Articles | Volume 16, issue 12
https://doi.org/10.5194/essd-16-5737-2024
https://doi.org/10.5194/essd-16-5737-2024
Data description paper
 | 
18 Dec 2024
Data description paper |  | 18 Dec 2024

A submesoscale eddy identification dataset in the northwest Pacific Ocean derived from GOCI I chlorophyll a data based on deep learning

Yan Wang, Ge Chen, Jie Yang, Zhipeng Gui, and Dehua Peng

Related authors

A Black Hole Eddy Dataset of North Pacific Ocean Based on Satellite Altimetry
Fenglin Tian, Yingying Zhao, Lan Qin, Shuang Long, and Ge Chen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-384,https://doi.org/10.5194/essd-2025-384, 2025
Preprint under review for ESSD
Short summary
Integrated Observation of an Asymmetric Eddy Dipole in the South China Sea
Shuang Long, Fenglin Tian, Junwu Tang, Fangjie Yu, Fang Zhang, Wei Ma, Xinglong Zhang, and Ge Chen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-276,https://doi.org/10.5194/essd-2025-276, 2025
Preprint under review for ESSD
Short summary
Temporal and Spatial Influences of Environmental Factors on the Distribution of Mesopelagic organism in the North Atlantic Ocean
Jie Yang, Jian Hui Li, and Ge Chen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2991,https://doi.org/10.5194/egusphere-2024-2991, 2024
Short summary
GEST: Accurate global ocean surface current reconstruction withmulti-scale dynamics-informed neural network
Linyao Ge, Guiyu Wang, Baoxiang Huang, Chuanchuan Cao, Xiaoyan Chen, and Ge Chen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-190,https://doi.org/10.5194/essd-2024-190, 2024
Manuscript not accepted for further review
Short summary
Eddy-induced chlorophyll profile characteristics and underlying dynamic mechanisms in the South Pacific Ocean
Meng Hou, Jie Yang, Ge Chen, Guiyan Han, Yan Wang, and Kai Wu
EGUsphere, https://doi.org/10.5194/egusphere-2023-1735,https://doi.org/10.5194/egusphere-2023-1735, 2023
Preprint archived
Short summary

Cited articles

Bochkovskiy, A., Wang, C.-Y., and Liao, H.-Y. M.: YOLOv4: Optimal Speed and Accuracy of Object Detection, arXiv [preprint], https://doi.org/10.48550/arXiv.2004.10934, 2020. 
Cao, H., Fox-Kemper, B., and Jing, Z.: Submesoscale eddies in the upper ocean of the kuroshio extension from high-resolution simulation: energy budget, J. Phys. Oceanogr., 51, 2181–2201, 2021. 
Chelton, D. B., Gaube, P., Schlax, M. G., Early, J. J., and Samelson, R. M.: The Influence of Nonlinear Mesoscale Eddies on Near-Surface Oceanic Chlorophyll, Science, 334, 328–332, https://doi.org/10/cz6575, 2011. 
Choi, J. M. and Kim, W.: Applications of Surface Velocity Current Derived from Geostationary Ocean Color Imager (GOCI), in: 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO), Kobe, Japan, https://doi.org/10.1109/OCEANSKOBE.2018.8559174, 28–31 May 2018. 
Chrysagi, E., Umlauf, L., Holtermann, P., Klingbeil, K., and Burchard, H.: High-resolution simulations of submesoscale processes in the Baltic Sea: The role of storm events, J. Geophys. Res.-Oceans, 126, e2020JC016411, https://doi.org/10/grwbpd, 2021. 
Download
Short summary
Mesoscale eddies are ubiquitous in the ocean and account for 90 % of its kinetic energy, but their generation and dissipation are difficult to observe using current remote sensing technology. Our submesoscale eddy dataset, formed by suppressing large-scale circulation signals and enhancing small-scale chlorophyll structures, has important implications for understanding marine environments and ecosystems, as well as improving climate model predictions.
Share
Altmetrics
Final-revised paper
Preprint