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Abstract. This paper presents a dataset on the identification of submesoscale eddies, derived from high-
resolution chlorophyll a data captured by GOCI I in the northwest Pacific Ocean. Our methodology involves a
combination of digital image processing, filtering, and object detection techniques, along with a specific chloro-
phyll a image enhancement procedure to extract essential information about submesoscale eddies. This infor-
mation includes their time, polarity, geographical coordinates of the eddy center, eddy radius, coordinates of
the upper left and lower right corners of the prediction box, area of the eddy’s inner ellipse, and confidence
score. The dataset spans eight time intervals, ranging from 00:00 to 08:00 (UTC) daily, covering the period from
1 April 2011 to 31 March 2021. A total of 19 136 anticyclonic eddies and 93 897 cyclonic eddies were identified,
with a minimum confidence threshold of 0.2. The mean radius of anticyclonic eddies is 24.44 km (range 2.5 to
44.25 km), while that of cyclonic eddies is 12.34 km (range 1.75 to 44 km). This unprecedented hourly resolution
dataset on submesoscale eddies offers valuable insights into their distribution, morphology, and energy dissipa-
tion. It significantly contributes to our understanding of marine environments, ecosystems, and the improvement
of climate model predictions. The dataset is available at https://doi.org/10.5281/zenodo.13989785 (Wang and
Yang, 2023).

1 Introduction

Submesoscale eddies (SMEs) are one of the strong
ageostrophic submesoscale processes in the ocean, with hor-
izontal scales ranging from several to tens of kilometers and
vertical scales of tens to hundreds of meters. SMEs are in-
termediate between the mesoscale and the microscale and
typically exhibit a short lifespan ranging from hours to days
(McWilliams, 2019; Durand et al., 2010; Thomas et al.,

2008). SMEs’ spirals on the sea result from the cat’s eye cir-
culation associated with horizontal shear instability (Munk
et al., 2000). SMEs are often energized by the strong mix-
ing induced by ocean currents’ instabilities, the convergence
of fronts, or the influence of topographic features (Thomas,
2012; Taylor and Thompson, 2023). SMEs are crucial in ma-
terial and energy exchange, influencing biochemical cycles,
marine food webs, and climate change (Lévy et al., 2012,
2018; Wang et al., 2022b). Given their significant impact,
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SMEs have emerged as a prominent area of research within
oceanography.

Numerical simulations are currently the main method used
to study SMEs systematically. These simulations provide re-
searchers with a detailed understanding of SMEs by gener-
ating a large amount of data that can be analyzed to under-
stand their characteristics, formation, and evolution (Zhang
et al., 2020; Cao et al., 2021; Dong et al., 2020; March-
esiello et al., 2011; Chrysagi et al., 2021). However, it is
essential to acknowledge that numerical simulations often
idealize various parameters in fluid mechanics, which may
deviate from the ocean’s complex and constantly changing
nature (Garabato et al., 2022). In contrast, other analytical
methods such as satellite observations, in situ measurements
and laboratory experiments are still insufficient for study-
ing SMEs. Studying submesoscale processes presents two
primary challenges. Firstly, these processes operate at very
small spatial and temporal scales, challenging direct field ob-
servations. Presently, the available field observation schemes
are expensive and sparse, leading to a lack of comprehensive
and systematic global results (e.g., dense submerged buoy
arrays and ship-based towed conductivity, temperature, and
depth (CTD) measurements). Secondly, there is still a lack of
a clear definition of submesoscale processes in terms of dy-
namics. It appears that these processes at least include frontal
instability processes at the edges of mesoscale eddies, iner-
tial gravity waves falling into submesoscale spatiotemporal
scales, vortex Rossby waves on mesoscale eddies, and SMEs,
etc. (Zhang and Qiu, 2018).

Many studies have utilized machine learning methods to
detect, track, and predict mesoscale eddies, owing to the
abundance of reliable altimeter observations and the well-
developed theory surrounding them (Duo et al., 2019; Choi
and Kim, 2018; Franz et al., 2018; Ge et al., 2023; Huang
et al., 2022). However, theoretical investigations of SMEs
face a shortage of observational data due to the inadequacy
of altimeter spatial and temporal resolutions for their detec-
tion. Moreover, even with alternative high-resolution obser-
vational approaches, submesoscale processes often remain
obscured amid the large-scale ocean processes.

Observations of SMEs have been conducted using syn-
thetic aperture radar (SAR) images to identify “black” and
“white” eddies (Dokken and Wahl, 1996; Fu and Ferrari,
2008; Xu et al., 2015; Ji et al., 2021; Hamze-Ziabari et al.,
2022). Additionally, the existence of submesoscale processes
affecting the movement of phytoplankton patches was first
observed in 1980 (Gower et al., 1980). Various methods,
such as manual labeling, algorithmic identification, and ma-
chine learning, are employed to observe SMEs (Park et al.,
2012; Ni et al., 2021; Xia et al., 2022). Certain methods,
such as SAR and altimeter, solely offer physical insights into
the ocean’s surface and do not encompass the biological or
chemical processes within the eddies. In contrast, using phy-
toplankton to identify eddies enables researchers to obtain
information about the composition and activity of the bio-

logical communities residing within the eddies. It is essential
to recognize that the utilization of SAR images typically ne-
cessitates supplementary data processing and intricate algo-
rithms for the precise identification of SMEs, which can be a
laborious and time-consuming task.

