Articles | Volume 16, issue 7
https://doi.org/10.5194/essd-16-3283-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-16-3283-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multitemporal characterization of a proglacial system: a multidisciplinary approach
Elisabetta Corte
CORRESPONDING AUTHOR
Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, 10129 Turin, Italy
Andrea Ajmar
Interuniversity Department of Regional and Urban Studies and Planning, Politecnico di Torino, 10125 Turin, Italy
Carlo Camporeale
Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, 10129 Turin, Italy
Alberto Cina
Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, 10129 Turin, Italy
Velio Coviello
Research Institute for Geo-Hydrological Protection, Italian National Research Council (CNR), 35127 Padua, Italy
deceased
Fabio Giulio Tonolo
Department of Architecture and Design, Politecnico di Torino, 10125 Turin, Italy
Alberto Godio
Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, 10129 Turin, Italy
Myrta Maria Macelloni
Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, 10129 Turin, Italy
Stefania Tamea
Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, 10129 Turin, Italy
Andrea Vergnano
Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, 10129 Turin, Italy
Related authors
No articles found.
Emanuele Mombrini, Stefania Tamea, Alberto Viglione, and Roberto Revelli
Hydrol. Earth Syst. Sci., 29, 2255–2273, https://doi.org/10.5194/hess-29-2255-2025, https://doi.org/10.5194/hess-29-2255-2025, 2025
Short summary
Short summary
In northwestern Italy, overall drought conditions appear to have worsened over the last 60 years due to both precipitation deficits and increased evapotranspiration caused by temperature increases. In addition to changes in drought conditions, changes in the characteristics of drought periods, both at a local and at a region-wide level, are found. Links between all the aforementioned changes and terrain characteristics are highlighted, finding generally worse conditions in lower-lying areas.
Andrea Vergnano, Diego Franco, and Alberto Godio
EGUsphere, https://doi.org/10.5194/egusphere-2024-2569, https://doi.org/10.5194/egusphere-2024-2569, 2024
Short summary
Short summary
We used radar to measure ice thickness in mountain glaciers, but it is challenging when the ice is temperate, or warm, due to signal scattering. Radar surveys of Rutor Glacier were inaccurate, so we used computer models to better estimate its thickness. Comparing estimates from computer models with radar measurements gave us a more accurate map, revealing more ice than previously thought. This combined method can improve future ice surveys and planning.
Francesca Pace, Andrea Vergnano, Alberto Godio, Gerardo Romano, Luigi Capozzoli, Ilaria Baneschi, Marco Doveri, and Alessandro Santilano
Earth Syst. Sci. Data, 16, 3171–3192, https://doi.org/10.5194/essd-16-3171-2024, https://doi.org/10.5194/essd-16-3171-2024, 2024
Short summary
Short summary
We present the geophysical data set acquired close to Ny-Ålesund (Svalbard islands) for the characterization of glacial and hydrological processes and features. The data have been organized in a repository that includes both raw and processed (filtered) data and some representative results of 2D models of the subsurface. This data set can foster multidisciplinary scientific collaborations among many disciplines: hydrology, glaciology, climatology, geology, geomorphology, etc.
A. B. Marra, M. L. B. T. Galo, F. Giulio Tonolo, E. E. Sano, and V. S. W. Orlando
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1459–1465, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1459-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1459-2023, 2023
G. Patrucco, P. Bambridge, F. Giulio Tonolo, J. Markey, and A. Spanò
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-2-2023, 1173–1180, https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-1173-2023, https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-1173-2023, 2023
M. M. Macelloni, A. Cina, N. Grasso, and U. Morra di Cella
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W3-2023, 165–171, https://doi.org/10.5194/isprs-archives-XLVIII-2-W3-2023-165-2023, https://doi.org/10.5194/isprs-archives-XLVIII-2-W3-2023-165-2023, 2023
F. Ioli, E. Bruno, D. Calzolari, M. Galbiati, A. Mannocchi, P. Manzoni, M. Martini, A. Bianchi, A. Cina, C. De Michele, and L. Pinto
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-1-2023, 137–144, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-137-2023, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-137-2023, 2023
Andreas Schimmel, Velio Coviello, and Francesco Comiti
Nat. Hazards Earth Syst. Sci., 22, 1955–1968, https://doi.org/10.5194/nhess-22-1955-2022, https://doi.org/10.5194/nhess-22-1955-2022, 2022
Short summary
Short summary
The estimation of debris flow velocity and volume is a fundamental task for the development of early warning systems and other mitigation measures. This work provides a first approach for estimating the velocity and the total volume of debris flows based on the seismic signal detected with simple, low-cost geophones installed along the debris flow channel. The developed method was applied to seismic data collected at three test sites in the Alps: Gadria and Cancia (IT) and Lattenbach (AT).
