029/2010RG000350, 2011. a, b, c
Jacquemart, M., Loso, M., Leopold, M., Welty, E., Berthier, E., Hansen, J. S., Sykes, J., and Tiampo, K.: What drives large-scale glacier detachments? Insights from Flat Creek glacier, St. Elias Mountains, Alaska, Geology, 48, 703–707, https://doi.org/10.1130/G47211.1, 2020. a
Jania, J., Mochnacki, D., and Gądek, B.: The thermal structure of Hansbreen, a tidewater glacier in southern Spitsbergen, Svalbard, Polar Res., 15, 53–66, https://doi.org/10.3402/polar.v15i1.6636, 1996. a, b, c, d
Jarvis, G. T.: Thermal studies related to surging glaciers, Master's thesis, University of British Columbia, https://doi.org/10.14288/1.0052497, 1973. a, b
Jarvis, G. T. and Clarke, G. K. C.: Thermal effects of crevassing on Steele Glacier, Yukon Territory, Canada, J. Glaciol., 13, 243–254, https://doi.org/10.3189/S0022143000023054, 1974. a
Jarvis, G. T. and Clarke, G. K. C.: The thermal regime of Trapridge Glacier and its relevance to glacier surging, J. Glaciol., 14, 235–250, https://doi.org/10.3189/S0022143000021729, 1975. a
Jiao, X., Dong, Z., Baccolo, G., Chen, X., Qin, X., and Shao, Y.: Provenance of aeolian dust revealed by (234u/238u) activity ratios in cryoconites from high-altitude glaciers in western China and its transport and settlement mechanisms, J. Geophys. Res.-Earth, 128, e2023JF007227, https://doi.org/10.1029/2023JF007227, 2023. a
Johnsen, S. J., Clausen, H. B., Dansgaard, W., Gundestrup, N. S., Hansson, M., Jonsson, P., Steffensen, J. P., and Sveinbjørnsdottir, A. E.: A “deep” ice core from East Greenland, Meddelelser om Grønland: Geoscience, 29, 3–22, https://doi.org/10.7146/moggeosci.v29i.140329, 1992. a
Jouzel, J., Legrand, M., Pinglot, J. F., and Pourchet, M.: Chronology of a core sample in the Col du Dôme (Mont Blanc massif), La Houille Blanche, 70, 491–498, https://doi.org/10.1051/lhb/1984035, 1984. a, b, c
Kameda, T., Takahashi, S., Goto-Azuma, K., Kohshima, S., Watanabe, O., and Hagen, J. O.: First report of ice core analyses and borehole temperatures on the highest icefield on western Spitsbergen in 1992, Bulletin of Glacier Research, 51–61, https://kitami-it.repo.nii.ac.jp/records/6924 (last access: 7 April 2024), 1993. a, b
Karev, E., Camilleri, P., Baptista, V., Bere, G., Borruso, A., Desmet, P., Gharti, S., Herrmann, A., Kariv, A., Shaw, C., Walsh, P., Winfree, L., Zanella Alvarenga, E., Zedlitz, J., Open Knowledge Foundation, and Petti, S.: frictionless: Python library for Data Packages, Zenodo [code], https://doi.org/10.5281/zenodo.4663759, 2024. a
Karušs, J., Lamsters, K., Sobota, I., Ješkins, J., Džeriņš, P., and Hodson, A.: Drainage system and thermal structure of a high Arctic polythermal glacier: Waldemarbreen, western Svalbard, J. Glaciol., 68, 591–604, https://doi.org/10.1017/jog.2021.125, 2022. a, b
Kawamura, T., Fujii, Y., Satow, K., Kamiyama, K., Izumi, K., Kameda, T., Watanabe, O., Kawaguchi, S., Wold, B., and Gjessing, Y.: Glaciological characteristics of cores drilled on Jostedalsbreen, Southern Norway, Proceedings of the NIPR Symposium on Polar Meteorology and Glaciology, 2, 152–160, https://doi.org/10.15094/00003576, 1989. a
Kawamura, T., Kameda, T., and Izumi, K.: Preliminary results of structural analyses of an 85.6m deep ice core retrieved from Hoghetta Ice Dome in Northern Spitsbergen, Svalbard, Bulletin of Glacier Research, 77–83, https://kitami-it.repo.nii.ac.jp/records/6923 (last access: 7 April 2024), 1991. a
Keck, L.: Climate significance of stable isotope records from Alpine ice cores, Ph.D. thesis, Ruprecht Karl University of Heidelberg, Combined Faculties for the Natural Sciences and for Mathematics, https://archiv.ub.uni-heidelberg.de/volltextserver/1837/1/summary.pdf (last access: 7 April 2024), 2001. a
Keeler, C. M.: Relationship between climate, ablation, and run-off on the Sverdrup Glacier, 1963, Devon Island, N.W.T., Tech. rep., Arctic Institute of North America, Research Paper, collection number 27, 1964. a
Khalzan, P., Sakai, A., and Fujita, K.: Mass balance of four Mongolian glaciers: in-situ measurements, long-term reconstruction and sensitivity analysis, Fron. Earth Sci., 9, 785306, https://doi.org/10.3389/feart.2021.785306, 2022. a
Khmelevskoy, I. F.: Temperature of snow, firn and ice: Stationary observations at the station Barier Somneiy and en route researches, vol. 2 of Data of Glaciological Studies: Novaya Zemlya, Academy of Sciences of the USSR, Institute of Geography, 1963. a
Khmelevskoy, I. F.: Temperature of snow, firn and ice: Stationary observations at the station Ledorazdelnaya, vol. 1 of Data of Glaciological Studies: Novaya Zemlya, Academy of Sciences of the USSR, Institute of Geography, 1964. a
Khromova, T. E., Nosenko, G. A., Glazovsky, A. F., Muraviev, A. Y., Nikitin, S. A., and Lavrentiev, I. I.: New inventory of Russian glaciers based on satellite data (2016–2019), Water Resour., 49, S55–S68, https://doi.org/10.1134/S0097807822070065, 2022. a
Kinnard, C., Zdanowicz, C. M., Fisher, D. A., and Wake, C. P.: Calibration of an ice-core glaciochemical (sea-salt) record with sea-ice variability in the Canadian Arctic, Ann. Glaciol., 44, 383–390, https://doi.org/10.3189/172756406781811349, 2006. a, b
Kinnard, C., Koerner, R. M., Zdanowicz, C. M., Fisher, D. A., Zheng, J., Sharp, M. J., Nicholson, L., and Lauriol, B.: Stratigraphic analysis of an ice core from the Prince of Wales Icefield, Ellesmere Island, Arctic Canada, using digital image analysis: High-resolution density, past summer warmth reconstruction, and melt effect on ice core solid conductivity, J. Geophys. Res.-Atmos., 113, D24120, https://doi.org/10.1029/2008JD011083, 2008. a
Kinnard, C., Ginot, P., Surazakov, A., MacDonell, S., Nicholson, L., Patris, N., Rabatel, A., Rivera, A., and Squeo, F. A.: Mass balance and climate history of a high-altitude glacier, desert Andes of Chile, Front. Earth Sci., 8, 40, https://doi.org/10.3389/feart.2020.00040, 2020. a, b
Kislov, B. V.: Infiltration feeding and ice formation on a glacier, in: Abramov Glacier (Alai Range), edited by: Krenke, A. N. and Suslov, V. F., Gidrometeoizdat, 97–108, http://geolibrary.ru/sites/default/files/2020-10/LednAbramova.pdf#page=98 (last access: 7 April 2024), 1980. a
Kislov, B. V., Nozdryukhin, V. K., and Perziger, F. I.: Temperature regime of the active layer of the Abramov Glacier, Data of Glaciological Studies, 30, 199–204, http://geolibrary.ru/sites/default/files/2020-11/30.pdf#page=199 (last access: 7 April 2024), 1977. a
Koerner, R. M.: Fabric analysis of a core from the Meighen Ice Cap, Northwest Territories, Canada, J. Glaciol., 7, 421–430, https://doi.org/10.3189/S0022143000020621, 1968. a
Koerner, R. M.: The mass balance of the Devon Island Ice Cap, Northwest Territories, Canada, 1961-66, J. Glaciol., 9, 325–336, https://doi.org/10.3189/S0022143000022863, 1970. a
Kotlyakov, V. M.: Deep structure of glaciers, in: Glaciology of Spitsbergen, Hayka, 132–144, http://geolibrary.ru/sites/default/files/2020-10/Glyatsiologiya_Shpitsbergena1985.pdf#page=71 (last access: 7 April 2024), 1985. a
Kronenberg, M.: Changing glacier firn in Central Asia and its impact on glacier mass balance, Ph.D. thesis, University of Fribourg, Department of Geosciences, https://doi.org/10.51363/unifr.sth.2022.005, 2022. a
Kronenberg, M., Machguth, H., Eichler, A., Schwikowski, M., and Hoelzle, M.: Comparison of historical and recent accumulation rates on Abramov Glacier, Pamir Alay, J. Glaciol., 67, 253–268, https://doi.org/10.1017/jog.2020.103, 2021. a