We used a combination of digital image processing, filter-
ing, artificial intelligence, and small object detection tech-
niques to identify a large number of SMEs from high-
resolution chlorophyll distribution images. We calculated
their relevant characteristic information to form the SME
dataset. The paper is organized as follows: Sect. 2.1 pro-
vides a detailed description of the chlorophyll data used in
the study. Next, Sect. 2.2.1 describes the methodology used
to highlight SMEs in chlorophyll images. This is followed
by Sect. 2.2.2 and 2.2.3, where we elaborate on the machine
learning recognition process. Finally, in Sects. 3, 4, and 5,
we present the results of our study, provide information on
the acquisition of the dataset, and summarize the whole re-
search.

2 Data and methods

2.1 Chlorophyll a data

The chlorophyll a (CHL) data used in this study were ob-
tained by applying the OCI empirical algorithm to Level-2
data acquired by the Geostationary Ocean Color Imager I
(GOCI) aboard the Oceanography and Meteorology Satel-
lite (COMS) (Ryu et al., 2012; Hu et al., 2012). The GOCI
data have a spatial resolution of 500 m and a temporal res-
olution of 1 h. Measurements were taken within an area of
2500km×2500km (center: 36° N, 130° E) and a 20 min win-
dow between 00:00 and 08:00 UTC from 1 April 2011 to
31 March 2021. The array size of the data is 5685 in the
meridional direction and 5567 in the zonal direction. One
unique feature of the GOCI is its geostationary orbit, which
allows it to continuously observe the same region of the Earth
without moving relative to the ground. This makes it particu-
larly useful for monitoring dynamic ocean phenomena such
as coastal currents and ocean color. The GOCI coverage area
is illustrated in Fig. 1.

2.2 Identification method

2.2.1 Enhancement of chlorophyll image

Figure 2 presents the flowchart of the CHL image enhance-
ment technique. In the following sections, we will provide
a detailed description of each step, explaining the role and
parameter selection.

In coastal areas, the vast difference in CHL concentration
between coastal and oceanic regions, spanning several orders
of magnitude, allows for a more straightforward visual inter-
pretation of SMEs. However, the distinction is nearly indis-
tinguishable in regions characterized by low CHL concen-
tration. Therefore, applying a logarithmic transformation to
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Figure 1. The coverage area of Geostationary Ocean Color Imager
I. The coverage area consists of 4× 4 slots that overlap with each
other (Lambert azimuthal equal-area projection).

Figure 2. The flowchart of the CHL image enhancement. We have
selected a data range of 0.001–20 (mgm3) based on the CHL value
range of the satellite coverage area. Before applying the contrast-
limited adaptive histogram equalization (CLAHE), we will assign
a value of 0, i.e., black display, to invalid regions such as those
occluded by clouds.

CHL data is often necessary when plotting CHL fields to
avoid color-stacking displays. Employing logarithmic scal-
ing facilitates differentiation among areas with varying CHL
concentrations, resulting in more lucid and informative CHL
maps. Nonetheless, relying solely on logarithmic transfor-
mation proves insufficient, as shown in Fig. 3a. Large-scale
circulation, mesoscale eddies, waves, and other processes at
larger scales mask the CHL variability caused by subme-
soscale processes. A 2-D Lanczos filter with a half-power
cut-off wavelength of 50 km was utilized to address this is-
sue. This choice of cut-off wavelength aligns with the sea
surface height field as depicted in Fig. 3b (Pegliasco et al.,
2022).

We conducted testing on the half-power cut-off wave-
length of the filter and observed that when the wavelength

is overly long, it tends to obscure the spiral structure within
mesoscale eddies, making it challenging to distinguish SMEs
and their polarity. Conversely, too short a wavelength gener-
ates numerous discontinuous vortex filaments, making it dif-
ficult to identify relatively closed SMEs (refer to Fig. 4).

Finally, we adopted a contrast-limited adaptive histogram
equalization (CLAHE) image enhancement technique to
highlight the SMEs with the same display effect in the en-
tire image (refer to Fig. 3c). Adaptive histogram equaliza-
tion (AHE) is a widely used technique for image contrast
enhancement, which calculates the image’s histogram and
applies a nonlinear transformation to stretch the intensity
values. However, AHE can lead to excessive amplification
of noise in relatively uniform areas of the image. CLAHE
is a modification of AHE that helps avoid this problem by
limiting the amplification of the contrast to a certain prede-
fined value (Zuiderveld, 1994; Vidhya and Ramesh, 2017).
This approach involves dividing the image into small regions,
called tiles, and then applying AHE to each tile individually.
The CLAHE is employed to improve the clarity of chloro-
phyll spirals, enabling the training and identification of these
spirals using AI in sea areas with chlorophyll concentration
differences spanning several orders of magnitude using the
same training dataset.