G. Patrucco, F. Giulio Tonolo, G. Sammartano, and A. Spanò
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2022, 399–406, https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-399-2022, https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-399-2022, 2022
L. Teppati Losè, F. Matrone, F. Chiabrando, F. Giulio Tonolo, A. Lingua, and P. Maschio
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2022, 415–422, https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-415-2022, https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-415-2022, 2022
E. Arco, A. Ajmar, F. Cremaschini, and C. Monaco
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2021, 71–78, https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-71-2021, https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-71-2021, 2021
L. Teppati Losè, F. Chiabrando, F. Giulio Tonolo, and A. Lingua
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 727–734, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-727-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-727-2021, 2021
A. Spreafico, F. Chiabrando, L. Teppati Losè, and F. Giulio Tonolo
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2021, 63–69, https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-63-2021, https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-63-2021, 2021
Velio Coviello, Lucia Capra, Gianluca Norini, Norma Dávila, Dolors Ferrés, Víctor Hugo Márquez-Ramírez, and Eduard Pico
Earth Surf. Dynam., 9, 393–412, https://doi.org/10.5194/esurf-9-393-2021, https://doi.org/10.5194/esurf-9-393-2021, 2021
Short summary
Short summary
The Puebla–Morelos earthquake (19 September 2017) was the most damaging event in central Mexico since 1985. The seismic shaking produced hundreds of shallow landslides on the slopes of Popocatépetl Volcano. The larger landslides transformed into large debris flows that travelled for kilometers. We describe this exceptional mass wasting cascade and its predisposing factors, which have important implications for both the evolution of the volcanic edifice and hazard assessment.
Stefania Tamea, Marta Tuninetti, Irene Soligno, and Francesco Laio
Earth Syst. Sci. Data, 13, 2025–2051, https://doi.org/10.5194/essd-13-2025-2021, https://doi.org/10.5194/essd-13-2025-2021, 2021
Short summary
Short summary
The database includes water footprint and virtual water trade data for 370 agricultural goods in all countries, starting from 1961 and 1986, respectively. Data improve upon earlier datasets because of the annual variability of data and the tracing of goods’ origin within the international trade. The CWASI database aims at supporting national and global assessments of water use in agriculture and food production/consumption and welcomes contributions from the research community.
Cited articles
Alley, R., Cuffey, K., Evenson, E., Strasser, J., Lawson, D., and Larson, G.: How glaciers entrain and transport basal sediment: Physical constraints, Quaternary Sci. Rev., 16, 1017–1038, https://doi.org/10.1016/S0277-3791(97)00034-6, 1997. a
ARPA Valle d'Aosta: Bilancio di massa, ARPA Valle d'Aosta, Tech. Rep., Agenzia Regionale Protezione Ambiente Valle d'Aosta, https://www.arpa.vda.it/it/effetti-sul-territorio-dei-cambiamenti-climatici/ghiacciai/bilancio-di-massa (last access: 3 July 2024), 2014. a
Bakker, M., Gimbert, F., Geay, T., Misset, C., Zanker, S., and Recking, A.: Field Application and Validation of a Seismic Bedload Transport Model, J. Geophys. Res.-Earth, 125, e2019JF005416, https://doi.org/10.1029/2019JF005416, 2020. a, b, c