Kronenberg, M., Cheremnykh, A., Eichler, A., Esenaman Uluu, M., Gilbert, A., Hoelzle, M., Kenzhebaev, R., Kummert, M., Lavrentiev, I., Machguth, H., Schwikowski, M., Schuppli, P., Walther, S., and Wicky, J.: Abramov glacier firn data (version 1), Zenodo [data set], https://doi.org/10.5281/zenodo.7112894, 2022a. a
Kronenberg, M., Lavrentiev, I., Machguth, H., Schuppli, P., and Wicky, J.: Gregoriev firn data (version 1), Zenodo [data set], https://doi.org/10.5281/zenodo.7113282, 2022b. a
Kubyshkin, N. V., Buzin, I. V., Skutin, A. A., and Glazovsky, A. F.: Determination of the area of generation of big icebergs in the Barents Sea – temperature distribution analysis, in: Proceedings of the Sixteenth (2006) International Offshore and Polar Engineering Conference, The International Society of Offshore and Polar Engineers, https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE06/All-ISOPE06/9744 (last access: 7 April 2024), 2006. a
Kutuzov, S. S.: Changes in glacier area and volume in Terskey Ala-Too Range in the second half of the 20th century, Ice and Snow, 52, 5–14, https://doi.org/10.15356/2076-6734-2012-1-5-14, 2012. a
Kääb, A., Leinss, S., Gilbert, A., Bühler, Y., Gascoin, S., Evans, S. G., Bartelt, P., Berthier, E., Brun, F., Chao, W.-A., Farinotti, D., Gimbert, F., Guo, W., Huggel, C., Kargel, J. S., Leonard, G. J., Tian, L., Treichler, D., and Yao, T.: Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability, Nat. Geosci., 11, 114–120, https://doi.org/10.1038/s41561-017-0039-7, 2018. a, b
Kääb, A., Jacquemart, M., Gilbert, A., Leinss, S., Girod, L., Huggel, C., Falaschi, D., Ugalde, F., Petrakov, D., Chernomorets, S., Dokukin, M., Paul, F., Gascoin, S., Berthier, E., and Kargel, J. S.: Sudden large-volume detachments of low-angle mountain glaciers – more frequent than thought?, The Cryosphere, 15, 1751–1785, https://doi.org/10.5194/tc-15-1751-2021, 2021. a
Law, R., Christoffersen, P., Hubbard, B., Doyle, S. H., Chudley, T. R., Schoonman, C. M., Bougamont, M., des Tombe, B., Schilperoort, B., Kechavarzi, C., Booth, A., and Young, T. J.: Thermodynamics of a fast-moving Greenlandic outlet glacier revealed by fiber-optic distributed temperature sensing, Sci. Adv., 7, eabe7136, https://doi.org/10.1126/sciadv.abe7136, 2021. a
Lee, I.: Borehole tilt sensor data for Jarvis Glacier, Alaska (2017–2018), Arctic Data Center [data set], https://doi.org/10.18739/A2348GG12, 2019. a
Lee, I. R., Hawley, R. L., Bernsen, S., Campbell, S. W., Clemens-Sewall, D., Gerbi, C. C., and Hruby, K.: A novel tilt sensor for studying ice deformation: application to streaming ice on Jarvis Glacier, Alaska, J. Glaciol., 66, 74–82, https://doi.org/10.1017/jog.2019.84, 2020. a
Lemark, A.: A study of the Flade Isblink ice cap using a simple ice flow model, Master's thesis, University of Copenhagen, https://nbi.ku.dk/english/theses/masters-theses/andreas-lemark (last access: 7 April 2024), 2010. a
Li, Y., Tian, L., Yi, Y., Moore, J. C., Sun, S., and Zhao, L.: Simulating the evolution of Qiangtang No. 1 Glacier in the central Tibetan Plateau to 2050, Arct. Antarct. Alp. Res., 49, 1–12, https://doi.org/10.1657/AAAR0016-008, 2017. a
Li, Z., Yao, T., Tian, L., Xu, B., Wu, G., and Zhu, G.: Ice-core borehole temperature at 7000 m on the Muztagh Glacier, J. Glaciol. Geocryo., 26, 284–288, https://doi.org/10.7522/j.issn.1000-0240.2004.0047, 2004. a
Li, Z., Li, H., and Chen, Y.: Mechanisms and simulation of accelerated shrinkage of continental glaciers: A case study of Urumqi Glacier No. 1 in eastern Tianshan, Central Asia, J. Earth Sci., 22, 423–430, https://doi.org/10.1007/s12583-011-0194-5, 2011. a, b
Liu, C. and Sharmal, C. K. (Eds.): Report on first expedition to glaciers and glacier lakes in the Pumqu (Arun) and Poiqu (Bhote-Sun Kosi) river basins, Xizang (Tibet), China: Sino-Nepalese investigation of glacier lake outburst floods in the Himalayas, Science Press, https://book.sciencereading.cn/shop/book/Booksimple/show.do?id=BFE8446A281124A7580F32634BC24A26C000 (last access: 7 April 2024), 1988. a, b, c
Liu, L., Jiang, L., Sun, Y., Wang, H., Yi, C., and Hsu, H.: Morphometric controls on glacier mass balance of the Puruogangri Ice Field, central Tibetan Plateau, Water, 8, 496, https://doi.org/10.3390/w8110496, 2016. a
Liu, Y., Hou, S., Ren, J., Wang, Y., and Geng, Z.: Temperature distribution characteristics of boreholes in Miaoergou flat-top glacier in East Tianshan Mountains, J. Glaciol. Geocryol., 28, 668–671, https://doi.org/10.7522/j.issn.1000-0240.2006.0097, 2006. a
Liu, Y., Hou, S., Wang, Y., and Linlin, S.: Distribution of borehole temperature at four high-altitude alpine glaciers in Central Asia, J. Mountain Sci., 6, 221–227, https://doi.org/10.1007/s11629-009-0254-9, 2009. a, b, c, d
Lliboutry, L., Briat, M., Creseveur, M., and Pourchet, M.: 15m deep temperatures in the glaciers of Mont Blanc (French Alps), J. Glaciol., 16, 197–203, https://doi.org/10.3189/S0022143000031531, 1976. a
Løkkegaard, A., Mankoff, K. D., Zdanowicz, C., Clow, G. D., Lüthi, M. P., Doyle, S. H., Thomsen, H. H., Fisher, D., Harper, J., Aschwanden, A., Vinther, B. M., Dahl-Jensen, D., Zekollari, H., Meierbachtol, T., McDowell, I., Humphrey, N., Solgaard, A., Karlsson, N. B., Khan, S. A., Hills, B., Law, R., Hubbard, B., Christoffersen, P., Jacquemart, M., Seguinot, J., Fausto, R. S., and Colgan, W. T.: Greenland and Canadian Arctic ice temperature profiles database, The Cryosphere, 17, 3829–3845, https://doi.org/10.5194/tc-17-3829-2023, 2023. a, b, c, d, e, f, g, h, i, j
Lüthi, M. P.: Experimental and numerical investigation of a firn covered cold glacier and a polythermal ice stream: case studies at Colle Gnifetti and Jakobshavns Isbræ, Ph.D. thesis, Eidgenossischen Technischen Hochschule (ETH) Zürich, https://doi.org/10.3929/ethz-a-003884174, 1999. a
Lüthi, M. P. and Funk, M.: Modelling heat flow in a cold, high-altitude glacier: interpretation of measurements from Colle Gnifetti, Swiss Alps, J. Glaciol., 47, 314–324, https://doi.org/10.3189/172756501781832223, 2001. a
Macheret, Y. Y., Zagorodnov, V. S., Vasilenko, E. V., Gromyko, A. I., and Zhuravlev, A. B.: On the nature of internal radio echo returns from a subpolar glacier, Data of Glaciological Studies, 54, 120–130, http://geolibrary.ru/sites/default/files/2020-12/54.pdf#page=121 (last access: 7 April 2024), 1985. a, b
Machguth, H. and Kronenberg, M.: Add 2018 Abramov borehole from Kronenberg 2022, https://github.com/mjacqu/glenglat/issues/71 (last access: 7 April 2024), 2024. a
Machguth, H., Eichler, A., Schwikowski, M., Brütsch, S., Mattea, E., Kutuzov, S., Heule, M., Usubaliev, R., Belekov, S., Mikhalenko, V. N., Hoelzle, M., and Kronenberg, M.: Firn core data from Grigoriev Ice Cap, 1962 to present (version 0.1), Zenodo [data set], https://doi.org/10.5281/zenodo.10082961, 2023a. a
Machguth, H., Eichler, A., Schwikowski, M., Brütsch, S., Mattea, E., Kutuzov, S., Heule, M., Usubaliev, R., Belekov, S., Mikhalenko, V. N., Hoelzle, M., and Kronenberg, M.: Fifty years of firn evolution on Grigoriev ice cap, Tien Shan, Kyrgyzstan, The Cryosphere, 18, 1633–1646, https://doi.org/10.5194/tc-18-1633-2024, 2024b. a, b
Mankoff, K.: Renland88, Github [code], https://github.com/GEUS-Glaciology-and-Climate/greenland_ice_borehole_temperature_profiles/tree/8b28d0e7333426426ac377615663ba735e5623f9/boreholes/Renland88, 2022a. a
Mankoff, K.: PrinceWales05, Github [code], https://github.com/GEUS-Glaciology-and-Climate/greenland_ice_borehole_temperature_profiles/tree/8b28d0e7333426426ac377615663ba735e5623f9/boreholes/PrinceWales05, 2022b. a