The general histogram equalization formula is the follow-
ing:

h(v)= round
(

cdf(v)− cdfmin

(M ×N )− cdfmin
× (L− 1)

)
, (1)

where v represents the intensity of any pixel in the image, h

represents the histogram equalization function, cdf is the cu-
mulative distribution function of the image pixel intensities,
cdfmin is the minimum non-zero value of the cumulative dis-
tribution function, M is the width and N the height of the im-
age, and L is the number of gray levels used (in most cases,
256).

Considering the horizontal scale of SMEs, a sliding win-
dow size of 100× 100 was chosen when applying adaptive
histogram equalization with contrast limiting. Furthermore,
the CHL data were transformed into a grayscale image to op-
timize the visualization and alleviate the computational load
for machine learning.

2.2.2 Establishment of the train set

Due to the high image resolution, it is not feasible to cate-
gorize the entire image into cyclonic eddies, anticyclonic ed-
dies, and non-eddy regions for eddy recognition model train-
ing. As a result, we adopted a labeling strategy that catego-
rized labels into three types: cyclone eddies (CEs), anticy-
clone eddies (AEs), and bounding boxes (BOXs). The dis-
crimination between cyclones and anticyclones was based
on the rotation direction of the eddy-modulated CHL spiral
curves from the outside to the inside, which is consistent with

https://doi.org/10.5194/essd-16-5737-2024 Earth Syst. Sci. Data, 16, 5737–5752, 2024



5740 Y. Wang et al.: A submesoscale eddy identification dataset

Figure 3. A comparison of different CHL image enhancement methods (5 April 2011 at 03:00 UTC). (a) The CHL values were selected
in the range of 0–20 mgm−3, and then log10 transformation was applied to them. (b) Apply a 2-D Lanczos filter with a half-power cut-off
wavelength of 50 km to image (a) and convert it to a grayscale image with a range of 0–255 for visualization. (c) The final effect of enhancing
the entire CHL image by applying CLAHE to image (b). For each image, the top-left inset displays a 3×magnified view of the boxed region
in the image, allowing for a clear visualization of the effect of each step in the image enhancement process on the high-resolution image.

the rotation direction of the two types in the Northern Hemi-
sphere, where cyclones rotate counterclockwise and anticy-
clones rotate clockwise (Chelton et al., 2011; Zhang and Qiu,
2020; Wang et al., 2023). Subsequently, we extracted the
BOX from high-resolution images as actual training images
for the network. A total of 513 BOXs were annotated, includ-
ing 160 anticyclones and 500 cyclones. To enhance model
robustness and increase training sample diversity, data aug-
mentation techniques, such as adding salt-and-pepper noise,
histogram equalization, random angle rotating images, and
random Gaussian noise to images, were employed, as shown
in Fig. 5.

To minimize the uncertainty of establishing the training
set manually, we list the following five criteria, as shown in
Fig. 6.

1. Chlorophyll spirals should exhibit evident rotation for
at least one circle.

2. There should be no more than a 50 % overlap between
adjacent SMEs.

3. The entire spiral structure of an eddy is supposed to be
labeled rather than just its central part region.

4. Partially missing SMEs meeting the above three criteria
should also be labeled.
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Figure 4. A comparison of the CHL image enhancement results using different filter cut-off wavelengths (5 April 2011 at 03:00 UTC).
Panels (a), (b), and (c) show the results obtained by selecting a half-power cut-off filter wavelength of 1, 5, and 200 km, respectively.

5. When in doubt about labeling, priority should be given
to annotating eddies clearly.

2.2.3 Image preprocessing and SME identification

Detecting small targets in high-resolution images poses a
highly challenging task. Small targets are characterized ei-
ther by their relatively small size compared to the entire im-
age or by having a minor difference in pixel value compared
to surrounding pixels. SMEs fully comply with both defini-
tions and are ubiquitous and intertwined with CHL fields.
Therefore, we developed an image preprocessing method for
identifying SMEs, which includes an image cropping method
based on the eddy radius and the conversion between the im-
age and the geographical coordinate system. The cropped im-

age resolution is 640×640, and the overlap percent is calcu-
lated based on the diameter of the SMEs, following Eq. (2):

OP=D/(SR×PS), (2)

where OP is the overlap percent, D is the maximum diameter
of SMEs (100 km), SR is the spatial resolution (0.5 km), and
PS is the size of cropped images (640). By applying this cal-
culation, an original image with dimensions of 5685× 5567
can be divided into 12× 12 small images through cropping,
with each cropped image having its corresponding row and
column number in the original image. To ensure the effec-
tiveness of the CHL data, we set a requirement that the CHL
data rate in each cropped image should not be less than 5 %.
The geographic coordinates of the cropped image are calcu-
lated based on the row and column numbers of the cropped
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Figure 5. Different approaches for the sample set augmentation. An example of a marked CE in a BOX, including the original image (a)
and images modified using histogram equalization (b), random angle rotation (c), salt-and-pepper noise (d), and random Gaussian noise (e).
After rotation, the parallel marking box is the minimum bounding rectangle of the rotated marking box.

