Articles | Volume 16, issue 12
https://doi.org/10.5194/essd-16-5737-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-16-5737-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A submesoscale eddy identification dataset in the northwest Pacific Ocean derived from GOCI I chlorophyll a data based on deep learning
School of Marine Technology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
Ge Chen
School of Marine Technology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
Laboratory for Regional Oceanography and Numerical Modeling, Laoshan Laboratory, Qingdao 266100, China
Jie Yang
CORRESPONDING AUTHOR
School of Marine Technology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
Laboratory for Regional Oceanography and Numerical Modeling, Laoshan Laboratory, Qingdao 266100, China
Zhipeng Gui
School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
Collaborative Innovation Center of Geospatial Technology, Wuhan University, Wuhan 430079, China
Hubei Luojia Laboratory, Wuhan 430079, China
Dehua Peng
State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
Related authors
No articles found.
Fenglin Tian, Yingying Zhao, Lan Qin, Shuang Long, and Ge Chen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-384, https://doi.org/10.5194/essd-2025-384, 2025
Preprint under review for ESSD
Short summary
Short summary
Black Hole Eddy (BHE) is vital for transporting materials but were previously hard to identify efficiently. This study introduces an efficient method to identify BHE, 13 times quicker, firstly enables the creation of BHE dataset in the North Pacific from 1993 to 2023. We verified BHE maintains strong coherence and contributes to westward transport about 1.5 Sv. We found some previously unidentified coherent eddies and analyzed their coherence. This represents first comprehensive analysis of BHE.
Shuang Long, Fenglin Tian, Junwu Tang, Fangjie Yu, Fang Zhang, Wei Ma, Xinglong Zhang, and Ge Chen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-276, https://doi.org/10.5194/essd-2025-276, 2025
Preprint under review for ESSD
Short summary
Short summary
Oceanic mesoscale eddies are known to form dipoles from time to time. When dipoles are asymmetric in strength, the stronger dipole eddies generally drive weaker ones to move around, resulting in a reduction of discrepancies in their kinematic properties, which is referred to as the “gear-like” process. An integrated observation of an asymmetric eddy dipole was conducted in the South China Sea in April 2023, which evidences the “gear-like” process.
Jie Yang, Jian Hui Li, and Ge Chen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2991, https://doi.org/10.5194/egusphere-2024-2991, 2024
Short summary
Short summary
This study examines how environmental factors, particularly temperature, affect the seasonal and spatial distribution of mesopelagic organisms in the North Atlantic. Using data from 720 BGC-Argo floats, we identified distinct daily and seasonal migration patterns. Temperature was the key driver, followed by salinity and dissolved oxygen. These findings enhance our understanding of mesopelagic ecosystems, with potential implications for fisheries management.
Linyao Ge, Guiyu Wang, Baoxiang Huang, Chuanchuan Cao, Xiaoyan Chen, and Ge Chen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-190, https://doi.org/10.5194/essd-2024-190, 2024
Manuscript not accepted for further review
Short summary
Short summary
High precision in reconstructing sea surface currents is vital for understanding ocean dynamics. Our paper introduces GEST (Geostrophic-Ekman-Stokes-Tide), a 15 m depth sea current product. GEST, generated by a neural network, captures Ekman, geostrophic currents, Stokes drift, and TPXO9 tidal currents. Its design accounts for complex ocean surface dynamics, surpassing OSCAR and GlobCurrent by 10.4 cm/s and 8.81 cm/s, respectively.
Meng Hou, Jie Yang, Ge Chen, Guiyan Han, Yan Wang, and Kai Wu
EGUsphere, https://doi.org/10.5194/egusphere-2023-1735, https://doi.org/10.5194/egusphere-2023-1735, 2023
Preprint archived
Short summary
Short summary
In this study, we mainly utilized BGC-Argo data to investigate the relationships between chlorophyll levels and environmental factors (CPhyto, Nitrate, Temperature and Light) and its underlying dynamic mechanisms of mesoscale eddies in South Pacific Ocean. We show that, the mechanism of chlorophyll levels are different at different depth of seawater.