Bogen, J., Xu, M., and Kennie, P.: The impact of pro‐glacial lakes on downstream sediment delivery in Norway, Earth Surf. Process. Landf., 40, 942–952, https://doi.org/10.1002/esp.3669, 2015. a
Bradford, J. H., Johnson, C. R., Brosten, T., McNamara, J. P., and Gooseff, M. N.: Imaging thermal stratigraphy in freshwater lakes using georadar, Geophys. Res. Lett., 34, L24405, https://doi.org/10.1029/2007GL032488, 2007. a
Brasington, J., Rumsby, B. T., and McVey, R. A.: Monitoring and modelling morphological change in a braided gravel-bed river using high resolution GPS-based survey, Earth Surf. Process. Landf., 25, 973–990, https://doi.org/10.1002/1096-9837(200008)25:9<973::AID-ESP111>3.0.CO;2-Y, 2000. a
Bunte, K., Abt, S. R., Potyondy, J. P., and Ryan, S. E.: Measurement of Coarse Gravel and Cobble Transport Using Portable Bedload Traps, J. Hydraul. Eng.-ASCE, 130, 879–893, https://doi.org/10.1061/(ASCE)0733-9429(2004)130:9(879), 2004. a
Camporese, M., Penna, D., Borga, M., and Paniconi, C.: A field and modeling study of nonlinear storage-discharge dynamics for an Alpine headwater catchment, Water Resour. Res., 50, 806–822, 2014. a
Carrer, M., Dibona, R., Prendin, A. L., and Brunetti, M.: Recent waning snowpack in the Alps is unprecedented in the last six centuries, Nat. Clim. Change, 13, 155–160, https://doi.org/10.1038/s41558-022-01575-3, 2023. a
Carrivick, J. L. and Tweed, F. S.: Deglaciation controls on sediment yield: Towards capturing spatio-temporal variability, Earth-Sci. Rev., 221, 103809, https://doi.org/10.1016/j.earscirev.2021.103809, 2021. a, b, c
Cavalli, M., Heckmann, T., and Marchi, L.: Sediment Connectivity in Proglacial Areas, Geography of the Physical Environment, Springer International Publishing, Cham, 271–287, ISBN 9783319941820, 2018. a
Chiabrando, F., Giulio Tonolo, F., and Lingua, A.: UAV Direct Georeferencing Approach in an Emergency Mapping Context. The 2016 Central Italy Earthquake Case Study, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W13, 247–253, https://doi.org/10.5194/isprs-archives-XLII-2-W13-247-2019, 2019. a
Corte, E., Ajmar, A., Camporeale, C., Cina, A., Coviello, V., Giulio Tonolo, F., Godio, A., Macelloni, M. M., Oggeri, C., Tamea, S., and Vergnano, A.: Bathymetry, sediment thickness, and geotechnical-geophysical properties of sediments of Lake Seracchi in Rutor proglacial area, Zenodo [data set], https://doi.org/10.5281/zenodo.7682072, 2023a. a, b
Corte, E., Ajmar, A., Camporeale, C., Cina, A., Coviello, V., Giulio Tonolo, F., Godio, A., Macelloni, M. M., Tamea, S., and Vergnano, A.: Rutor glacier fronts footprints, Zenodo [data set], https://doi.org/10.5281/zenodo.7713146, 2023b. a, b
Corte, E., Ajmar, A., Camporeale, C., Cina, A., Coviello, V., Giulio Tonolo, F., Godio, A., Macelloni, M. M., Tamea, S., and Vergnano, A.: Orthophoto and DSM Rutor Glacier 2020, Zenodo [data set], https://doi.org/10.5281/zenodo.8089499, 2023c. a, b
Corte, E., Ajmar, A., Camporeale, C., Cina, A., Coviello, V., Giulio Tonolo, F., Godio, A., Macelloni, M. M., Tamea, S., and Vergnano, A.: Hydrometric data in the Rutor proglacial area, Zenodo [data set], https://doi.org/10.5281/zenodo.7697100, 2023d. a, b
Corte, E., Ajmar, A., Camporeale, C., Cina, A., Coviello, V., Giulio Tonolo, F., Godio, A., Macelloni, M. M., Tamea, S., Vergnano, A., Bonfrisco, M., and Comiti, F.: Geophone data in the Rutor proglacial area (Valle d’Aosta, Italy), Zenodo [data set], https://doi.org/10.5281/zenodo.7708800, 2023e. a, b