Figure 6. Example diagram of the SME training set. The red box indicates AEs, and the blue box corresponds to CEs.

image and the transformation relationship between the image
coordinate system and the geographic coordinate system of
the original image. If (x,y) is an image coordinate point in
the cropped image, then its geographic coordinate (long, lat)
can be calculated as follows in Eq. (3):

long, lat=

f ((x+ col×PS(1−OP)), (y+ row×PS(1−OP))),
(3)

where the function f describes the correspondence between
the original image coordinates and the geographic coordi-
nates, and col and row represent the column and row number
of their corresponding cropped images in the original image,
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Figure 7. The flowchart of identifying SMEs and generating SME
datasets using enhanced chlorophyll images.

respectively. The flowchart of the overall process of identi-
fying SMEs and generating datasets using enhanced chloro-
phyll images is shown in Fig. 7.

We used the YOLOv7-X model for identifying SMEs,
which perfectly balances speed and accuracy (Wang et al.,
2022a). YOLOv7-X was obtained by increasing the number
of layers and the number of features extracted per layer in
the YOLOv7 model, aiming to amplify the model for im-
proved performance in object detection tasks. The structure
of YOLOv7-X mainly consists of three parts: backbone fea-
ture extraction network part, strengthen feature extraction
network, and YOLO head. To accelerate model convergence
and reduce memory consumption, the Adam optimizer is se-
lected to automatically learn the parameters of all models.
The loss function of our model inherits the loss function of
the YOLO series, which mainly includes shape loss, confi-
dence loss, and classification loss of the predicted box. The
total loss function of object detection is defined by the fol-
lowing Eq. (4):

losstotal = lossshape+ lossconfidence+ lossclass, (4)

where lossshape, lossconfidence, and lossclass denote the shape
loss, confidence loss, and classification loss of the predicted
anchor box, respectively; the confidence is a signal to judge
whether the anchor box contains objects. Their basic compo-
nents are binary cross-entropy loss and mean squared error
loss (Redmon and Farhadi, 2018; Bochkovskiy et al., 2020;
Ge et al., 2021).

Furthermore, a non-maximum suppression technique was
utilized to merge them to avoid repeated identification of ed-
dies in the overlapping regions of the cropped images. Since
many eddies are formed from the same unstable currents

and often overlap, we set the intersection-over-union (IoU)
threshold for non-maximum suppression to 20 %. The IoU is
the overlap ratio between the detected box (DT) and the cor-
responding ground truth box (GT). The IoU can be calculated
by the following Eq. (5):

IoU=
SDT ∩ SGT

SDT ∪ SGT
, (5)

where S represents the pixel areas of the anchor box, SDT ∩

SGT is the intersection area of DT and GT, and SDT ∪ SGT
denotes their union area.

The identification results within 5 pixels of the image
edges were removed to ensure the detection of complete ed-
dies. Within the model, flip transformation for image en-
hancement was turned off, and non-maximum suppression
was applied to different categories of eddies to prevent the
model from classifying the same eddy differently.

2.2.4 Cloud cover in the identification

The results of SME identification based on the ocean color
remote sensing images can not represent the actual distribu-
tion pattern of SMEs. The primary obstacle that affects the
identification of eddies using this method is the obscuring
of ocean color remote sensing signals by cloud cover, which
varies across different regions, months, and times of the day.
To tackle this problem, we calculated the cloud occlusion
probability (cop) for each grid using invalid CHL data, as
follows (Eq. 6):

cop(time,grid)=
∑

mask(time,grid)
fn(time)

, (6)

where mask(time,grid) is a Boolean daily grid array (5685,
5567) of whether the data corresponding to hour and month
are masked, and fn(time) is the total number of the CHL files
at the corresponding to hour and month. Therefore, by using
cop, we can roughly calculate the number of detected eddies
without cloud cover, as follows (Eq. 7):

TN=
EN

1− cop
, (7)

where TN is the number of eddies detected after removing
cloud cover, and EN is the actual number of detected eddies.

3 Results

3.1 Identification results of SMEs

We obtained 29 158 files spanning 1 April 2011 to 31 March
2021, resulting in approximately 7.3 TB of data. The chloro-
phyll data were extracted and utilized for image enhance-
ment, generating a corresponding set of images. Ultimately,
we obtained a total of 544 760 cropped images to identify
SMEs. A total of 19 136 anticyclonic eddies and 93 897 cy-
clonic eddies were identified at the minimum confidence
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threshold of 0.2. As shown in Fig. 8, our method can ef-
fectively identify SMEs from the chlorophyll field, and the
chlorophyll spirals traced by the SMEs indicate their posi-
tion and size. In the AEs, the direction of rotation of the
chlorophyll spirals from the outside to the inside is clock-
wise, whereas in CEs, it is the opposite. The higher the con-
fidence in the identification results, the greater the reliability
of the identification results.