Mankoff, K.: Penny96, Github [code], https://github.com/GEUS-Glaciology-and-Climate/greenland_ice_borehole_temperature_profiles/tree/8b28d0e7333426426ac377615663ba735e5623f9/boreholes/Penny96, 2022c. a
Mankoff, K.: FladeIsblink06, Github [code], https://github.com/GEUS-Glaciology-and-Climate/greenland_ice_borehole_temperature_profiles/tree/8b28d0e7333426426ac377615663ba735e5623f9/boreholes/FladeIsblink06, 2022d. a
Mankoff, K.: Devon98, Github [code], https://github.com/GEUS-Glaciology-and-Climate/greenland_ice_borehole_temperature_profiles/tree/8b28d0e7333426426ac377615663ba735e5623f9/boreholes/Devon98, 2022e. a
Mankoff, K., Løkkegaard, A., Colgan, W., Thomsen, H., Clow, G., Fisher, D., Zdanowicz, C., Lüthi, M. P., Vinther, B., MacGregor, J. A., McDowell, I., Zekollari, H., Meierbachtol, T., Doyle, S., Law, R., Hills, B., Harper, J., Humphrey, N., Hubbard, B., Christoffersen, P., and Jacquemart, M.: Greenland deep ice temperature database (version 1.1), GEUS Dataverse V4 [data set], https://doi.org/10.22008/FK2/3BVF9V, 2022. a, b, c, d, e
Marchenko, S., Pohjola, V. A., Pettersson, R., van Pelt, W. J. J., Vega, C. P., Machguth, H., Bøggild, C. E., and Isaksson, E.: A plot-scale study of firn stratigraphy at Lomonosovfonna, Svalbard, using ice cores, borehole video and GPR surveys in 2012–14, J. Glaciol., 63, 67–78, https://doi.org/10.1017/jog.2016.118, 2017. a
Markl, V. G. and Wagner, H. P.: Measurements of ice and firn temperatures on the Hintereisferner (Ötztal Alps), Zeitschrift für Gletscherkunde und Glazialgeologie, 13, 261–265, https://www.uibk.ac.at/projects/station-hintereis-opal-data/publications/pdf/markl_wagner_1977_zgg.pdf (last access: 7 April 2024), 1977. a
Masiokas, M. H., Rabatel, A., Rivera, A., Ruiz, L., Pitte, P., Ceballos, J. L., Barcaza, G., Soruco, A., Bown, F., Berthier, E., Dussaillant, I., and MacDonell, S.: A review of the current state and recent changes of the Andean cryosphere, Front. Earth Sci., 8, 99, https://doi.org/10.3389/feart.2020.00099, 2020. a
Matsuda, Y., Sakai, A., Fujita, K., Nakawo, M., Duan, K., Pu, J., and Yao, T.: Glaciological observations on July 1st glacier in Qilian Mountains of west China during summer 2002, Bulletin of Glaciological Research, 21, 31–36, https://web.seppyo.org/bgr/pdf/21/BGR21P31.pdf (last access: 7 April 2024), 2004. a
Matsuoka, K. and Naruse, R.: Mass balance features derived from a firn core at Hielo Patagónico Norte, South America, Arct. Antarct. Alp. Res., 31, 333–340, https://doi.org/10.1080/15230430.1999.12003318, 1999. a
Mattea, E.: Measuring and modelling changes in the firn at Colle Gnifetti, 4400 m a.s.l., Swiss Alps, Master's thesis, University of Fribourg, Department of Geosciences, https://bigweb.unifr.ch/Science/Geosciences/GeographyTechnical/Secretary/Pub/Publications/Geography/SelectedBachelorMasterThesis/2020/Mattea_E._(2020)_M_Measuring_modelling_changes_Colle_Gnifetti.pdf (last access: 7 April 2024), 2020. a
Mattea, E., Machguth, H., Kronenberg, M., van Pelt, W., Bassi, M., and Hoelzle, M.: Firn changes at Colle Gnifetti revealed with a high-resolution process-based physical model approach, The Cryosphere, 15, 3181–3205, https://doi.org/10.5194/tc-15-3181-2021, 2021. a
Mayewski, P.: Colle Gnifetti ice core (KCC) progress report (year one) – Arcadia ice core proposal: Initiatives on the science of the human past, Tech. rep., University of Maine, https://digitalcommons.library.umaine.edu/orsp_reports/29 (last access: 7 April 2024), 2014. a
Mikhalenko, V., Sokratov, S., Kutuzov, S., Ginot, P., Legrand, M., Preunkert, S., Lavrentiev, I., Kozachek, A., Ekaykin, A., Faïn, X., Lim, S., Schotterer, U., Lipenkov, V., and Toropov, P.: Investigation of a deep ice core from the Elbrus western plateau, the Caucasus, Russia, The Cryosphere, 9, 2253–2270, https://doi.org/10.5194/tc-9-2253-2015, 2015. a
Mikhalenko, V. N.: Properties of the mass-exchange of plateau glaciers in the inner Tian Shan, Data of Glaciological Studies, 65, 86–92, http://geolibrary.ru/sites/default/files/2020-12/65.pdf#page=87 (last access: 7 April 2024), 1989. a
Mikhalenko, V. N., Kutuzov, S. S., Faizrakhmanov, F. F., Nagornov, O. V., Thompson, L. G., Kunakhovich, M. G., Arkhipov, S. M., Dikikh, A. N., and Usubaliev, R.: Reduction of glaciation in the Tien Shan in the 19th – early 21st centuries: results of core drilling and temperature measurements in wells, Data of Glaciological Studies, 98, 175–182, http://geolibrary.ru/sites/default/files/2021-01/98.pdf#page=177 (last access: 7 April 2024), 2005a. a, b
Mikhalenko, V. N., Kutuzov, S. S., Lavrentiev, I. I., Kunakhovich, M. G., and Thompson, L. G.: Studies of the western Elbrus glacial plateau: results and prospects, Data of Glaciological Studies, 99, 185–190, http://geolibrary.ru/sites/default/files/2021-01/99.pdf#page=187(last access: 7 April 2024), 2005b. a
Mikhalenko, V. N., Kutuzov, S. S., Lavrentiev, I. I., Toropov, P. A., Vladimirova, D. O., Abramov, A. A., and Matskovsky, V. V.: Glacioclimatological investigations of the Institute of Geography, RAS, in the crater of Eastern Summit of Mt. Elbrus in 2020, Ice and Snow, 61, 149–160, https://doi.org/10.31857/S2076673421010078, 2021. a
Miles, K. E., Hubbard, B., Quincey, D. J., Miles, E. S., Sherpa, T. C., Rowan, A. V., and Doyle, S. H.: Polythermal structure of a Himalayan debris-covered glacier revealed by borehole thermometry, Sci. Rep., 8, 16 825, https://doi.org/10.1038/s41598-018-34327-5, 2018. a, b
Miles, K. E., Miles, E. S., Hubbard, B., Quincey, D. J., Rowan, A. V., and Pallett, M.: Instruments and methods: hot-water borehole drilling at a high-elevation debris-covered glacier, J. Glaciol., 65, 822–832, https://doi.org/10.1017/jog.2019.49, 2019. a
Morev, V. A. and Pukhov, V. A.: Experimental work on drilling cold cover glaciers using AARI thermal drilling equipment, in: Studies of the ice cover and periglacial of Severnaya Zemlya, no. 367 in: Proceedings of AARI, Arctic and Antarctic Research Institute, 64–68, 1981. a
Morev, V. A., Klementiev, O. L., Manevsky, L. N., Raykovsky, Y. V., Tolstoy, A. I., and Yakovlev, V. M.: Glacio-drilling work on the Vavilov Glacier in 1979–1985, in: Geographical and glaciological studies in polar countries, edited by: Korotkevich, E. S. and Petrov, V. N., Gidrometeoizdat, 25–32, 1988. a, b
Motoyama, H., Kamiyama, K., Igarashi, M., Nishio, F., and Watanabe, O.: Distribution of chemical constituents in superimposed ice from Austre Brøggerbreen, Spitsbergen, Geogr. Ann. A, 82, 33–38, https://doi.org/10.1111/j.0435-3676.2000.00003.x, 2000. a
Motoyama, H., Watanabe, O., Fujii, Y., Kamiyama, K., Igarashi, M., Matoba, S., Kameda, T., Goto-Azuma, K., Izumi, K., Narita, H., Iizuka, Y., and Isaksson, E.: Analyses of ice core data from various sites in Svalbard glaciers from 1987 to 1999, Tech. rep., NIPR Arctic Data Reports, National Institute of Polar Research, https://doi.org/10.15094/00006119, 2008. a, b, c, d, e
Muñoz Sabater, J.: ERA5-Land monthly averaged data from 1950 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.68d2bb30, 2019. a, b, c
Møller, J. T.: Glaciers in Upernivik Ø: With special reference to the periglacial phenomena, Danish Journal of Geography, 58, 30–53, https://tidsskrift.dk/geografisktidsskrift/article/view/46404 (last access: 7 April 2024), 1959. a
Müller, F.: Englacial temperature measurements, in: Jacobsen-McGill Arctic Research Expedition to Axel Heiberg Island, Queen Elizabeth Islands: Preliminary Report of 1959–1960, edited by: Müller, B. S., McGill University, 87–99, 1961. a