Corte, E., Ajmar, A., Camporeale, C., Cina, A., Coviello, V., Giulio Tonolo, F., Godio, A., Macelloni, M. M., Tamea, S., and Vergnano, A.: Orthophoto and DSM Rutor Glacier 2021, Zenodo [data set], https://doi.org/10.5281/zenodo.10100968, 2023f. a, b
Corte, E., Ajmar, A., Camporeale, C., Cina, A., Coviello, V., Giulio Tonolo, F., Godio, A., Macelloni, M. M., Tamea, S., and Vergnano, A.: Ortophotos and DSMs UAV, Zenodo [data set], https://doi.org/10.5281/zenodo.10074530, 2023g. a, b
Corte, E., Ajmar, A., Camporeale, C., Cina, A., Coviello, V., Giulio Tonolo, F., Godio, A., Macelloni, M. M., Tamea, S., and Vergnano, A.: Rutor Glacier Surface Area – 2021, Zenodo [data set], https://doi.org/10.5281/zenodo.10101236, 2023h. a, b
Corte, E., Ajmar, A., Camporeale, C., Cina, A., Coviello, V., Giulio Tonolo, F., Godio, A., Macelloni, M. M., Tamea, S., and Vergnano, A.: Photogrammetric processing reports for two crewed aerial flights over the Rutor Glacier, Zenodo [data set], https://doi.org/10.5281/zenodo.11144390, 2024. a
Coviello, V., Capra, L., Vázquez, R., and Márquez-Ramírez, V. H.: Seismic characterization of hyperconcentrated flows in a volcanic environment, Earth Surf. Process. Landf., 43, 2219–2231, https://doi.org/10.1002/esp.4387, 2018. a
Coviello, V., Vignoli, G., Simoni, S., Bertoldi, W., Engel, M., Buter, A., Marchetti, G., Andreoli, A., Savi, S., and Comiti, F.: Bedload Fluxes in a Glacier‐Fed River at Multiple Temporal Scales, Water Resour. Res., 58, e2021WR031873, https://doi.org/10.1029/2021WR031873, 2022. a, b
Crameri, F., Shephard, G. E., and Heron, P. J.: The misuse of colour in science communication, Nat. Commun., 11, 5444, https://doi.org/10.1038/s41467-020-19160-7, 2020. a
Curry, A. M., Cleasby, V., and Zukowskyj, P.: Paraglacial response of steep, sediment-mantled slopes to post-“Little Ice Age” glacier recession in the central Swiss Alps, J. Quaternary Sci., 21, 211–225, https://doi.org/10.1002/jqs.954, 2006. a, b
Delaney, I., Bauder, A., Huss, M., and Weidmann, Y.: Proglacial erosion rates and processes in a glacierized catchment in the Swiss Alps, Earth Surf. Process. Landf., 43, 765–778, https://doi.org/10.1002/esp.4239, 2018. a, b
Eichel, J.: Vegetation Succession and Biogeomorphic Interactions in Glacier Forelands, pp. 327–349, Springer International Publishing, Cham, ISBN 978-3-319-94184-4, https://doi.org/10.1007/978-3-319-94184-4_19, 2019. a
Gizzi, M., Mondani, M., Suozzi, E., Glenda, T., and Lo Russo, S.: Aosta Valley Mountain Springs: A Preliminary Analysis for Understanding Variations in Water Resource Availability under Climate Change, Water, 14, 1004, https://doi.org/10.3390/w14071004, 2022. a
GLIMS Consortium: GLIMS Glacier Database, Version 1, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.7265/N5V98602, 2005. a, b
Grove, J. M.: Little Ice Ages, Ancient and Modern: 2nd edn., Routledge, ISBN 9781134701827, https://doi.org/10.4324/9780203770269, 2004. a
Guillon, H., Mugnier, J. L., and Buoncristiani, J. F.: Proglacial sediment dynamics from daily to seasonal scales in a glaciated Alpine catchment (Bossons glacier, Mont Blanc massif, France), Earth Surf. Process. Landf., 43, 1478–1495, https://doi.org/10.1002/esp.4333, 2018. a, b, c
Hallet, B., Hunter, L., and Bogen, J.: Rates of erosion and sediment evacuation by glaciers: A review of field data and their implications, Glob. Planet. Change, 12, 213–235, https://doi.org/10.1016/0921-8181(95)00021-6, 1996. a, b
He, H., Aogu, K., Li, M., Xu, J., Sheng, W., Jones, S. B., González-Teruel, J. D., Robinson, D. A., Horton, R., Bristow, K., Dyck, M., Filipović, V., Noborio, K., Wu, Q., Jin, H., Feng, H., Si, B., and Lv, J.: A review of time domain reflectometry (TDR) applications in porous media, in: Advances in Agronomy, vol. 168, Academic Press Inc., 83–155, ISBN 9780128245897, https://doi.org/10.1016/bs.agron.2021.02.003, 2021. a