Using the CLAHE technique, the subtle stitching marks
became visible in Fig. 8b and f, which are the apparent hor-
izontal dividing lines resulting from the joining of differ-
ent slots. These stitching marks result from several minutes
of measurement interval between slots, leading to variations
in chlorophyll values between overlapping slots. Figure 8c
and d illustrate that the energy of the SMEs dissipates within
just 2 h, making it difficult to trace them in the chlorophyll
field. On the other hand, Fig. 8e and f demonstrate the ef-
fectiveness of cropped images with a 100 km overlap in pre-
venting missed detections at the edges. Furthermore, the ed-
dies recognized in the overlapping area differ, but they can
be eliminated through non-maximum suppression.

Given that the ratio in the detection results is 4.9, this
discrepancy could impact subsequent scientific research and
lead to erroneous conclusions. To address this issue, the CE
category was downsampled to equalize the number of AE
and CE samples. After data augmentation, 674 CE and 673
AE samples were used to retrain the model. Due to the re-
duced training sample size, the retrained model achieved a
mean average precision (mAP) of 81.58 % at IoU= 0.5. For
the image data collected at 03:00 UTC, the model identified
2193 AE and 4461 CE instances, with recall rates of 58.42 %
and 81.54 %, respectively. This suggests that even with a
model trained on balanced samples, the detection counts for
the two categories still exhibit a multiplicative difference.

Given the inherent unpredictability and lack of trans-
parency in deep learning models, relying solely on detection
results is insufficient to fully explain these differences. It re-
mains necessary to provide theoretical evidence to determine
whether an actual imbalance exists in the occurrence of dif-
ferent types of submesoscale eddies. Nonetheless, since the
detected eddies in the dataset were correctly identified, the
data can still support meaningful scientific research.

3.2 Geographic and temporal distribution of SMEs

We quantified the coverage frequency of each grid cell by
AEs or CEs and reduced the correlation between the spa-
tiotemporal distribution of SMEs and the cop by the method
of Sect. 2.2.4. Figure 9 shows that AEs are mainly distributed
in the Sea of Japan along the convergence zone of warm and
cold currents. Conversely, CEs show a more uniform distri-
bution, with a relatively higher concentration in the vicinity
of offshore currents.

As shown in Fig. 10, both AEs and CEs display similar
variation patterns in terms of quantity about hour and season.

Figure 8. Image identification results of SMEs. The blue box rep-
resents CE, the red box represents AE, and the number in the upper
left corner of each identification box is the confidence score. Pan-
els (c) and (d) show the identification results of the same location
at different times of the same day, and panels (e) and (f) show the
identification results of adjacent cropped images.

When calculating the local time at the central longitude of
130° E in the region, the highest number of identified SMEs
occurs at around 11:40 UTC. Regarding seasonal variation,
both AEs and CEs experience peak numbers in April, with
an additional peak in autumn. These peaks in the number
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Figure 9. Geographical distribution map of SMEs identified. The left figure is for anticyclones (a), and the right is for cyclones (b). The grids
where eddies were identified were summed up by time and month after removing the cloud cover factor. Due to the significant differences in
the number of eddy geographical distributions, a logarithmic transformation was used for plotting.

Figure 10. Temporal variation in the number of identified SMEs.
(a) The figure shows the variation in the number of identified ed-
dies over hours. (b) The figure shows the seasonal variation in the
number of identified eddies.

of identified eddies coincide with the times of the strongest
variations in sea surface temperature, salinity, and wind con-
ditions.

3.3 SMEs’ characteristic statistics

In Fig. 11a and b, the diameter distribution of AEs is rel-
atively uniform, whereas the radius of CEs is concentrated
within 40 km, perhaps because the CHL field stirred by
smaller-scale AEs is challenging to observe. Observed AEs
and CEs have the same confidence scores distribution and a
majority of the detected eddies have high confidence scores
in Fig. 11c and d. To better study SMEs, eddies with higher
confidence scores can be selected for analysis. The observed
SMEs are non-geostrophic, and their diameter does not de-
crease with increasing latitude when comparing the esti-
mated Rossby deformation radius in Fig. 11e and f. Addi-
tionally, it can be seen that the diameters of SMEs at different

latitudes can differ by about 30 km, with the majority of CEs
being smaller than the average Rossby deformation radius at
the corresponding latitude.

3.4 Performance of the model for eddy identification

To evaluate the detection performance of the modified
YOLOv7-X, some evaluation metrics were used: precision,
recall, F1 score, average precision (AP), and mean average
precision (mAP). The precision and recall are defined suc-
cessively using Eqs. (8) and (9):

precision=
TP

TP+FP
(8)

recall=
TP

TP+FN
, (9)

where TP, FP, and FN denote the number of true positive, true
negative, and false positive anchor boxes, respectively. In our
experiment, the TP means the number of boxes whose IoU is
more significant than 0.5 between the predicted and ground
truth boxes.