Müller, F.: Accumulation studies, in: Jacobsen-McGill Arctic Research Expedition 1959–1962: Preliminary report 1961–1962, Axel Heiberg Island Research Reports, McGill University, 7–25, 1963b. a
Müller, F.: On the thermal regime of a high-Arctic valley glacier, J. Glaciol., 16, 119–133, https://doi.org/10.3189/S0022143000031476, 1976. a, b
Naftz, D. L. and Smith, M. E.: Ice thickness, ablation, and other glaciological measurements on Upper Fremont Glacier, Wyoming, Phys. Geogr., 14, 404–414, https://doi.org/10.1080/02723646.1993.10642488, 1993. a
Nicholls, K. W. and Paren, J. G.: Extending the Antarctic meteorological record using ice-sheet temperature profiles, J. Climate, 6, 141–150, https://doi.org/10.1175/1520-0442(1993)006<0141:ETAMRU>2.0.CO;2, 1993. a, b
Nuttall, A.-M., Hagen, J. O., and Dowdeswell, J.: Quiescent-phase changes in velocity and geometry of Finsterwalderbreen, a surge-type glacier in Svalbard, Ann. Glaciol., 24, 249–254, https://doi.org/10.3189/S0260305500012258, 1997. a
Oeschger, H., Schotterer, U., Stauffer, B., Haeberli, W., and Röthlisberger, H.: First results from alpine core drilling projects, Zeitschrift für Gletchserkunde und Glazialgeologie, 13, 193–208, 1977. a
Olivier, S., Schwikowski, M., Brütsch, S., Eyrikh, S., Gäggeler, H. W., Lüthi, M., Papina, T., Saurer, M., Schotterer, U., Tobler, L., and Vogel, E.: Glaciochemical investigation of an ice core from Belukha Glacier, Siberian Altai, Geophys. Res. Lett., 30, 2019, https://doi.org/10.1029/2003GL018290, 2003. a
Orvig, S. and Mason, R. W.: Ice temperatures and heat flux, McCall Glacier, Alaska, in: General Assembly of Berkeley: Commission of Snow and Ice, vol. 61 of Publication, International Association of Scientific Hydrology, 181–188, https://iahs.info/uploads/dms/061021.pdf (last access: 7 April 2024), 1963. a
Palosuo, E.: A study of snow and ice temperatures on Vestfonna, Svalbard, 1956, 1957 and 1958, Geogr. Ann. A, 69, 431–437, https://doi.org/10.2307/521356, 1987. a
Palosuo, E. and Schytt, V.: To Nordaustlandet with the Swedish glaciological expedition, Eripainos Terrasta, 72, 1–19, 1960. a
Paterson, W. S. B.: A temperature profile through the Meighen Ice Cap, in: General Assembly of Bern: Commission of Snow and Ice, vol. 79 of Publication, International Association of Scientific Hydrology, 440–449, https://iahs.info/uploads/dms/079041.pdf (last access: 7 April 2024), 1968. a
Paterson, W. S. B.: Temperature measurements in Athabasca Glacier, Alberta, Canada, J. Glaciol., 10, 339–349, https://doi.org/10.3189/S0022143000022036, 1971. a, b
Paterson, W. S. B.: Temperature distribution in the upper layers of the ablation area of Athabasca Glacier, Alberta, Canada, J. Glaciol., 11, 31–41, https://doi.org/10.3189/S0022143000022462, 1972. a
Paterson, W. S. B. and Clarke, G. K. C.: Comparison of theoretical and observed temperature profiles in Devon Island Ice Cap, Canada, Geophys. J. Int., 55, 615–632, https://doi.org/10.1111/j.1365-246X.1978.tb05931.x, 1978. a, b, c
Pettersson, R., Jansson, P., and Holmlund, P.: Cold surface layer thinning on Storglaciären, Sweden, observed by repeated ground penetrating radar surveys, J. Geophys. Res.-Earth, 108, 6004, https://doi.org/10.1029/2003JF000024, 2003. a, b
Pilø, L., Reitmaier, T., Fischer, A., Barrett, J. H., and Nesje, A.: Ötzi, 30 years on: A reappraisal of the depositional and post-depositional history of the find, Holocene, 33, 112–125, https://doi.org/10.1177/09596836221126133, 2023. a
Plam, M. Y.: Temperature of firn and ice, Data of Glaciological Studies: Elbrus, 5–59, 1962. a
Pollock, R., Walsh, P., Kariv, A., Karev, E., Desmet, P., and Data Package Working Group: Data Package v2, https://datapackage.org/standard/data-package (last access: 7 April 2024), 2025a. a
Pollock, R., Walsh, P., Kariv, A., Karev, E., Desmet, P., Husmann, K., and Data Package Working Group: Table Dialect v2, https://datapackage.org/standard/table-dialect (last access: 7 April 2024), 2025b. a
Pollock, R., Walsh, P., Kariv, A., Karev, E., Desmet, P., Welty, E., Slagel, D., Husmann, K., and Data Package Working Group: Table Schema v2, https://datapackage.org/standard/table-schema (last access: 7 April 2024), 2025c. a
Psareva, T. V.: Experimental 150-meter borehole on the Bezengi Glacier, Data of Glaciological Studies, 14, 93–97, http://geolibrary.ru/sites/default/files/2020-11/14.pdf#page=93 (last access: 7 April 2024), 1968. a
Pu, J., Yao, T., Zhang, Y., Seko, K., and Fujita, K.: Mass balance on the Dongkemadi and Meikuang glaciers in 1992/1993, J. Glaciol. Geocryol., 17, 138–143, https://doi.org/10.7522/j.issn.1000-0240.1995.0018, 1995. a
Pu, J., Yao, T., Wang, N., Duan, K., Zhu, G., and Yang, M.: The distribution of 80-m ice temperature in Puruogangri Ice Field on the Tibetan Plateau, J. Glaciol. Geocryol., 24, 282–286, https://doi.org/10.7522/j.issn.1000-0240.2002.0053, 2002. a
Qiu, J. and Deng, Y.: Snow Avalanche in Bogda Region, Tian Shan, J. Glaciol. Geocryol., 5, 227–234, https://doi.org/10.7522/j.issn.1000-0240.1983.0055, 1983. a
Rabus, B. T. and Echelmeyer, K. A.: Increase of 10 m ice temperature: climate warming or glacier thinning?, J. Glaciol., 48, 279–286, https://doi.org/10.3189/172756502781831430, 2002. a, b
Razumeiko, N. G.: Snow and ice temperature: Stationary studies of the Churlyanis Cupola, vol. 1 of Data of Glaciological Studies: Franz Josef Land, Academy of Sciences of the USSR, Institute of Geography, 1960. a
Razumeiko, N. G.: Snow and ice temperature: Stationary observations on the Sedov Glacier, En route thermosoundings of ice of the Churlyanis and Jackson cupolas and on the Sedov Glacier, vol. 2 of Data of Glaciological Studies: Franz Josef Land, Academy of Sciences of the USSR, Institute of Geography, 1963. a, b
Reeh, N.: Summary of activities and preliminary results, in: Report on activities and results 1993–1995 for Hans Tausen Ice Cap Project – Glacier and Climate Change Research, North Greenland, edited by: Reeh, N., NMRs (Nordisk Minister Råd) miljøforskningsprogram – klimaforskning, Dansk Polar Center, 7–13, 1995. a
Reeh, N., Olesen, O. B., Thomsen, H. H., Starzer, W., and Bøggild, C. E.: Mass balance parameterisation for the Hans Tausen Iskappe, Peary Land, North Greenland, Meddelelser om Grønland, Geoscience, 39, 57–69, https://doi.org/10.7146/moggeosci.v39i.140219, 2001. a
Ren, J.: The ice temperature of Bogda Fan-Shaped Diffluence Glacier in Bogda Area, Tian Shan, J. Glaciol. Geocryol., 5, 83–89, https://doi.org/10.7522/j.issn.1000-0240.1983.0040, 1983. a
Ren, J. and Huang, M.: Heat transfer within glacial active layer – Taking No. 5 Glacier, Yanglong River, Qilian Shan as an example, J. Glaciol. Geocryol., 3, 23–28, https://doi.org/10.7522/j.issn.1000-0240.1981.0042, 1981. a
Ren, J., Zhang, J., and Huang, M.: A study of ice temperature in No. 1 Glacier in the Urumqi River headwaters, Tianshan, J. Glaciol. Geocryol., 7, 141–152, https://doi.org/10.7522/j.issn.1000-0240.1985.0019, 1985. a
RGI Consortium: Randolph Glacier Inventory – A dataset of global glacier outlines: Version 7.0, National Snow and Ice Data Center [data set], https://doi.org/10.5067/f6jmovy5navz, 2023. a, b
Rundle, A. S.: Glaciological investigations on Sukkertoppen Ice Cap, Southwest Greenland, summer 1964, Tech. rep., The Ohio State University Research Foundation, https://hdl.handle.net/1811/51380 (last access: 7 April 2024), 1965. a
Savatyugin, A. M. and Zagorodnov, V. S.: Glaciological studies on the Akademiya Nauk Ice Dome, Data of Glaciological Studies, 61, 228–228, http://geolibrary.ru/sites/default/files/2020-12/61.pdf#page=229 (last access: 7 April 2024), 1988. a
