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Abstract. In response to the growing societal awareness of the critical role of healthy soils, there has been
an increasing demand for accurate and high-resolution soil information to inform national policies and support
sustainable land management decisions. Despite advancements in digital soil mapping and initiatives like Glob-
alSoilMap, quantifying soil variability and its uncertainty across space, depth and time remains a challenge.
Therefore, maps of key soil properties are often still missing on a national scale, which is also the case in the
Netherlands. To meet this challenge and fill this data gap, we introduce BIS-4D, a high-resolution soil model-
ing and mapping platform for the Netherlands. BIS-4D delivers maps of soil texture (clay, silt and sand content),
bulk density, pH, total nitrogen, oxalate-extractable phosphorus, cation exchange capacity and their uncertainties
at 25 m resolution between 0 and 2 m depth in 3D space. Additionally, it provides maps of soil organic matter
and its uncertainty in 3D space and time between 1953 and 2023 at the same resolution and depth range. The
statistical model uses machine learning informed by soil observations amounting to between 3815 and 855 950,
depending on the soil property, and 366 environmental covariates. We assess the accuracy of mean and median
predictions using design-based statistical inference of a probability sample and location-grouped 10-fold cross
validation (CV) and prediction uncertainty using the prediction interval coverage probability.

We found that the accuracy of clay, sand and pH maps was the highest, with the model efficiency coefficient
(MEC) ranging between 0.6 and 0.92 depending on depth. Silt, bulk density, soil organic matter, total nitrogen
and cation exchange capacity (MEC of 0.27 to 0.78), and especially oxalate-extractable phosphorus (MEC of −
0.11 to 0.38) were more difficult to predict. One of the main limitations of BIS-4D is that prediction maps cannot
be used to quantify the uncertainty in spatial aggregates. We provide an example of good practice to help users
decide whether BIS-4D is suitable for their intended purpose. An overview of all maps and their uncertainties
can be found in the Supplement. Openly available code and input data enhance reproducibility and help with
future updates. BIS-4D prediction maps can be readily downloaded at https://doi.org/10.4121/0c934ac6-2e95-
4422-8360-d3a802766c71 (Helfenstein et al., 2024a). BIS-4D fills the previous data gap of the national-scale
GlobalSoilMap product in the Netherlands and will hopefully facilitate the inclusion of soil spatial variability as
a routine and integral part of decision support systems.
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1 Introduction

Life on Earth, including that of humans, relies fundamentally
on the availability and quality of air, water and soil. These
essential resources exhibit spatial variations in accordance
with Tobler’s first law of geography, asserting that “every-
thing is related to everything else, but near things are more
related than distant things” (Tobler, 1970). However, the spa-
tial heterogeneity of soil properties stands out prominently
over short distances compared to air and water. This dispar-
ity arises from the multifaceted nature of soil, comprising
solid, liquid and gaseous phases, making it less mobile and
unable to form homogeneous mixtures akin to air or water.
Moreover, soil formation is a gradual process unfolding over
hundreds to millions of years, shaped by intricate interactions
between the climate, organisms (including humans), topog-
raphy and parent material (Dokuchaev, 1899; Jenny, 1941).
Some of these soil-forming factors themselves exhibit high
heterogeneity over short distances. Fully grasping soil spa-
tial variability requires dense sampling, but this is hindered
by the difficulty, time and expense of collecting soil samples.
These challenges underscore the complexity of quantifying
soil variation, highlighting the formidable task of mapping
soils in 3D space and time (3D+T).

With the rising awareness of soil health among diverse
stakeholders and within value chains (Lehmann et al., 2020),
soil scientists have been increasingly dedicated to delivering
high-resolution, accurate soil maps. Internationally promi-
nent examples of policies for which spatio-temporal soil
information is essential include several of the Sustainable
Development Goals, such as zero hunger and life on land
(United Nations, 2015), and, in Europe, the Green Deal,
Common Agricultural Policy and Zero Pollution Action Plan
(Panagos et al., 2022). The importance of soil information
for these policies has led to the EU soil strategy for 2030;
the Soil Deal (European Commission, 2021); and, most re-
cently, the Proposal for a Directive on Soil Monitoring and
Resilience (European Commission, 2023). For such policies
to have an impact, it is essential that soil scientists deliver in-
formation required to facilitate land use decisions and man-
agement practices at multiple scales.

