Articles | Volume 16, issue 12
https://doi.org/10.5194/essd-16-5737-2024
https://doi.org/10.5194/essd-16-5737-2024
Data description paper
 | 
18 Dec 2024
Data description paper |  | 18 Dec 2024

A submesoscale eddy identification dataset in the northwest Pacific Ocean derived from GOCI I chlorophyll a data based on deep learning

Yan Wang, Ge Chen, Jie Yang, Zhipeng Gui, and Dehua Peng

Related authors

Integrated Observation of an Asymmetric Eddy Dipole in the South China Sea
Shuang Long, Fenglin Tian, Junwu Tang, Fangjie Yu, Fang Zhang, Wei Ma, Xinglong Zhang, and Ge Chen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-276,https://doi.org/10.5194/essd-2025-276, 2025
Preprint under review for ESSD
Short summary
Temporal and Spatial Influences of Environmental Factors on the Distribution of Mesopelagic organism in the North Atlantic Ocean
Jie Yang, Jian Hui Li, and Ge Chen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2991,https://doi.org/10.5194/egusphere-2024-2991, 2024
Short summary
GEST: Accurate global ocean surface current reconstruction withmulti-scale dynamics-informed neural network
Linyao Ge, Guiyu Wang, Baoxiang Huang, Chuanchuan Cao, Xiaoyan Chen, and Ge Chen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-190,https://doi.org/10.5194/essd-2024-190, 2024
Manuscript not accepted for further review
Short summary
Eddy-induced chlorophyll profile characteristics and underlying dynamic mechanisms in the South Pacific Ocean
Meng Hou, Jie Yang, Ge Chen, Guiyan Han, Yan Wang, and Kai Wu
EGUsphere, https://doi.org/10.5194/egusphere-2023-1735,https://doi.org/10.5194/egusphere-2023-1735, 2023
Preprint archived
Short summary
A Submesoscale Eddy Identification Dataset Derived from GOCI I Chlorophyll–a Data based on Deep Learning
Yan Wang, Jie Yang, Kai Wu, Meng Hou, and Ge Chen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-138,https://doi.org/10.5194/essd-2023-138, 2023
Revised manuscript not accepted
Short summary

Related subject area

Domain: ESSD – Ocean | Subject: Physical oceanography
Expendable bathythermograph (XBT) data collected along the Southern Ocean chokepoint between Aotearoa / New Zealand and Antarctica, 1994–2024
Giuseppe Aulicino, Antonino Ian Ferola, Laura Fortunato, Giorgio Budillon, Pasquale Castagno, Pierpaolo Falco, Giannetta Fusco, Naomi Krauzig, Giancarlo Spezie, Enrico Zambianchi, and Yuri Cotroneo
Earth Syst. Sci. Data, 17, 2625–2640, https://doi.org/10.5194/essd-17-2625-2025,https://doi.org/10.5194/essd-17-2625-2025, 2025
Short summary
HHU24SWDSCS: a shallow-water depth model over island areas in the South China Sea retrieved from satellite-derived bathymetry
Yihao Wu, Hongkai Shi, Dongzhen Jia, Ole Baltazar Andersen, Xiufeng He, Zhicai Luo, Yu Li, Shiyuan Chen, Xiaohuan Si, Sisu Diao, Yihuang Shi, and Yanglin Chen
Earth Syst. Sci. Data, 17, 2463–2488, https://doi.org/10.5194/essd-17-2463-2025,https://doi.org/10.5194/essd-17-2463-2025, 2025
Short summary
Gap-filled sub-surface mooring dataset off Western Australia during 2010–2023
Toan Bui, Ming Feng, and Christopher C. Chapman
Earth Syst. Sci. Data, 17, 1693–1705, https://doi.org/10.5194/essd-17-1693-2025,https://doi.org/10.5194/essd-17-1693-2025, 2025
Short summary
The International Altimetry Service 2024 (IAS2024) coastal sea level dataset and first evaluations
Fukai Peng, Xiaoli Deng, Yunzhong Shen, and Xiao Cheng
Earth Syst. Sci. Data, 17, 1441–1460, https://doi.org/10.5194/essd-17-1441-2025,https://doi.org/10.5194/essd-17-1441-2025, 2025
Short summary
Global ocean surface heat fluxes derived from the maximum entropy production framework accounting for ocean heat storage and Bowen ratio adjustments
Yong Yang, Huaiwei Sun, Jingfeng Wang, Wenxin Zhang, Gang Zhao, Weiguang Wang, Lei Cheng, Lu Chen, Hui Qin, and Zhanzhang Cai
Earth Syst. Sci. Data, 17, 1191–1216, https://doi.org/10.5194/essd-17-1191-2025,https://doi.org/10.5194/essd-17-1191-2025, 2025
Short summary

Cited articles

Bochkovskiy, A., Wang, C.-Y., and Liao, H.-Y. M.: YOLOv4: Optimal Speed and Accuracy of Object Detection, arXiv [preprint], https://doi.org/10.48550/arXiv.2004.10934, 2020. 
Cao, H., Fox-Kemper, B., and Jing, Z.: Submesoscale eddies in the upper ocean of the kuroshio extension from high-resolution simulation: energy budget, J. Phys. Oceanogr., 51, 2181–2201, 2021. 
Chelton, D. B., Gaube, P., Schlax, M. G., Early, J. J., and Samelson, R. M.: The Influence of Nonlinear Mesoscale Eddies on Near-Surface Oceanic Chlorophyll, Science, 334, 328–332, https://doi.org/10/cz6575, 2011. 
Choi, J. M. and Kim, W.: Applications of Surface Velocity Current Derived from Geostationary Ocean Color Imager (GOCI), in: 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO), Kobe, Japan, https://doi.org/10.1109/OCEANSKOBE.2018.8559174, 28–31 May 2018. 
Chrysagi, E., Umlauf, L., Holtermann, P., Klingbeil, K., and Burchard, H.: High-resolution simulations of submesoscale processes in the Baltic Sea: The role of storm events, J. Geophys. Res.-Oceans, 126, e2020JC016411, https://doi.org/10/grwbpd, 2021. 
Download
Short summary
Mesoscale eddies are ubiquitous in the ocean and account for 90 % of its kinetic energy, but their generation and dissipation are difficult to observe using current remote sensing technology. Our submesoscale eddy dataset, formed by suppressing large-scale circulation signals and enhancing small-scale chlorophyll structures, has important implications for understanding marine environments and ecosystems, as well as improving climate model predictions.
Share
Altmetrics
Final-revised paper
Preprint