Savatyugin, L. M., Arkhipov, S. M., Vasiliev, N. I., Vostretsov, R. N., Fritzsche, D., and Miller, H.: Russian-German glaciological studies on Severnaya Zemlya and adjacent islands in 2000, Data of Glaciological Studies, 91, 150–162, http://geolibrary.ru/sites/default/files/2021-01/91.pdf#page=152 (last access: 7 April 2024), 2001. a
Schotterer, U., Grosjean, M., Stichler, W., Ginot, P., Kull, C., Bonnaveira, H., Francou, B., Gäggeler, H. W., Gallaire, R., Hoffmann, G., Pouyaud, B., Ramirez, E., Schwikowski, M., and Taupin, J. D.: Glaciers and climate in the Andes between the Equator and 30° S: What is recorded under extreme environmental conditions?, in: Climate variability and change in high elevation regions: Past, present & future, Springer, 157–175, https://doi.org/10.1007/978-94-015-1252-7_9, 2003. a
Schwerzmann, A., Funk, M., Blatter, H., Lüthi, M., Schwikowski, M., and Palmer, A.: A method to reconstruct past accumulation rates in Alpine firn regions: A study on Fiescherhorn, Swiss Alps, J. Geophys. Res.-Earth, 111, F01014, https://doi.org/10.1029/2005JF000283, 2006a. a
Schwerzmann, A. A., Blatter, H., and Funk, M.: Borehole analysis and flow modeling of firn-covered cold glaciers, Ph.D. thesis, Eidgenössische Technische Hochschule (ETH) Zürich, https://doi.org/10.3929/ethz-a-005114924, 2006b. a, b, c, d
Schwikowski, M., Schläppi, M., Santibañez, P., Rivera, A., and Casassa, G.: Net accumulation rates derived from ice core stable isotope records of Pío XI glacier, Southern Patagonia Icefield, The Cryosphere, 7, 1635–1644, https://doi.org/10.5194/tc-7-1635-2013, 2013. a, b
Schytt, V.: Scientific results of the Swedish glaciological expedition to Nordaustlandet, Spitsbergen, 1957 and 1958, Geograf. Ann., 46, 243–281, https://doi.org/10.1080/20014422.1964.11881042, 1964. a
Schytt, V.: Notes on glaciological activities in Kebnekaise, Sweden during 1965, Geograf. Ann. A, 48, 43–50, https://doi.org/10.1080/04353676.1966.11879728, 1966. a
Schytt, V.: Notes on glaciological activities in Kebnekaise, Sweden during 1966 and 1967, Geograf. Ann. A, 50, 111–120, https://doi.org/10.1080/04353676.1968.11879777, 1968. a
Sharp, R. P.: Thermal regimen of firn on Upper Seward Glacier, Yukon Territory, Canada, J. Glaciol., 1, 476–487, https://doi.org/10.3189/S0022143000026460, 1951. a, b
Sheldon, S. G., Popp, T. J., Hansen, S. B., Hedegaard, T. M., and Mortensen, C.: A new intermediate-depth ice-core drilling system, Ann. Glaciol., 55, 271–284, https://doi.org/10.3189/2014AoG68A038, 2014. a
Shi, Y. and Liu, D.: Preliminary report on the scientific expedition to the Shishapangma area, Sci. Bull., 15, 928–938, https://doi.org/10.1360/csb1964-9-10-928, 1964. a, b
Shiraiwa, T., Muravyev, Y. D., and Yamaguchi, S.: Stratigraphic features of firn as proxy climate signals at the summit ice cap of Usnkovsky Volcano, Kamchatka, Russia, Arct. Alp. Res., 29, 414–421, https://tandfonline.com/doi/abs/10.1080/00040851.1997.12003262 (last access: 7 April 2024), 1997. a
Shiraiwa, T., Murav'yev, Y. D., Kameda, T., Nishio, F., Toyama, Y., Takahashi, A., Ovsyannikov, A. A., Salamatin, A. N., and Yamagata, K.: Characteristics of a crater glacier at Ushkovsky volcano, Kamchatka, Russia, as revealed by the physical properties of ice cores and borehole thermometry, J. Glaciol., 47, 423–432, https://doi.org/10.3189/172756501781832061, 2001. a, b
Signer, N.: Analysis of ice temperatures of four selected very small glaciers in the Swiss Alps by means of modelling and ground penetrating radar, Master's thesis, Universität Zürich, https://lean-gate.geo.uzh.ch/typo3conf/ext/qfq/Classes/Api/download.php/mastersThesis/262 (last access: 7 April 2024), 2014. a, b
Singer, E. M. and Mikhalev, V. I.: Snow accumulation on Spitsbergen glaciers, Data of Glaciological Studies, 13, 86–100, http://geolibrary.ru/sites/default/files/2020-11/13.pdf#page=86 (last access: 7 April 2024), 1967. a
Singer, E. M., Koryakin, V. S., Lavrushin, Y. A., Markin, V. A., Mikhalev, V. I., and Troitsky, L. S.: Exploration of Spitsbergen glaciers by the Soviet expedition in the summer of 1965, Data of Glaciological Studies, 12, 59–72, http://geolibrary.ru/sites/default/files/2020-11/12_0.pdf#page=60 (last access: 7 April 2024), 1966. a, b
Sobota, I.: The near-surface ice thermal structure of the Waldemarbreen, Svalbard, Polish Polar Research, 30, 317–338, https://bibliotekanauki.pl/articles/2051641 (last access: 7 April 2024), 2009. a
Sobota, I.: Snow accumulation, melt, mass loss, and the near-surface ice temperature structure of Irenebreen, Svalbard, Polar Sci., 5, 327–336, https://doi.org/10.1016/j.polar.2011.06.003, 2011. a
Steffensen, J. P., Siggaard-Andersen, M.-L., Stampe, M., and Clausen, H. B.: Microparticles, soil derived chemical components and sea salt in the Hans Tausen Ice Cap ice core from Peary Land, North Greenland, Meddelelser om Grønland, Geoscience, 39, 151–160, https://doi.org/10.7146/moggeosci.v39i.140228, 2001. a
Su, Z.: Physical and chemical properties of glaciers in the Karakoram-Kunlun Mountains region, in: Glaciers and environment in the Karakoram-Kunlun Mountains region, Scientific Expedition Series in the Karakoram-Kunlun Mountains Region of the Tibetan Plateau, Science Press, 58–82, https://book.sciencereading.cn/shop/book/Booksimple/show.do?id=B828976A04419443DB3FE50FBA719BB38000 (last access: 7 April 2024), 1998. a, b, c, d
Sugiyama, S., Navarro, F. J., Sawagaki, T., Minowa, M., Segawa, T., Onuma, Y., Otero, J., and Vasilenko, E. V.: Subglacial water pressure and ice-speed variations at Johnsons Glacier, Livingston Island, Antarctic Peninsula, J. Glaciol., 65, 689–699, https://doi.org/10.1017/jog.2019.45, 2019. a
Sun, H., Wang, N., and Hou, S.: Twentieth century warming reflected by the Malan Glacier borehole temperatures, northern Tibetan Plateau, Arct. Antarct. Alp. Res., 53, 227–236, https://doi.org/10.1080/15230430.2021.1974667, 2021. a
Sun, W., Yan, M., Ai, S., Zhu, G., Wang, Z., Liu, L., Xu, Y., and Ren, J.: Ice temperature characteristics of Austre Lovénbreen in Ny-Ålesund, Arctic Region, Geomatics and Information Science of Wuhan University, 41, 79–85, https://doi.org/10.13203/j.whugis20150302, 2016. a, b
Suslov, V. F.: History and organization of research, in: Abramov Glacier (Alai Range), edited by: Krenke, A. N. and Suslov, V. F., Gidrometeoizdat, 8–12, http://geolibrary.ru/sites/default/files/2020-10/LednAbramova.pdf#page=9, 1980. a
Suter, S., Laternser, M., Haeberli, W., Frauenfelder, R., and Hoelzle, M.: Cold firn and ice of high-altitude glaciers in the Alps: measurements and distribution modelling, J. Glaciol., 47, 85–96, https://doi.org/10.3189/172756501781832566, 2001. a, b
Suter, S., Minor, H.-E., and Ohmura, A.: Cold firn and ice in the Monte Rosa and Mont Blanc areas: spatial occurrence, surface energy balance and climatic evidence, Ph.D. thesis, Eidgenössische Technische Hochschule (ETH) Zürich, https://doi.org/10.3929/ethz-a-004288434, 2002. a, b, c, d
Swisstopo: Journey through time – Topographic maps (version 2021.03.16), https://www.geocat.ch/geonetwork/srv/eng/catalog.search#/metadata/22287cd6-b75b-4caf-9413-aa3f196548b2 (last access: 7 April 2024), 2021. a
Takeuchi, N., Takahashi, A., Uetake, J., Yamazaki, T., Aizen, V. B., Joswiak, D., Surazakov, A., and Nikitin, S.: A report on ice core drilling on the western plateau of Mt. Belukha in the Russian Altai Mountains in 2003, Polar Meteorol. Glaciol., 18, 121–133, https://doi.org/10.15094/00002977, 2004. a