Yan Wang, Jie Yang, Kai Wu, Meng Hou, and Ge Chen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-138, https://doi.org/10.5194/essd-2023-138, 2023
Revised manuscript not accepted
Short summary
Short summary
Mesoscale eddies are ubiquitous in the ocean and account for 90 % of its kinetic energy, but their generation and dissipation struggle to observe with current remote sensing technology. Our submesoscale eddy dataset, formed by suppressing large-scale circulation signals and enhancing small-scale chlorophyll structures, has important implications for understanding marine environments and ecosystems, as well as improving climate model predictions.
Guiyu Wang, Ge Chen, Chuanchuan Cao, Xiaoyan Chen, and Baoxiang Huang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-107, https://doi.org/10.5194/essd-2023-107, 2023
Revised manuscript not accepted
Short summary
Short summary
We present an accurate product of ocean surface current at 15 m depth based on multi-scale physical processes. Following a training process using remote sensing observations and in situ data, the derived current field with a 1/4° resolution captures more details neglected in the 1° ones and demonstrates higher accuracy over other global surface current products at low to middle latitudes.
Fa Li, Qing Zhu, William J. Riley, Lei Zhao, Li Xu, Kunxiaojia Yuan, Min Chen, Huayi Wu, Zhipeng Gui, Jianya Gong, and James T. Randerson
Geosci. Model Dev., 16, 869–884, https://doi.org/10.5194/gmd-16-869-2023, https://doi.org/10.5194/gmd-16-869-2023, 2023
Short summary
Short summary
We developed an interpretable machine learning model to predict sub-seasonal and near-future wildfire-burned area over African and South American regions. We found strong time-lagged controls (up to 6–8 months) of local climate wetness on burned areas. A skillful use of such time-lagged controls in machine learning models results in highly accurate predictions of wildfire-burned areas; this will also help develop relevant early-warning and management systems for tropical wildfires.
Cited articles
Bochkovskiy, A., Wang, C.-Y., and Liao, H.-Y. M.: YOLOv4: Optimal Speed and Accuracy of Object Detection, arXiv [preprint], https://doi.org/10.48550/arXiv.2004.10934, 2020.
Cao, H., Fox-Kemper, B., and Jing, Z.: Submesoscale eddies in the upper ocean of the kuroshio extension from high-resolution simulation: energy budget, J. Phys. Oceanogr., 51, 2181–2201, 2021.
Chelton, D. B., Gaube, P., Schlax, M. G., Early, J. J., and Samelson, R. M.: The Influence of Nonlinear Mesoscale Eddies on Near-Surface Oceanic Chlorophyll, Science, 334, 328–332, https://doi.org/10/cz6575, 2011.
Choi, J. M. and Kim, W.: Applications of Surface Velocity Current Derived from Geostationary Ocean Color Imager (GOCI), in: 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO), Kobe, Japan, https://doi.org/10.1109/OCEANSKOBE.2018.8559174, 28–31 May 2018.
Chrysagi, E., Umlauf, L., Holtermann, P., Klingbeil, K., and Burchard, H.: High-resolution simulations of submesoscale processes in the Baltic Sea: The role of storm events, J. Geophys. Res.-Oceans, 126, e2020JC016411, https://doi.org/10/grwbpd, 2021.
Colas, F., McWilliams, J. C., Capet, X., and Kurian, J.: Heat balance and eddies in the Peru-Chile current system, Clim. Dynam., 39, 509–529, https://doi.org/10.1007/s00382-011-1170-6, 2012.
Combes, V., Hormazabal, S., and Di Lorenzo, E.: Interannual variability of the subsurface eddy field in the Southeast Pacific, J. Geophys. Res.-Oceans, 120, 4907–4924, https://doi.org/10.1002/2014JC010265, 2015.
Dokken, S. T. and Wahl, T.: Observations of spiral eddies along the Norwegian Coast in ERS SAR images, http://18.195.19.6/handle/20.500.12242/1449 (last access: 13 December 2024), 1996.
Dong, J., Fox-Kemper, B., Zhang, H., and Dong, C.: The scale of submesoscale baroclinic instability globally, J. Phys. Oceanogr., 50, 2649–2667, https://doi.org/10/grwbpc, 2020.