In the Netherlands (land area= 33 481 km2), the demand
for soil information is also large. Located in the midst of
Europe’s largest delta, soils in the Netherlands are naturally
very fertile (Edelmann, 1950; Römkens and Oenema, 2004).
As one of Europe’s most densely populated countries, multi-
functional land use decisions made at national or regional
level need to be implemented at the field level, involving a
broad range of diverse stakeholders. This spectrum of stake-
holders collaborates on initiatives like the Smart Land Use
project, which aims to sequester an additional 0.5 Mt CO2-
eq per year to Dutch mineral agricultural soils (Slier et al.,
2023). Spatial information on soil properties can be used to

evaluate soil health on Dutch agricultural fields using tools
such as the Open Soil Index (OSI; Ros et al., 2022; Ros,
2023) and Soil Indicators for Agriculture (BLN 2.0; Ros
et al., 2023) and for assessing soil functions at different
scales (Schulte et al., 2015). Information on soil texture and
soil organic matter (SOM) is necessary for greenhouse gas
reporting of the Land Use, Land Use Change and Forestry
(LULUCF) sector for the United Nations Framework Con-
vention on Climate Change and the Dutch LULUCF submis-
sion under the Kyoto Protocol (KP-LULUCF; Arets et al.,
2020). Data on basic soil properties serve as inputs for mod-
eling agricultural suitability (Mulder et al., 2022), precision
agriculture (Been et al., 2023) and soil–water–atmosphere–
plant interactions (SWAP; van Dam et al., 1997; Kroes et al.,
2017). Furthermore, soil property maps contribute to initia-
tives such as the WaterVision Agriculture and Nature (Hack-
ten Broeke et al., 2019), Hydrological Instrumentations of
the Netherlands (NHI, 2023), and Delta Program 2024 (Delta
Programme, 2023).

Soil maps can also be used to identify and prioritize threats
to soil health, as reviewed for the Netherlands by Römkens
and Oenema (2004) and Hack-ten Broeke et al. (2009). Spe-
cific threats to soil health in the Netherlands include soil
compaction (van den Akker and Hoogland, 2011; van den
Akker et al., 2012), subsidence of peat due to oxidation and
compaction (Brouwer et al., 2018; van Asselen et al., 2018),
subsidence of young clay soils due to ripening on reclaimed
land (Brouwer et al., 2018), and soil erosion (Hessel et al.,
2011). Recently, Helfenstein et al. (2024c) mapped SOM in
3D+T, which identified decreases in SOM at high resolu-
tion in 3D space. Spatial soil information is also crucial for
not only agricultural businesses, for optimizing both fertil-
izer and manure applications for crop growth, but also en-
vironmental accounting. The demand for such information
is especially high in the Netherlands (Stokstad, 2019; Eris-
man, 2021; Aarts and Leeuwis, 2023), as it has the highest
livestock density in the EU (Eurostat, 2022, p. 32) and ranks
as the world’s second-largest agricultural exporter (Jukema
et al., 2023). An estimated 1 300 000 ha are phosphate sat-
urated soils, where phosphate loss due to leaching exceeds
ecologically tolerable limits (Römkens and Oenema, 2004).
Hence, providing spatially explicit soil information is crucial
to adhere to targets 4.2 and 4.3 of the Soil Deal for Europe,
which aim to reduce fertilizer use by at least 20 % and reduce
nutrient losses by at least 50 % by 2030 (European Commis-
sion, 2021). In summary, the pressure of using soils sustain-
ably in the Netherlands is immense.

Between the 1950s and 2000, conventional soil maps were
completed in many countries. Today, the well-established
discipline of digital soil mapping (DSM) has been widely
adopted to meet the demands for accurate and high-
resolution soil information for a wide range of purposes.
Since DSM was first conceptualized (McBratney et al., 2003;
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Scull et al., 2003), maps of soil properties and soil types have
been produced from local to global scales. These advances
were propelled by initiatives like GlobalSoilMap (GSM) un-
der the support of the International Union of Soil Sciences
(Arrouays et al., 2014a, b, 2015) and the availability of
openly accessible tutorials elucidating standard DSM work-
flows (Malone et al., 2017; Hengl and MacMillan, 2019;
Brus et al., 2017; Brus, 2019, 2022).