Takeuchi, N., Nakawo, M., Narita, H., and Han, J.: Miaoergou Glaciers in the Kalik Mountains, western China: Report of a reconnaissance for future ice core drilling and biological study, Bulletin of Glaciological Research, 26, 33–40, https://web.seppyo.org/bgr/pdf/26/BGR26P33.pdf (last access: 7 April 2024), 2008. a
Takeuchi, N., Fujita, K., Aizen, V. B., Narama, C., Yokoyama, Y., Okamoto, S., Naoki, K., and Kubota, J.: The disappearance of glaciers in the Tien Shan Mountains in Central Asia at the end of Pleistocene, Quaternary Sci. Rev., 103, 26–33, https://doi.org/10.1016/j.quascirev.2014.09.006, 2014. a
Talalay, P. G.: Mechanical ice drilling technology, Springer, Singapore, ISBN 978-981-10-0559-6, 978-981-10-0560-2, https://doi.org/10.1007/978-981-10-0560-2, 2016. a
Talalay, P. G.: Thermal ice drilling technology, Springer Geophysics, Springer, Singapore, ISBN 9789811388477, 9789811388484, https://doi.org/10.1007/978-981-13-8848-4, 2020. a
Thompson, L. G.: Glaciological investigations of the tropical Quelccaya Ice Cap, Peru, J. Glaciol., 25, 69–84, https://doi.org/10.3189/S0022143000010297, 1980. a
Thompson, L. G.: Curriculum vitae, https://research.bpcrc.osu.edu/Icecore/vitae/lgt_cv_old_format_2015.pdf (last access: 7 April 2024), 2015. a
Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Bolzan, J. F., Dai, J., Klein, L., Gundestrup, N., Yao, T., Wu, X., and Xie, Z.: Glacial stage ice-core records from the subtropical Dunde Ice Cap, China, Ann. Glaciol., 14, 288–297, https://doi.org/10.3189/S0260305500008776, 1990. a, b
Thompson, L. G., Mosley-Thompson, E., Davis, M., Lin, P. N., Yao, T., Dyurgerov, M., and Dai, J.: “Recent warming”: ice core evidence from tropical ice cores with emphasis on Central Asia, Global Planet. Chang., 7, 145–156, https://doi.org/10.1016/0921-8181(93)90046-Q, 1993. a
Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Lin, P. N., Dai, J., Bolzan, J. F., and Yao, T.: A 1000 year climate ice-core record from the Guliya ice cap, China: its relationship to global climate variability, Ann. Glaciol., 21, 175–181, https://doi.org/10.3189/S0260305500015780, 1995a. a
Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Lin, P. N., Henderson, K. A., Cole-Dai, J., Bolzan, J. F., and Liu, K.-b.: Late glacial stage and Holocene tropical ice core records from Huascarán, Peru, Science, 269, 46–50, https://doi.org/10.1126/science.269.5220.46, 1995b. a
Thompson, L. G., Mikhalenko, V., Mosley-Thompson, E., Durgerov, M., Lin, P. N., Moskalevsky, M., Davis, M. E., Arkhipov, S., and Dai, J.: Ice core records of recent climatic variability: Grigoriev and It-Tish ice caps in Central Tien Shan, Central Asia, Data of Glaciological Studies, 81, 100–109, http://geolibrary.ru/sites/default/files/2021-01/81.pdf#page=100 (last access: 7 April 2024), 1997. a
Thompson, L. G., Davis, M. E., Mosley-Thompson, E., Sowers, T. A., Henderson, K. A., Zagorodnov, V. S., Lin, P.-N., Mikhalenko, V. N., Campen, R. K., Bolzan, J. F., Cole-Dai, J., and Francou, B.: A 25,000-year tropical climate history from Bolivian ice cores, Science, 282, 1858–1864, https://doi.org/10.1126/science.282.5395.1858, 1998. a
Thompson, L. G., Yao, T., Mosley-Thompson, E., Davis, M. E., Henderson, K. A., and Lin, P.-N.: A high-resolution millennial record of the South Asian monsoon from Himalayan ice cores, Science, 289, 1916–1919, https://doi.org/10.1126/science.289.5486.1916, 2000. a
Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Henderson, K. A., Brecher, H. H., Zagorodnov, V. S., Mashiotta, T. A., Lin, P.-N., Mikhalenko, V. N., Hardy, D. R., and Beer, J.: Kilimanjaro ice core records: Evidence of Holocene climate change in tropical Africa, Science, 298, 589–593, https://doi.org/10.1126/science.1073198, 2002. a
Thompson, L. G., Mosley-Thompson, E. S., Zagorodnov, V., Davis, M. E., Mashiotta, T. A., and Lin, P.: 1500 years of annual climate and environmental variability as recorded in Bona-Churchill (Alaska) ice cores, https://ui.adsabs.harvard.edu/abs/2004AGUFMPP23C..05T (last access: 7 April 2024), 2004. a
Thompson, L. G., Yao, T., Davis, M. E., Mosley-Thompson, E., Mashiotta, T. A., Lin, P.-N., Mikhalenko, V. N., and Zagorodnov, V. S.: Holocene climate variability archived in the Puruogangri Ice Cap on the central Tibetan Plateau, Ann. Glaciol., 43, 61–69, https://doi.org/10.3189/172756406781812357, 2006. a
Thompson, L. G., Yao, T., Davis, M. E., Mosley-Thompson, E., Wu, G., Porter, S. E., Xu, B., Lin, P.-N., Wang, N., Beaudon, E., Duan, K., Sierra-Hernández, M. R., and Kenny, D. V.: Ice core records of climate variability on the Third Pole with emphasis on the Guliya ice cap, western Kunlun Mountains, Quaternary Sci. Rev., 188, 1–14, https://doi.org/10.1016/j.quascirev.2018.03.003, 2018. a, b, c, d
Thompson, L. G., Mosley-Thompson, E., Schoessow, F., Davis, M. E., Sierra-Hernández, M. R., and Beaudon, E.: The challenges, successes, and preliminary status report on the 2019 recovery of ice cores from Nevado Huascarán, Earth’s highest tropical mountain, Revista de Glaciares y Ecosistemas de Montaña, 8, 31–42, http://hdl.handle.net/20.500.12748/551 (last access: 7 April 2024), 2023. a
Thomsen, H. H., Reeh, N., Olesen, O. B., and Jonsson, P.: Glacier and climate research on Hans Tausen Iskappe, North Greenland – 1995 glacier basin activities and preliminary results, Bulletin Grønlands Geologiske Undersøgelse, 172, 78–84, https://doi.org/10.34194/bullggu.v172.6749, 1996. a
Trabant, D., Harrison, W. D., and Benson, C.: Thermal regime of McCall Glacier, Brooks Range, Northern Alaska, in: Climate of the Arctic: Twenty-Fourth Alaska Science Conference, 15–17 August 1973: Fairbanks, edited by: Weller, G. and Bowling, S. A., 347–349, University of Alaska, Geophysical Institute, 1975. a
Troilo, F., Gottardelli, S., Giordan, D., Dematteis, N., Godio, A., and Vincent, C.: Geophysical and geomatic recent surveys at Whymper hanging Glacier (Aosta Valley – Italy), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5178, https://doi.org/10.5194/egusphere-egu21-5178, 2021. a
Tsushima, A., Miyahara, M., Yamasaki, T., Esashi, N., Sato, Y., Kayastha, R. B., Lama Sherpa, A. J. B., Sano, M., and Fujita, K.: Ice core drilling on a high-elevation accumulation zone of Trambau Glacier in the Nepal Himalaya, Ann. Glaciol., 62, 353–359, https://doi.org/10.1017/aog.2021.15, 2021. a
Tsutaki, S., Sugiyama, S., Sakakibara, D., Aoki, T., and Niwano, M.: Surface mass balance, ice velocity and near-surface ice temperature on Qaanaaq Ice Cap, northwestern Greenland, from 2012 to 2016, Ann. Glaciol., 58, 181–192, https://doi.org/10.1017/aog.2017.7, 2017. a
Tsvetkov, A. V.: Mountains: Tsvetkov, https://nakarte.me/#m=7/43.03511/76.11952&l=O/Mt (last access: 7 April 2024), 2023. a
Tsykina, G. A. and Vilesov, E. N.: About the temperature regime of the Central Tuyuksu Glacier, in: Research on glaciers and glacial areas, edited by Avsyuk, G. A., Academy of Sciences of the USSR, 3, 56–66, http://geolibrary.ru/sites/default/files/2020-11/IslLedLegnR_3.pdf#page=56 (last access: 7 April 2024), 1963. a
Uchida, T., Kamiyama, K., Fujii, Y., Takahashi, A., Suzuki, T., Yoshimura, Y., Igarashi, M., and Watanabe, O.: Ice core analyses and borehole temperature measurements at the drilling site on Asgardfonna, Svalbard, in 1993, Memoirs of National Institute of Polar Research: Special issue, 51, 377–386, https://nipr.repo.nii.ac.jp/records/2300 (last access: 7 April 2024), 1996. a, b
Urmann, D.: Decadal scale climate variability during the last millennium as recorded by the Bona Churchill and Quelccaya ice cores, Ph.D. thesis, The Ohio State University, https://etd.ohiolink.edu/acprod/odb_etd/ws/send_file/send?accession=osu1237853800 (last access: 7 April 2024), 2009. a