In addition, the F1 score measures the comprehensive per-
formance of the network, which can be calculated based on
precision and recall.

F1score=
2× precision× recall

precision+ recall
(10)

The precision and recall of a specific category are used to
draw curves in the 2-D coordinate system, and the area under
the curve constitutes the AP of this category.

AP=
∫ 1

0
P (R)dR (11)
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Figure 11. Panels (a) and (b) show the diameter distribution his-
tograms of AE and CE, respectively; panels (c) and (d) show the
confidence score distribution histograms of AE and CE, respec-
tively; and panels (e) and (f) show the variation of diameter with
latitude for AE and CE and the standard deviation, respectively. The
dashed gray line represents the variation of the Rossby radius of de-

formation with latitude (LR =
(g′D)1/2

f
), where g′ is the reduced

gravitational acceleration, D is the water depth, and f is the Corio-
lis parameter.

According to Eq. (11), mAP can be furnished, which repre-
sents the average of all categories of AP:

mAP=
∑n

i=1APi

n
. (12)

The AP and mAP are commonly considered indicators of
model quality. Generally speaking, the two indicators and
model quality are positively correlated.

The evaluation metrics in Table 1 demonstrate that the
modified YOLOv7-X model, trained using our method on
processed and labeled samples, has achieved outstanding per-
formance. From the recall, it can be observed that fewer AEs
were identified compared to CEs; this could be attributed to
a bias in the number of training sets for AEs and CEs.

When training with a custom dataset, parameters can be
fine-tuned based on metrics like mAP (mean average preci-
sion), or techniques such as learning rate schedulers can be

Table 1. Precision, recall, F1 score, and AP for different categories
and mean average precision at IoU= 0.5.

Precision Recall F1 score AP mAP@0.5

AE 100.00 % 90.67 % 0.95 96.20 %
97.32 %

CE 97.80 % 96.52 % 0.97 98.44 %

employed to dynamically adjust the learning rate. Methods
like grid search or random search can also be used to ex-
plore different combinations of weights and learning rates,
with cross-validation serving as a useful tool to evaluate
model performance. When selecting a learning rate, note that
a higher rate can lead to instability in training and risk miss-
ing the optimal solution, while a lower rate may slow down
convergence, increasing training time. Regarding the number
of weights, too few may result in underfitting, whereas too
many can cause overfitting. These optimizations are special-
ized tasks in deep learning. While technical improvements
can further enhance the detection rate of submesoscale ed-
dies, the current dataset’s size and quality are already suffi-
cient to support meaningful scientific research.

3.5 Validation and confidence threshold verification
using drifter hourly trajectory data

We have matched SMEs with drifter hourly trajectory data,
successfully identifying 2177 eddies whose diameters are
less than 100 km, and their confidence scores range from 0
to 1. As depicted in Fig. 12a, SMEs are primarily distributed
at the periphery of mesoscale eddies, while the drifter trajec-
tories are situated within the mesoscale eddies. To determine
whether the drifter trajectory is influenced by mesoscale ed-
dies or is instead the result of SMEs, we refer to Fig. 12b. In
this instance, no mesoscale eddies are observed in the vicin-
ity of the drifter trajectory. This observation provides strong
evidence that the structure of SMEs exists and possesses the
capability to alter drifter trajectories.

To quantitatively validate the choice of the confidence
threshold, we conducted multiple experiments and discov-
ered a correlation between the curvature variance of the
drifter trajectory matched by SMEs and the confidence level.
The average diameter of this SME dataset is 28 km, and the
typical global drifter movement speed is 20 cms−1. Conse-
quently, each SME can accommodate 40 drifter hourly track
points. For analysis, we consider the 20 drifter hourly tra-
jectory points before and after the spatiotemporal matching
point of the eddy and drifter trajectory. We calculate the cur-
vature of a circle fitted to every three points, subsequently
removing one maximum and one minimum to compute the
curvature variance. Curvature variance can describe the de-
gree of curvature variation of drifter trajectories in SMEs.
The smaller the curvature variance is, the more stable the in-
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Figure 12. Drifter trajectory and SME matching diagram. The
black line represents the drifter trajectory, the black points indi-
cate hourly position points, rectangular boxes identify SMEs, and
the upper numbers represent the confidence of SME identifica-
tion. Non-rectangular shapes represent mesoscale cyclonic eddies,
and red arrows indicate the drifter’s movement direction. The red
dots highlight the spatiotemporal matching point between the SMEs
and drifter trajectory. (a) Drifter ID 109244, with SME identifica-
tion times from 2 May 2013 to 6 June 2013 at 00:00 UTC daily.
(b) Drifter ID 300534060522490, with SME identification times on
11 March 2021 at 01:00, 14 March 2021 at 02:00, 18 March 2021
at 01:00, 23 March 2021 at 04:00, and 26 March 2021 at 01:00 (all
times are in UTC).

fluence of SMEs on drifters and the smoother the direction
change of drifters.