Historically, the Netherlands was at the forefront of soil
mapping. Scientific soil investigations in the Netherlands
were started by Winand C. H. Staring in the mid-1800s fol-
lowed by Jan van Baren and David J. Hissink in the early
1900s (Bouma and Hartemink, 2003). The first publication
on the spatial distribution of soil properties in the Nether-
lands dates back to the 19th century (Felix, 1995). System-
atic soil mapping became institutionalized with the establish-
ment of the Dutch Soil Survey institute or Stichting voor
Bodemkartering (StiBoKa) in 1945 (Hartemink and Sonn-
eveld, 2013). From 1950 to 1995, StiBoKa conducted con-
ventional soil surveys (Buringh et al., 1962; de Bakker and
Schelling, 1989; ten Cate et al., 1995) and produced regional
maps (1 : 10000 and 1 : 25000 scale) and a national map (1 :
50000 scale) of soil types (de Vries et al., 2003). After the
development of DSM as a research field, various studies used
(geo-)statistical methods to map qualitative and quantitative
soil properties using the data collected by StiBoKa (Brus and
Heuvelink, 2007; Brus et al., 2009; Kempen et al., 2014;
van den Berg et al., 2017; Helfenstein et al., 2022, 2024c).
Several regions of the national soil map have since been up-
dated (Kempen et al., 2009, 2011, 2012a; de Vries et al.,
2014, 2017, 2018; Brouwer et al., 2018; Brouwer and
Walvoort, 2019, 2020; Brouwer et al., 2021, 2023) and a
variety of thematic maps were derived, such as a map of
re-worked soils (Brouwer and van der Werff, 2012), a peat
thickness map (Brouwer et al., 2018), a map of soil land-
scapes (van Delft and Maas, 2022, 2023) and the soil phys-
ical units map of the Netherlands (BOFEK; Heinen et al.,
2022).

DSM has established itself and is routinely implemented
across the world, but various challenges remain (Chen et al.,
2022; Wadoux et al., 2021b). Maps of basic chemical, physi-
cal and especially biological soil properties are often missing
(Chen et al., 2022; Wadoux et al., 2021b). Approximately
78 % of articles reviewed by Chen et al. (2022) mapped
SOM, carbon content and carbon stocks. If a DSM product
is available, predictions are often only made for one depth
layer. Half of the studies reviewed by Chen et al. (2022) fo-
cused on soil properties at less than 30 cm depth only. How-
ever, users also require soil information at greater depths and
could benefit from models being able to predict at any de-
sired depth in 3D and, for dynamic soil properties, in 3D+T
(Chen et al., 2022; Wadoux et al., 2021b).

There are numerous challenges related to the accuracy of
soil maps (Wadoux et al., 2021b). One major challenge is that
the uncertainty in soil maps is often not quantified. A recent

review showed that only 35 % of studies mapping continuous
soil properties estimated prediction uncertainty (Piikki et al.,
2021). Without providing the uncertainty in a map, users can-
not determine its fitness for use. Moreover, assessing map ac-
curacy is not straightforward and involves many demanding
pre-requisites – for example, the sampling design of the loca-
tions used for statistical validation. According to Piikki et al.
(2021), only 13 % of studies used probability sampling for
map validation, which is the best approach for assessing map
accuracy (Brus et al., 2011; Wadoux et al., 2021a; de Bruin
et al., 2022). When using a soil map in a model or analy-
sis, the uncertainty may be so large that it compromises the
quality of the outputs of the model or analysis, posing risks
of erroneous conclusions and decisions for end users (Knot-
ters and Vroon, 2015; Knotters et al., 2015a, b; Heuvelink,
2018). The efficacy of uncertainty propagation analysis re-
lies on quantifying input uncertainty realistically, emphasiz-
ing the need to quantify uncertainty in soil maps. The above
challenges also apply to the Netherlands, where there is not
yet a product that meets all these requirements.