van de Wal, R. S. W., Mulvaney, R., Isaksson, E., Moore, J. C., Pinglot, J. F., Pohjola, V. A., and Thomassen, M. P. A.: Reconstruction of the historical temperature trend from measurements in a medium-length borehole on the Lomonosovfonna plateau, Svalbard, Ann. Glaciol., 35, 371–378, https://doi.org/10.3189/172756402781816979, 2002. a
Van Tricht, L., Huybrechts, P., Van Breedam, J., Fürst, J. J., Rybak, O., Satylkanov, R., Ermenbaiev, B., Popovnin, V., Neyns, R., Paice, C. M., and Malz, P.: Measuring and inferring the ice thickness distribution of four glaciers in the Tien Shan, Kyrgyzstan, J. Glaciol., 67, 269–286, https://doi.org/10.1017/jog.2020.104, 2021. a
Vance, T. R., Roberts, J. L., Moy, A. D., Curran, M. A. J., Tozer, C. R., Gallant, A. J. E., Abram, N. J., van Ommen, T. D., Young, D. A., Grima, C., Blankenship, D. D., and Siegert, M. J.: Optimal site selection for a high-resolution ice core record in East Antarctica, Clim. Past, 12, 595–610, https://doi.org/10.5194/cp-12-595-2016, 2016. a
Vandecrux, B., Charles Amory, Andreas P. Ahlstrøm, Pete D. Akers, Mary Albert, and and others: The SUMup collaborative database: Surface mass balance, subsurface temperature and density measurements from the Greenland and Antarctic ice sheets (1912–2023), Arctic Data Center [data set], https://doi.org/10.18739/A2M61BR5M, 2023. a, b, c
Vasilenko, E. V.: Structure of the Davydov Glacier according to radio sounding and thermal drilling data, Data of Glaciological Studies, 62, 208–214, http://geolibrary.ru/sites/default/files/2020-12/62.pdf#page=209 (last access: 7 April 2024), 1988. a
Vellut, Guilhem: Freehand raster georeferencer (version 0.8.3), QGIS plugins web portal [code], https://plugins.qgis.org/plugins/FreehandRasterGeoreferencer (last access: 7 April 2024), 2021. a
Vilesov, E. N.: Temperature of ice in the lower parts of the Tuyuksu glaciers, in: General Assembly of Helsinki. 25-7 – 6-8 1960, Publication, International Association of Scientific Hydrology, 313–324, https://iahs.info/uploads/dms/1793.313-324-54-Vilesov-opt.pdf (last access: 7 April 2024), 1961. a
Vilesov, E. N.: Ice temperature: Stationary observations, vol. 1 of Data of Glaciological Studies: Tien Shan Trans-Ili Alatau, Academy of Sciences of the USSR, Institute of Geography, 1962a. a
Vilesov, E. N.: Ice temperature: Stationary observations, vol. 2 of Data of Glaciological Studies: Tien Shan Trans-Ili Alatau, Academy of Sciences of the USSR, Institute of Geography, 1962b. a
Vilesov, E. N.: Ice temperature: Stationary observations, vol. 3 of Data of Glaciological Studies: Tien Shan Trans-Ili Alatau, Academy of Sciences of the USSR, Institute of Geography, 1962c. a
Vimeux, F., de Angelis, M., Ginot, P., Magand, O., Casassa, G., Pouyaud, B., Falourd, S., and Johnsen, S.: A promising location in Patagonia for paleoclimate and paleoenvironmental reconstructions revealed by a shallow firn core from Monte San Valentín (Northern Patagonia Icefield, Chile), J. Geophys. Res.-Atmos., 113, D16118, https://doi.org/10.1029/2007JD009502, 2008. a
Vimeux, F., Ginot, P., Schwikowski, M., Vuille, M., Hoffmann, G., Thompson, L. G., and Schotterer, U.: Climate variability during the last 1000 years inferred from Andean ice cores: A review of methodology and recent results, Palaeogeogr. Palaeocl., 281, 229–241, https://doi.org/10.1016/j.palaeo.2008.03.054, 2009. a, b, c
Vincent, C., Le Meur, E., Six, D., Possenti, P., Lefebvre, E., and Funk, M.: Climate warming revealed by englacial temperatures at Col du Dôme (4250 m, Mont Blanc area), Geophys. Res. Lett., 34, L16502, https://doi.org/10.1029/2007GL029933, 2007. a
Vincent, C., Descloitres, M., Garambois, S., Legchenko, A., Guyard, H., and Gilbert, A.: Detection of a subglacial lake in Glacier de Tête Rousse (Mont Blanc area, France), J. Glaciol., 58, 866–878, https://doi.org/10.3189/2012JoG11J179, 2012. a, b
Vincent, C., Gilbert, A., Jourdain, B., Piard, L., Ginot, P., Mikhalenko, V., Possenti, P., Le Meur, E., Laarman, O., and Six, D.: Strong changes in englacial temperatures despite insignificant changes in ice thickness at Dôme du Goûter glacier (Mont Blanc area), The Cryosphere, 14, 925–934, https://doi.org/10.5194/tc-14-925-2020, 2020. a, b, c, d, e
Vinther, B. M., Clausen, H. B., Fisher, D. A., Koerner, R. M., Johnsen, S. J., Andersen, K. K., Dahl-Jensen, D., Rasmussen, S. O., Steffensen, J. P., and Svensson, A. M.: Synchronizing ice cores from the Renland and Agassiz ice caps to the Greenland ice core chronology, J. Geophys. Res.-Atmos., 113, D08115, https://doi.org/10.1029/2007JD009143, 2008. a
Wang, L., Liu, C., Kang, X., and You, G.: Fundamental features of modern glaciers in the Altay Shan of China – Taking Halasi Glacier as an example, J. Glaciol. Geocryol., 5, 27–38, https://doi.org/10.7522/j.issn.1000-0240.1983.0061, 1983. a
Wang, L., Zhang, W., and Song, G.: Temperature conditions of glaciers in the Tomur Peak area, in: Glaciers and meteorology in the Tomur Peak area of the Tianshan Mountains, Xinjiang People's Publishing House, 64–69, 1985. a
Wang, N. and Pu, J.: Strong influence of geothermal heat on the physical properties of glacier ice in the Tibetan Plateau, J. Glaciol., 51, 177–178, https://doi.org/10.3189/S0022143000215207, 2005. a
Wang, P., Li, Z., Li, H., Wang, W., Zhou, P., and Wang, L.: Characteristics of a partially debris-covered glacier and its response to atmospheric warming in Mt. Tomor, Tien Shan, China, Global Planet. Change, 159, 11–24, https://doi.org/10.1016/j.gloplacha.2017.10.006, 2017. a
Wang, W.: Existing glaciers and their variations in the northeastern part of the Qinghai-Xizang Plateau, in: Reports on the northeastern part of the Qinghai-Xizang (Tibet) Plateau by Sino-W, German Scientific Expedition, edited by: Hövermann, J. and Wang, W., Science Press, 22–37, 1987. a
Wang, Y., Zhang, T., Ren, J., Qin, X., Liu, Y., Sun, W., Chen, J., Ding, M., Du, W., and Qin, D.: An investigation of the thermomechanical features of Laohugou Glacier No. 12 on Qilian Shan, western China, using a two-dimensional first-order flow-band ice flow model, The Cryosphere, 12, 851–866, https://doi.org/10.5194/tc-12-851-2018, 2018. a
Wang, Z., Zhang, J., and Shao, W.: Basic characteristics and utilization of glaciers on the southern slope of Bogda Peak, in: Water resources and environment in Chaiwopu-Dabancheng Area, edited by: Shi, Y., Science Press, 40–57, https://book.sciencereading.cn/shop/book/Booksimple/show.do?id=B21B5425CD1804E6DAB5BCC6E5D75E9B4000 (last access: 7 April 2024), 1989. a
Watanabe, O., Takenaka, S., Iida, H., Kamiyama, K., Thapa, K. B., and Mulmi, D. D.: First results from Himalayan Glacier Boring Project in 1981-1982: Part I. Stratigraphic analyses of full-depth cores from Yala Glacier, Langtang Himal, Nepal, Bulletin of Glacier Research, 2, 7–23, https://web.seppyo.org/bgr/pdf/2/BGR2P7.PDF, 1984. a
Watanabe, O., Motoyama, H., Igarashi, M., Kamiyama, K., Matoba, S., Goto-Azuma, K., Narita, H., and Kameda, T.: Studies on climatic and environmental changes during the last few hundred years using ice cores from various sites in Nordaustlandet, Svalbard (scientific paper), Memoirs of National Institute of Polar Research: Special Issue, 54, 227–242, https://kitami-it.repo.nii.ac.jp/records/7220 (last access: 7 April 2024), 2001. a, b
Watts, L. G., Dowdeswell, J. A., and Murray, T.: The dynamics of Austfonna, Svalbard: two dimensional modelling of ice motion over a deformable substrate, Data of Glaciological Studies, 83, 10–21, http://geolibrary.ru/sites/default/files/2021-01/83.pdf#page=11, 1997. a