Duo, Z., Wang, W., and Wang, H.: Oceanic Mesoscale Eddy Detection Method Based on Deep Learning, Remote Sens.-Basel, 11, 1921, https://doi.org/10.3390/rs11161921, 2019.
Durand, M., Fu, L.-L., Lettenmaier, D. P., Alsdorf, D. E., Rodriguez, E., and Esteban-Fernandez, D.: The Surface Water and Ocean Topography Mission: Observing Terrestrial Surface Water and Oceanic Submesoscale Eddies, P. IEEE, 98, 766–779, https://doi.org/10/dp5pnh, 2010.
Elipot, S., Sykulski, A., Lumpkin, R., Centurioni, L., and Pazos, M.: Hourly location, current velocity, and temperature collected from Global Drifter Program drifters world-wide, NOAA National Centers for Environmental Information [data set], https://doi.org/10.25921/x46c-3620 2022.
Ferrari, R. and Wunsch, C.: Ocean Circulation Kinetic Energy: Reservoirs, Sources, and Sinks, Annu. Rev. Fluid Mech., 41, 253–282, https://doi.org/10.1146/annurev.fluid.40.111406.102139, 2009.
Franz, K., Roscher, R., Milioto, A., Wenzel, S., and Kusche, J.: Ocean Eddy Identification and Tracking Using Neural Networks, in: IGARSS 2018 – 2018 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018 – 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 6887–6890, https://doi.org/10.1109/IGARSS.2018.8519261, 22–27 July 2018.
Fu, L.-L. and Ferrari, R.: Observing oceanic submesoscale processes from space, Eos T. Am. Geophys. Un., 89, 488–488, https://doi.org/10/dj97v4, 2008.
Garabato, A. C. N., Yu, X., Callies, J., Barkan, R., Polzin, K. L., Frajka-Williams, E. E., Buckingham, C. E., and Griffies, S. M.: Kinetic energy transfers between mesoscale and submesoscale motions in the open ocean's upper layers, J. Phys. Oceanogr., 52, 75–97, https://doi.org/10/grv9xk, 2022.
Ge, L., Huang, B., Chen, X., and Chen, G.: Medium-Range Trajectory Prediction Network Compliant to Physical Constraint for Oceanic Eddy, IEEE T. Geosci. Remote, 61, 1–14, https://doi.org/10.1109/TGRS.2023.3298020, 2023.
Ge, Z., Liu, S., Wang, F., Li, Z., and Sun, J.: YOLOX: Exceeding YOLO Series in 2021, arXiv [preprint], https://doi.org/10.48550/arXiv.2107.08430, 2021.
Gower, J. F. R., Denman, K. L., and Holyer, R. J.: Phytoplankton patchiness indicates the fluctuation spectrum of mesoscale oceanic structure, Nature, 288, 157–159, https://doi.org/10/bb7xzf, 1980.
Hamze-Ziabari, S. M., Foroughan, M., Lemmin, U., and Barry, D. A.: Monitoring mesoscale to submesoscale processes in large lakes with Sentinel-1 SAR imagery: The Case of Lake Geneva, Remote Sens.-Basel, 14, 4967, https://doi.org/10.3390/rs14194967, 2022.
Hu, C., Lee, Z., and Franz, B.: Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference: A novel ocean chlorophyll a algorithm, J. Geophys. Res., 117, C01011, https://doi.org/10/b82xr2, 2012.
Huang, B., Ge, L., Chen, X., and Chen, G.: Vertical Structure-Based Classification of Oceanic Eddy Using 3-D Convolutional Neural Network, IEEE T. Geosci. Remote, 60, 1–14, https://doi.org/10.1109/TGRS.2021.3103251, 2022.
Ji, Y., Xu, G., Dong, C., Yang, J., and Xia, C.: Submesoscale eddies in the East China Sea detected from SAR images, Acta Oceanol. Sin., 40, 18–26, https://doi.org/10/grvn52, 2021.
JPL/OBPG/RSMAS: MODIS Aqua L2P swath SST data set. Ver. 2019.0. PO.DAAC, CA, USA [data set], https://doi.org/10.5067/GHMDA-2PJ19, 2020.