Heckmann, T. and Schwanghart, W.: Geomorphic coupling and sediment connectivity in an alpine catchment – Exploring sediment cascades using graph theory, Geomorphology, 182, 89–103, https://doi.org/10.1016/j.geomorph.2012.10.033, 2013. a
Hicks, D. M., McSaveney, M. J., and Chinn, T. J.: Sedimentation in proglacial Ivory Lake, Southern Alps, New Zealand, Arct. Alp. Res., 22, 26–42, https://doi.org/10.2307/1551718, 1990. a
Hilger, L. and Beylich, A. A.: Sediment Budgets in High-Mountain Areas: Review and Challenges, chap. 15, Springer International Publishing, Cham, 251–269, ISBN 978-3-319-94184-4, https://doi.org/10.1007/978-3-319-94184-4_15, 2019. a, b, c
Hooke, R. L.: Toward a uniform theory of clastic sediment yield in fluvial systems, GSA Bulletin, 112, 1778–1786, https://doi.org/10.1130/0016-7606(2000)112<1778:TAUTOC>2.0.CO;2, 2000. a
Ivy-Ochs, S., Kerschner, H., Maisch, M., Christl, M., Kubik, P. W., and Schlüchter, C.: Latest Pleistocene and Holocene glacier variations in the European Alps, Quaternary Sci. Rev., 28, 2137–2149, https://doi.org/10.1016/j.quascirev.2009.03.009, 2009. a
James, M., Chandler, J., Eltner, A., Fraser, C., Miller, P., Mills, J., Noble, T., Robson, S., and Lane, S.: Guidelines on the use of Structure from Motion Photogrammetry in Geomorphic Research, Earth Surf. Process. Landf., 44, 2081–2084, https://doi.org/10.1002/esp.4637, 2019. a
Lane, S. N., Westaway, R. M., and Murray Hicks, D.: Estimation of erosion and deposition volumes in a large, gravel-bed, braided river using synoptic remote sensing, Earth Surf. Process. Landf., 28, 249–271, https://doi.org/10.1002/esp.483, 2003. a
Laute, K. and Beylich, A. A.: Environmental controls, rates and mass transfers of contemporary hillslope processes in the headwaters of two glacier-connected drainage basins in western Norway, Geomorphology, 216, 93–113, https://doi.org/10.1016/j.geomorph.2014.03.021, 2014. a
Mao, L., Comiti, F., Carrillo, R., and Penna, D.: Sediment Transport in Proglacial Rivers, in: Geomorphology of Proglacial Systems, Geography of the Physical Environment, Springer International Publishing, Cham, 199–217, ISBN 9783319941820, 2018. a
Matthews, J. A.: Geomorphology of Proglacial Systems: Landform and Sediment Dynamics in Recently Deglaciated Alpine Landscapes, vol. 29, Springer Cham, ISBN 9783319941820, https://doi.org/10.1177/0959683619840576, 2019. a, b
Moreau, M., Mercier, D., Laffly, D., and Roussel, E.: Impacts of recent paraglacial dynamics on plant colonization: A case study on midtre Lovénbreen foreland, Spitsbergen (79° N), Geomorphology, 95, 48–60, https://doi.org/10.1016/j.geomorph.2006.07.031, 2008. a
Müller, B. U.: Paraglacial sedimentation and denudation processes in an Alpine valley of Switzerland. An approach to the quantification of sediment budgets, Geodin. Acta, 12, 291–301, https://doi.org/10.1016/S0985-3111(00)87046-1, 1999. a
Orombelli, G.: Il ghiacciaio del Ruitor (Valle d’Aosta) nella piccola età glaciale, Geogr. Fis. Dinam. Quat. Suppl. VII, 239–251, 2005. a
Paul, F., Bolch, T., Briggs, K., Kääb, A., McMillan, M., McNabb, R., Nagler, T., Nuth, C., Rastner, P., Strozzi, T., and Wuite, J.: Error sources and guidelines for quality assessment of glacier area, elevation change, and velocity products derived from satellite data in the Glaciers_cci project, Remote Sens. Environ., 203, 256–275, https://doi.org/10.1016/j.rse.2017.08.038, 2017. a