Weidick, A.: Glaciers in South Greenland: history, nature, surroundings, no. 2 in Geology in Greenland, Geological Survey of Greenland, https://doi.org/10.22008/gpub/38104, 1988. a
Weller, G., Nolan, M., Wendler, G., Benson, C., Echelmeyer, K., and Untersteiner, N.: Fifty years of McCall Glacier research: From the International Geophysical Year 1957–58 to the International Polar Year 2007–08, ARCTIC, 60, 101–110, https://doi.org/10.14430/arctic280, 2007. a
Welty, E.: tablecloth (version 0.1.0), GitHub [code], https://github.com/ezwelty/tablecloth (last access: 7 april 2024), 2023. a
Welty, E., Jacquemart, M., Carcanade, G., Gastaldello, M., Van Tricht, L., Flowers, G. E., Sugiyama, S., Gurung, T. R., Prinz, R., Abermann, J., Steiner, J. F., Barandun, M., Gagliardini, O., Vincent, C., Thompson, L. G., Zhang, T., and Hoelzle, M.: glenglat: Global englacial temperature database, Zenodo [data set], https://doi.org/10.5281/zenodo.11516611, 2025. a, b, c, d, e
Wild, J., Nicolet, H., and Agassiz, L.: Carte du glacier inférieur de l'Aar, Zentralbibliothek Zürich, 5 Jd 15, 1, https://doi.org/10.3931/e-rara-35661, 1842. a
Wilson, N.: Characterization and interpretation of polythermal structure in two subarctic glaciers, Master's thesis, Simon Fraser University, https://summit.sfu.ca/item/12553 (last access: 7 April 2024), 2012. a
Wilson, N. J., Flowers, G. E., and Mingo, L.: Comparison of thermal structure and evolution between neighboring subarctic glaciers, J. Geophys. Res.-Earth, 118, 1443–1459, https://doi.org/10.1002/jgrf.20096, 2013. a, b, c
Wu, G., Yao, T., Xu, B., Li, Z., and Bao, H.: Ice-core borehole temperature in the Muztagh Ata, East Pamirs, J. Glaciol. Geocryol., 25, 676–679, https://doi.org/10.7522/j.issn.1000-0240.2003.0119, 2003. a
Wu, Z., Liu, S., Zhang, S., and Shangguan, D.: Accelerated thinning of Hei Valley No. 8 Glacier in the Tianshan Mountains, China, J. Earth Sci., 24, 1044–1055, https://doi.org/10.1007/s12583-013-0382-6, 2013. a
Yakor, I. S. (Ed.): Djankuat Glacier (Central Caucasus), Water-ice and heat balance of mountain glacier basins, Gidrometeoizdat, http://geolibrary.ru/sites/default/files/2020-10/Djankuat_Glacier_1978.pdf (last access: 7 April 2024), 1978. a
Yang, J., Han, Y., Orsi, A. J., Kim, S., Han, H., Ryu, Y., Jang, Y., Moon, J., Choi, T., Hur, S. D., and Ahn, J.: Surface temperature in Twentieth Century at the Styx Glacier, northern Victoria Land, Antarctica, from borehole thermometry, Geophys. Res. Lett., 45, 9834–9842, https://doi.org/10.1029/2018GL078770, 2018. a
Yao, T., Jiao, K., Zhang, X., Yang, Z., and Thompson, L. G.: Glaciologic studies on Guliya Ice Cap, J. Glaciol. Geocryol., 14, 233–241, https://doi.org/10.7522/j.issn.1000-0240.1992.0037, 1992. a
Yao, T., Duan, K., Xu, B., Wang, N., Pu, J., Kang, S., Qin, X., and Thompson, L. G.: Temperature and methane changes over the past 1000 years recorded in Dasuopu Glacier (central Himalaya) ice core, Ann. Glaciol., 35, 379–383, https://doi.org/10.3189/172756402781816997, 2002. a, b
Yuan, J., Wang, Z., Deng, Y., and Kang, Z.: Basic characteristics of marine glaciers in Guxiang, Tibet, in: Selected papers from the Academic Conference on Glaciology and Permafrost of the Chinese Geographical Society, Science Press, p. 21, https://book.sciencereading.cn/shop/book/Booksimple/onlineRead.do?id=B178ABC87BABF4C6798384A63D28510E5000&bookPageNum=30 (last access: 7 April 2024), 1982. a
Zagorodnov, V. and Arkhipov, S.: Studies of structure, composition and temperature regime of sheet glaciers of Svalbard and Severnaya Zemlya: methods and outcomes, Bulletin of Glacier Research, 8, 19–28, https://web.seppyo.org/bgr/pdf/8/BGR8P19.PDF, 1990. a
Zagorodnov, V., Thompson, L. G., Ginot, P., and Mikhalenko, V.: Intermediate-depth ice coring of high-altitude and polar glaciers with a lightweight drilling system, J. Glaciol., 51, 491–501, https://doi.org/10.3189/172756505781829269, 2005. a, b
Zagorodnov, V., Nagornov, O., and Thompson, L. G.: Influence of air temperature on a glacier’s active-layer temperature, Ann. Glaciol., 43, 285–291, https://doi.org/10.3189/172756406781812203, 2006. a
Zagorodnov, V., Nagornov, O., Scambos, T. A., Muto, A., Mosley-Thompson, E., Pettit, E. C., and Tyuflin, S.: Borehole temperatures reveal details of 20th century warming at Bruce Plateau, Antarctic Peninsula, The Cryosphere, 6, 675–686, https://doi.org/10.5194/tc-6-675-2012, 2012. a
Zagorodnov, V. S.: Temperature regime of the Academy of Sciences Glacier on Severnaya Zemlya, Data of Glaciological Studies, 65, 134–138, http://geolibrary.ru/sites/default/files/2020-12/65.pdf#page=135 (last access: 7 April 2024), 1989. a
Zagorodnov, V. S., Sinkevich, S. A., and Arkhipov, S. M.: Hydrothermal regime of the ice-divide area of Austfonna, Nordaustlandet, Data of Glaciological Studies, 68, 133–141, http://geolibrary.ru/sites/default/files/2020-12/68.pdf#page=134 (last access: 7 April 2024), 1990. a
Zagorodnov, V. S., Arkhipov, S. M., Bazhev, A. B., Vostokova, T. A., Korolev, P. A., Rototaeva, O. V., Sinkevich, S. A., and Khmelevskoy, I. F.: Structure, composition and hydrothermal regime of the Garabashi Glacier at Elbrus, Data of Glaciological Studies, 73, 109–117, http://geolibrary.ru/sites/default/files/2020-12/73.pdf#page=110 (last access: 7 April 2024), 1992. a
Zelle, R. M., Wiernik, B. M., Bennet, F. G., D'Arcus, B., and Maier, D.: Citation Language Style: CSL 1.0.2. Specification, https://docs.citationstyles.org/en/v1.0.2/specification.html (last access: 7 April 2024), 2015. a
Zhang, T., Xiao, C., Colgan, W., Qin, X., Du, W., Sun, W., Liu, Y., and Ding, M.: Observed and modelled ice temperature and velocity along the main flowline of East Rongbuk Glacier, Qomolangma (Mount Everest), Himalaya, J. Glaciol., 59, 438–448, https://doi.org/10.3189/2013JoG12J202, 2013. a
Zhang, W., Han, J., Xie, Z., Wang, X., Lluberas, A., and Goto-Azuma, K.: A preliminary study of ice texture and fabric on an ice core to the bedrock extracted from Glacier No. 1 at the headwater of Ulumqi River, Tianshan, China, Bulletin of Glacier Research, 11, 9–15, https://web.seppyo.org/bgr/pdf/11/BGR11P9.PDF (last access: 7 April 2024), 1993. a
Zhou, T.: Study on temperature distribution of Chongce Ice Cap in West Kunlun Mountains, Chinese Science Bulletin, 35, 212–215, https://doi.org/10.1360/csb1990-35-3-212, 1990. a
Ødegård, R. S., Hamran, S.-E., Bø, P. H., Etzelmuller, B., Vatne, G., and Sollid, J. L.: Thermal regime of a valley glacier, Erikbreen, northern Spitsbergen, Polar Res., 11, 69–79, https://doi.org/10.3402/polar.v11i2.6718, 1992. a, b, c
Ødegård, R. S., Hagen, J. O., and Hamranw, S.-E.: Comparison of radio-echo sounding (30–1000 MHz) and high-resolution borehole-temperature measurements at Finsterwalderbreen, southern Spitsbergen, Svalbard, Ann. Glaciol., 24, 262–267, https://doi.org/10.3189/S0260305500012271, 1997. a, b
Short summary
We present glenglat, a database that contains measurements of ice temperature from 213 glaciers measured in 788 boreholes between 1842 and 2023. Even though ice temperature is a defining characteristic of any glacier, such measurements have been conducted on less than 1 ‰ of all glaciers globally. Our database permits us, for the first time, to investigate glacier temperature distributions at global or regional scales.
We present glenglat, a database that contains measurements of ice temperature from 213 glaciers...
Altmetrics
Final-revised paper
Preprint