Lévy, M., Ferrari, R., Franks, P. J. S., Martin, A. P., and Rivière, P.: Bringing physics to life at the submesoscale, Geophys. Res. Lett., 39, L14602, https://doi.org/10/ggbm2h, 2012.
Lévy, M., Franks, P. J., and Smith, K. S.: The role of submesoscale currents in structuring marine ecosystems, Nat. Commun., 9, 4758, https://doi.org/10/gf6nb9, 2018.
Mahadevan, A.: The Impact of Submesoscale Physics on Primary Productivity of Plankton, Annu. Rev. Mar. Sci., 8, 161–184, https://doi.org/10.1146/annurev-marine-010814-015912, 2016.
Marchesiello, P., Capet, X., Menkes, C., and Kennan, S. C.: Submesoscale dynamics in tropical instability waves, Ocean Model., 39, 31–46, https://doi.org/10/dgx7rx, 2011.
McWilliams, J. C.: Submesoscale currents in the ocean, P. Roy. Soc. A-Math. Phy., 472, 20160117, https://doi.org/10/gf4bsc, 2016.
McWilliams, J. C.: A survey of submesoscale currents, Geoscience Letters, 6, 1–15, https://doi.org/10/gg8x8f, 2019.
Munk, W., Armi, L., Fischer, K., and Zachariasen, F.: Spirals on the sea, P. Roy. Soc. Lond. A Mat., 456, 1217–1280, https://doi.org/10.1098/rspa.2000.0560, 2000.
NASA Goddard Space Flight Center, Ocean Ecology Laboratory, and Ocean Biology Processing Group: Geostationary Ocean Color Imager (GOCI) Level-2 Ocean Color Data, NASA OB.DAAC, Greenbelt, MD, USA [data set], https://doi.org/10.5067/COMS/GOCI/L2/OC/2014, 2014.
NASA Goddard Space Flight Center, Ocean Ecology Laboratory, and Ocean Biology Processing Group: Ocean and Land Colour Imager (OLCI) Level-2 Earth-observation Full Resolution (EFR) Ocean Color (OC) Data, NASA OB.DAAC, Greenbelt, MD, USA [data set], https://doi.org/10.5067/SENTINEL-3B/OLCI/L2/EFR/OC/2022, 2022.
Ni, Q., Zhai, X., Wilson, C., Chen, C., and Chen, D.: Submesoscale Eddies in the South China Sea, Geophys. Res. Lett., 48, e2020GL091555, https://doi.org/10/gk4vh7, 2021.
Park, K.-A., Woo, H.-J., and Ryu, J.-H.: Spatial scales of mesoscale eddies from GOCI Chlorophyll a concentration images in the East/Japan Sea, Ocean Sci. J., 47, 347–358, https://doi.org/10/grvn5z, 2012.
Pegliasco, C., Delepoulle, A., Mason, E., Morrow, R., Faugère, Y., and Dibarboure, G.: META3.1exp: a new global mesoscale eddy trajectory atlas derived from altimetry, Earth Syst. Sci. Data, 14, 1087–1107, https://doi.org/10.5194/essd-14-1087-2022, 2022.
Redmon, J. and Farhadi, A.: YOLOv3: An Incremental Improvement, arXiv [preprint], https://doi.org/10.48550/arXiv.1804.02767, 2018.
Ryu, J.-H., Han, H.-J., Cho, S., Park, Y.-J., and Ahn, Y.-H.: Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS), Ocean Sci. J., 47, 223–233, https://doi.org/10/ggfx4h, 2012.
SSALTO/DUACS: Mesoscale Eddy Trajectories Atlas (META3.2 DT), AVISO+ [data set], https://doi.org/10.24400/527896/a01-2022.005.220209, last access: 13 December 2024.
Taylor, J. R. and Thompson, A. F.: Submesoscale Dynamics in the Upper Ocean, Annu. Rev. Fluid Mech., 55, 103–127, https://doi.org/10.1146/annurev-fluid-031422-095147, 2023.
Thomas, L. N.: On the effects of frontogenetic strain on symmetric instability and inertia–gravity waves, J. Fluid Mech., 711, 620–640, https://doi.org/10/f4f7s7, 2012.
