Articles | Volume 16, issue 6
https://doi.org/10.5194/essd-16-2941-2024
https://doi.org/10.5194/essd-16-2941-2024
Data description paper
 | 
25 Jun 2024
Data description paper |  | 25 Jun 2024

BIS-4D: mapping soil properties and their uncertainties at 25 m resolution in the Netherlands

Anatol Helfenstein, Vera L. Mulder, Mirjam J. D. Hack-ten Broeke, Maarten van Doorn, Kees Teuling, Dennis J. J. Walvoort, and Gerard B. M. Heuvelink

Related authors

Developing the Swiss mid-infrared soil spectral library for local estimation and monitoring
Philipp Baumann, Anatol Helfenstein, Andreas Gubler, Armin Keller, Reto Giulio Meuli, Daniel Wächter, Juhwan Lee, Raphael Viscarra Rossel, and Johan Six
SOIL, 7, 525–546, https://doi.org/10.5194/soil-7-525-2021,https://doi.org/10.5194/soil-7-525-2021, 2021
Short summary
Quantifying soil carbon in temperate peatlands using a mid-IR soil spectral library
Anatol Helfenstein, Philipp Baumann, Raphael Viscarra Rossel, Andreas Gubler, Stefan Oechslin, and Johan Six
SOIL, 7, 193–215, https://doi.org/10.5194/soil-7-193-2021,https://doi.org/10.5194/soil-7-193-2021, 2021
Short summary

Cited articles

Aarts, N. and Leeuwis, C.: The Politics of Changing the Dutch Agri-Food System, Journal of Political Sociology, 1, 1, https://doi.org/10.54195/jps.14922, 2023. a
Adhikari, K., Kheir, R. B., Greve, M. B., Bøcher, P. K., Malone, B. P., Minasny, B., McBratney, A. B., and Greve, M. H.: High-Resolution 3-D Mapping of Soil Texture in Denmark, Soil Sci. Soc. Am. J., 77, 860–876, https://doi.org/10.2136/sssaj2012.0275, 2013. a
AHN: Actueel Hoogtebestand Nederland (AHN), AHN, https://www.ahn.nl/ (last access: 23 January 2024), 2023. a, b
Aitchison, J.: The statistical analysis of compositional data, Chapman and Hall, London, 1986. a
Akpa, S. I. C., Odeh, I. O. A., Bishop, T. F. A., and Hartemink, A. E.: Digital Mapping of Soil Particle-Size Fractions for Nigeria, Soil Sci. Soc. Am. J., 78, 1953–1966, https://doi.org/10.2136/sssaj2014.05.0202, 2014. a
Download
Short summary
Earth system models and decision support systems greatly benefit from high-resolution soil information with quantified accuracy. Here we introduce BIS-4D, a statistical modeling platform that predicts nine essential soil properties and their uncertainties at 25 m resolution in surface 2 m across the Netherlands. Using machine learning informed by up to 856 000 soil observations coupled with 366 spatially explicit environmental variables, prediction accuracy was the highest for clay, sand and pH.
Share
Altmetrics
Final-revised paper
Preprint