Psarras, G. C.: Fundamentals of dielectric theories, in: Dielectric Polymer Materials for High-Density Energy Storage, Elsevier, 11–57, ISBN 9780128132159, https://doi.org/10.1016/B978-0-12-813215-9.00002-6, 2018. a
Raup, B., Racoviteanu, A., Khalsa, S. J. S., Helm, C., Armstrong, R., and Arnaud, Y.: The GLIMS geospatial glacier database: A new tool for studying glacier change, Glob. Planet. Change, 56, 101–110, https://doi.org/10.1016/j.gloplacha.2006.07.018, 2007. a, b
Sambuelli, L., Colombo, N., Giardino, M., and Godone, D.: A waterborne GPR survey to estimate fine sediments volume and find optimum core location in a Rockglacier Lake, in: Near Surface Geoscience 2015, in: 21st European Meeting of Environmental and Engineering Geophysics, 1, European Association of Geoscientists and Engineers, EAGE, 811–815, ISBN 9781510814127, https://doi.org/10.3997/2214-4609.201413826, 2015. a
Schmandt, B., Aster, R. C., Scherler, D., Tsai, V. C., and Karlstrom, K.: Multiple fluvial processes detected by riverside seismic and infrasound monitoring of a controlled flood in the Grand Canyon, Geophys. Res. Lett, 40, 4858–4863, https://doi.org/10.1002/grl.50953, 2013. a, b, c
Slaymaker, O.: Criteria to Distinguish Between Periglacial, Proglacial and Paraglacial Environments, Quaest. Geogr., 30, 85–94, https://doi.org/10.2478/v10117-011-0008-y, 2011. a, b
Sommer, C., Malz, P., Seehaus, T., Lippl, S., Zemp, M., and Braun, M. H.: Rapid glacier retreat and downwasting throughout the European Alps in the early 21st century, Nat. Commun., 11, 3209, https://doi.org/10.1038/s41467-020-16818-0, 2020. a
Teppati Losè, L., Chiabrando, F., and Giulio Tonolo, F.: Are Measured Ground Control Points Still Required in UAV Based Large Scale Mapping? Assessing the Positional Accuracy of an RTK Multi-Rotor Platform, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2020, 507–514, https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-507-2020, 2020a. a
Teppati Losè, L., Chiabrando, F., and Giulio Tonolo, F.: Boosting the Timeliness of UAV Large Scale Mapping. Direct Georeferencing Approaches: Operational Strategies and Best Practices, ISPRS Int. J. Geo-Inf., 9, 578, https://doi.org/10.3390/ijgi9100578, 2020b. a
Valbusa, U. and Peretti, L.: Relazioni delle Campagne Glaciologiche del 1936, Bollettino del Comitato Glaciologico Italiano, vol. 17, p. 183, Tipografia Nazionale di G. Bertero C., 1937. a
Vergnano, A., Oggeri, C., and Godio, A.: Geophysical–geotechnical methodology for assessing the spatial distribution of glacio‐lacustrine sediments: The case history of Lake Seracchi, Earth Surf. Proc. Land., 48, 1374–1397, https://doi.org/10.1002/esp.5555, 2023. a, b, c
Zhang, T., Li, D., East, A. E., Walling, D. E., Lane, S., Overeem, I., Beylich, A. A., Koppes, M., and Lu, X.: Warming-driven erosion and sediment transport in cold regions, Nat. Rev. Earth Environ., 3, 832–851, https://doi.org/10.1038/s43017-022-00362-0, 2022. a
Short summary
The study presents a set of multitemporal geospatial surveys and the continuous monitoring of water flows in a large proglacial area (4 km2) of the northwestern Alps. Activities were developed using a multidisciplinary approach and merge geomatic, hydraulic, and geophysical methods. The goal is to allow researchers to characterize, monitor, and model a number of physical processes and interconnected phenomena, with a broader perspective and deeper understanding than a single-discipline approach.
The study presents a set of multitemporal geospatial surveys and the continuous monitoring of...
Altmetrics
Final-revised paper
Preprint