Thomas, L. N., Tandon, A., and Mahadevan, A.: Submesoscale processes and dynamics, in: Geophysical Monograph Series, vol. 177, edited by: Hecht, M. W. and Hasumi, H., American Geophysical Union, Washington, D. C., 17–38, https://doi.org/10.1029/177GM04, 2008.
Vidhya, G. R. and Ramesh, H.: Effectiveness of Contrast Limited Adaptive Histogram Equalization Technique on Multispectral Satellite Imagery, in: Proceedings of the International Conference on Video and Image Processing, ICVIP 2017: International Conference on Video and Image Processing, Singapore, 234–239, https://doi.org/10.1145/3177404.3177409, 27–29 December 2017.
Wang, Y.: yolov7-eddy-CHL-GOCI, GitHub [code], https://github.com/Asita-yan/yolov7-eddy-CHL-GOCI, last access: 13 December 2024.
Wang, C.-Y., Bochkovskiy, A., and Liao, H.-Y. M.: YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors, arXiv [preprint], https://doi.org/10.48550/arXiv.2207.02696, 6 July 2022a.
Wang, S., Jing, Z., Wu, L., Cai, W., Chang, P., Wang, H., Geng, T., Danabasoglu, G., Chen, Z., and Ma, X.: El Niño/Southern Oscillation inhibited by submesoscale ocean eddies, Nat. Geosci., 15, 112–117, https://doi.org/10/gqnh6q, 2022b.
Wang, Y. and Yang, J.: A Submesoscale Eddy Identification Dataset Derived from GOCI I Chlorophyll a Data based on Deep Learning, Zenodo [data set], https://doi.org/10.5281/zenodo.7694115, 2023.
Wang, Y., Yang, J., and Chen, G.: Euphotic Zone Depth Anomaly in Global Mesoscale Eddies by Multi-Mission Fusion Data, Remote Sens.-Basel, 15, 1062, https://doi.org/10/grwp33, 2023.
Xia, L., Chen, G., Chen, X., Ge, L., and Huang, B.: Submesoscale oceanic eddy detection in SAR images using context and edge association network, Front. Mar. Sci., 9, 1023624, https://doi.org/10/grwb2n, 2022.
Xu, G., Yang, J., Dong, C., Chen, D., and Wang, J.: Statistical study of submesoscale eddies identified from synthetic aperture radar images in the Luzon Strait and adjacent seas, Int. J. Remote Sens., 36, 4621–4631, https://doi.org/10.1080/01431161.2015.1084431, 2015.
Zhang, Z. and Qiu, B.: Evolution of Submesoscale Ageostrophic Motions Through the Life Cycle of Oceanic Mesoscale Eddies, Geophys. Res. Lett., 45, 11847–11855, https://doi.org/10/gffhq4, 2018.
Zhang, Z. and Qiu, B.: Surface Chlorophyll Enhancement in Mesoscale Eddies by Submesoscale Spiral Bands, Geophys. Res. Lett., 47, e2020GL088820, https://doi.org/10/gjpqfg, 2020.
Zhang, Z., Zhang, Y., Qiu, B., Sasaki, H., Sun, Z., Zhang, X., Zhao, W., and Tian, J.: Spatiotemporal characteristics and generation mechanisms of submesoscale currents in the northeastern South China Sea revealed by numerical simulations, J. Geophys. Res.-Oceans, 125, e2019JC015404, https://doi.org/10/gnqttd, 2020.
Zuiderveld, K.: Contrast limited adaptive histogram equalization, Graphics Gems, Academic Press, 474–485, https://doi.org/10/grwng6, 1994.
Short summary
Mesoscale eddies are ubiquitous in the ocean and account for 90 % of its kinetic energy, but their generation and dissipation are difficult to observe using current remote sensing technology. Our submesoscale eddy dataset, formed by suppressing large-scale circulation signals and enhancing small-scale chlorophyll structures, has important implications for understanding marine environments and ecosystems, as well as improving climate model predictions.
Mesoscale eddies are ubiquitous in the ocean and account for 90 % of its kinetic energy, but...
Altmetrics
Final-revised paper
Preprint