As depicted in Fig. 13a, a significant anomaly in curva-
ture variance is observed when the confidence of eddies is
below 0.2. This indicates the presence of issues, such as
incorrect identification and identification of the continental
margins. Figure 13b reveals an inverse relationship between
confidence and curvature variance. Specifically, higher con-
fidence corresponds to smaller curvature variance, implying
more pronounced and smoother chlorophyll spirals.

3.6 Validation and comparison using sea surface
temperature

We conducted a comparison between sea surface temperature
(SST) data and high-resolution CHL data with significant
spatiotemporal trajectory overlap, as illustrated in Fig. 14.
Despite the lower spatial resolution of SST data (1 km) com-
pared to the high-resolution CHL data (500 m), SMEs also
conduct spiral modulation effects on SST. This means the

Figure 13. Variation in curvature variance of spatiotemporal match-
ing point between the SMEs and drifter trajectory, with confidence
and the number of different confidence eddies matched.

method for identifying SMEs can be extended to sea surface
skin temperature products. Figure 14e and f reveal that ed-
dies with higher confidence levels are more pronounced on
SST. The main reason for the difference in identification re-
sults is that the deep learning model is trained according to
the chlorophyll data, and the resolution of SST is half that of
CHL.

3.7 Validation and comparison of the identification
results using Sentinel-3 chlorophyll image

The blue–green spectral bands, calculation coefficients, and
image resolutions used for chlorophyll inversion are differ-
ent between GOCI and OLCI sensors. Nonetheless, as indi-
cated in Fig. 15, this method demonstrates certain applica-
bility. Comparatively, the OLCI sensor with a resolution of
300 m presents more detailed results, capable of identifying
S-shaped eddies not visible in Fig. 15c. However, due to the
reliance on GOCI images for training, the confidence score
of the eddy in Fig. 15d is diminished.

3.8 Validation and comparison of the identification
results using the mesoscale eddy dataset

Altimetry is commonly used to identify mesoscale eddies
through sea level height data. However, a global mesoscale
eddy dataset is obtained by optimal interpolation, which re-
duces spatial and temporal resolutions. Therefore, we show
the comparison between our identification results of SMEs
and mesoscale eddies identified by altimetry on the same
day in Fig. 16. Although altimetry identifies a more signif-
icant number of eddies and is unaffected by cloud cover,
our method provides a more detailed identification of SMEs.
Many eddies identified by different methods exhibit consis-
tent spatial scales and locations. However, the altimeter fails
to identify numerous SMEs within and outside the mesoscale
eddies. These SMEs are reflected in our identification results,
which are based on the mapping of their physical properties
to the chlorophyll field.

https://doi.org/10.5194/essd-16-5737-2024 Earth Syst. Sci. Data, 16, 5737–5752, 2024



5748 Y. Wang et al.: A submesoscale eddy identification dataset

Figure 14. A comparison of SME identification between sea surface temperature and GOCI chlorophyll. Panels (a), (b), and (c) represent
the MODIS Level 2 sea surface temperature at 04:00 UTC on 7 May 2019, with local amplification and image enhancement, while panels
(d), (e), and (f) depict the corresponding chlorophyll distribution map from GOCI. The SMEs and their associated confidence have been
overlaid onto the images. The red box indicates AEs, and the blue box corresponds to CEs.

Figure 15. A comparison of SMEs identified in chlorophyll im-
ages from the GOCI and Sentinel-3 OLCI sensors. Panel (a) is the
GOCI enhanced chlorophyll image taken at 01:00 UTC on 7 May
2019, and panel (b) is the Sentinel-3B OLCI enhanced chlorophyll
image taken at a similar time. Panels (c) and (d) are the respective
identification results of panels (a) and (b).

4 Data availability

The SME v1.0 dataset is saved in JSON format and
can be accessed at https://doi.org/10.5281/zenodo.13989785
(Wang and Yang, 2023). The dataset contains informa-
tion about each identified eddy, including polarity, location,
time, geographic coordinates of the predicted box, radius
of the inscribed circle, area of the inscribed ellipse, con-
fidence score, and other relevant information. The Supple-
ment contains detailed information about the variables. The
code is publicly available at https://github.com/Asita-yan/
yolov7-eddy-CHL-GOCI (Wang, 2024).

Other data utilized in this paper can be downloaded from
the following websites:

– GOCI I – https://oceandata.sci.gsfc.nasa.gov/
directdataaccess/Level-2/GOCI (last access: 13
December 2024, https://doi.org/10.5067/COMS/GOCI/
L2/OC/2014, NASA Goddard Space Flight Center,
2014),

– Sentinel-3B – https://oceandata.sci.gsfc.nasa.
gov/directdataaccess/Level-2/S3B-OLCI/2019/
07-May-2019 (last access: 13 December 2024,
https://doi.org/10.5067/SENTINEL-3B/OLCI/L2/EFR/
OC/2022, NASA Goddard Space Flight Center et al.,
2022),
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Figure 16. A comparison between the AI eddy identification results
and the AVISO eddy results on the same day with a CHL-enhanced
background. Panels (a) and (b) are for 7 May 2019 and 13 April
2011, respectively.

– mesoscale eddy – https://www.aviso.altimetry.
fr/en/data/products/value-added-products/
global-mesoscale-eddy-trajectory-product.html (last
access: 13 December 2024, https://doi.org/10.24400/
527896/a01-2022.005.220209, SSALTO/DUACS,
2024),

– MODIS SST – https://podaac.jpl.nasa.gov/dataset/
MODIS_A-JPL-L2P-v2019.0 (last access: 13 De-
cember 2024, https://doi.org/10.5067/GHMDA-2PJ19,
JPL/OBPG/RSMAS, 2024),

– drifter hourly trajectory – https://www.aoml.noaa.gov/
phod/gdp/hourly_data.php (last access: 13 December

2024, https://doi.org/10.25921/x46c-3620, Elipot et al.,
2022).

5 Conclusion

Eddies can stir and maintain surface ocean chlorophyll and
modulate temperature, mixing layer depth, and euphotic
layer depth. As a result, eddies can be observed from the
chlorophyll spiral structures on the sea surface. With high-
spatiotemporal-resolution chlorophyll data from ocean color
sensors, we suppressed large-scale ocean signals by filtering
and highlighted eddy-induced chlorophyll spirals by specific
image enhancement. Moreover, we modified YOLOv7-X for
SME detection and achieved a map score of 97.32 % for these
small targets. We identified a total of 19 136 anticyclonic ed-
dies and 93 897 cyclonic eddies from eight CHL images per
day for 10 years at the minimum confidence threshold of 0.2,
with the number of cyclonic eddies being 4.9 times that of
anticyclonic eddies. The mean radius of anticyclonic eddies
was 24.44 km (range 2.5 to 44.25 km), while that of cyclonic
eddies was 12.34 km (range 1.75 to 44 km). The mean radius
of cyclonic eddies was half that of anticyclonic eddies. The
identified cyclonic eddies were mainly concentrated in off-
shore flow regions, while anticyclonic eddies were primar-
ily distributed in the Japan Sea. The number of cyclonic and
anticyclonic eddies followed the same pattern over time, in-
creasing and decreasing from around 09:00 to 16:00 UTC,
with a peak around 12:00 UTC. There were two peaks in the
seasonal variation of both types of eddies, in spring and au-
tumn, both occurring when the mixed layer was relatively
unstable. By comparing with chlorophyll products retrieved
from OLCI sensors using different bands at a resolution of
300 m, we found that the modified deep learning model had a
certain degree of universality. Compared with the mesoscale
eddy dataset, the positions and sizes of the eddies identified
by the two methods were highly similar.

However, as this is the first hour-level resolution dataset
covering 10 years for SMEs in the northwest Pacific Ocean,
there are several important points to note when using it.
Firstly, submesoscale activities can influence chlorophyll a

distributions through various mechanisms, including nonlin-
ear interactions, frontogenesis, mixed-layer instability, sur-
face forcing, and symmetric instability (Mahadevan, 2016).
This implies that the submesoscale process is not limited to a
mere form of SMEs or a spiral structure. Secondly, differenti-
ating between mesoscale and submesoscale motion primarily
hinges on the relative significance of Earth’s rotation, with
the Rossby number for submesoscale motion being around
1 (Taylor and Thompson, 2023). It is worth noting that the
identification of SMEs in this paper relies on diameter, so
not all of them meet the requirement that the Rossby number
is approximately equal to 1. Thirdly, submesoscale motions
have been emphasized as potential mechanisms for transfer-
ring energy from ocean mesoscale processes to small-scale
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turbulence and dissipation scales (Ferrari and Wunsch, 2009;
McWilliams, 2016). In other words, the spiral structure of
SMEs may not always be clear and continuous due to en-
ergy transfer. Finally, surface eddies of cyclonic vorticity are
slightly more frequent than anticyclonic eddies, whereas sub-
surface eddies are mainly associated with anticyclonic vor-
ticity and would be as frequent as surface anticyclonic ed-
dies (Colas et al., 2012; Combes et al., 2015). This indicates
that the SME dataset primarily represents surface SMEs. Fur-
thermore, setting the confidence threshold may exclude many
real SMEs to avoid retaining the identification of disputed ed-
dies. Nonetheless, the method proposed in this paper effec-
tively detects SMEs, and the presence of chlorophyll spirals
induced by SMEs provides a credible and direct representa-
tion of their physical properties within the chlorophyll field.
These research findings hold considerable scientific signifi-
cance for a deeper understanding of the role of SMEs in ma-
rine ecosystems and their impact on the marine environment.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-16-5737-2024-supplement.
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