To meet these challenges and demands, we introduce a
high-resolution soil modeling and mapping platform for the
Netherlands called BIS-4D (Fig. 1). It delivers maps of key
soil properties according to GSM specifications and assesses
their accuracy using prediction uncertainty and statistical val-
idation. The platform provides maps of soil texture (clay,
silt and sand content), bulk density (BD), pH, total nitro-
gen (Ntot), oxalate-extractable phosphorus (Pox) and cation
exchange capacity (CEC) at 25 m resolution between 0 and
2 m depth in 3D space (Table 1). Furthermore, we provide
maps of SOM in 3D+T between 1953 and 2023 at the same
resolution and depth range since SOM has changed substan-
tially over time. Note that for soil pH and SOM, specific up-
dates were made compared to previous versions (Helfenstein
et al., 2022, 2024c, Sect. 2.7). These nine soil properties were
chosen based on those prioritized by GSM (Arrouays et al.,
2014a, b, 2015), end-user needs in the Netherlands and data
availability. In collaboration with soil surveyors, database
maintainers, and experts on Dutch soils from Wageningen
University & Research, we assessed the strengths and limi-
tations of the BIS-4D maps and recommended potential map
applications. Finally, model inputs, outputs (BIS-4D maps)
and code, using free and open-source software, were made
available, easily accessible and well documented so that BIS-
4D can be updated for future applications.

2 Materials and Methods

We predicted soil properties Ŷ in 3D space and SOM in
3D+T using well-established DSM methods (Fig. 1). BIS-
4D uses machine learning to model the relationship between
a soil property measured or estimated in the field at point
locations as the model response Y (Tables 1–3) and environ-
mental covariates as the explanatory variables X (Table 5).
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Figure 1. Graphical abstract of the BIS-4D soil modeling and mapping platform, where Y is a target soil property and X are covariates
that vary in 2D space (s), depth (d) and, for SOM, time (t). CLORPT stands for the soil-forming factors, i.e., climate, organisms, relief,
parent material and time (Dokuchaev, 1899; Jenny, 1941). RFE: recursive feature elimination, QRF: quantile regression forest, PI90: 90th
prediction interval width, PICP: prediction interval coverage probability (Sect. 2.3–2.6).

2.1 Soil point data

BIS-4D uses laboratory measurements and field
estimates of soil properties from point loca-
tions collected in the Dutch soil database, or
Bodemkundig informatie systeem (BIS, https:
//www.wur.nl/nl/onderzoek-resultaten/onderzoeksinstituten/
environmental-research/faciliteiten-tools/
bodemkundig-informatie-systeem-bis-nederland.htm,
last access: 23 January 2024). Definitions and laboratory
measurement and field estimation methods for the soil
properties mapped using BIS-4D are described in Table 1.
We only included observations between 0 and 2 m depth ex-
cluding the O horizon or the layer with dead plant material,
leaves, branches and other decomposing organic material on
top of mineral soils. As the majority of the soil point data
were collected before modern Global Positioning Systems
(Table 2), soil surveyors marked the point locations on a
1 : 25000 topographic map.

Note that clay, silt and sand content are particle size frac-
tions (PSFs) which together constitute soil texture. Thus,
soil texture is a compositional variable: each PSF must
be non-negative and together they must add up to 100 %

(Pawlowsky-Glahn and Buccianti, 2011; Pawlowsky-Glahn
et al., 2015). In order to achieve this, soil texture can be spa-
tially interpolated as a compositional variable using geosta-
tistical models (Odeh et al., 2003; Lark and Bishop, 2007;
Wang and Shi, 2017), e.g., compositional kriging (de Gruijter
et al., 1997; Walvoort and de Gruijter, 2001), machine learn-
ing (Akpa et al., 2014; Amirian-Chakan et al., 2019; Poggio
and Gimona, 2017; Poggio et al., 2021; Malone et al., 2021;
Varón-Ramírez et al., 2022) and other techniques (Buchanan
et al., 2012; Román Dobarco et al., 2017). Most commonly,
these studies used the additive log-ratio transformation with
the Gauss–Hermite quadrature (Aitchison, 1986). When not
modeled as a compositional variable, other approaches in-
clude estimating two of the three PSFs and calculating the
third by subtracting the sum of the two estimates from 100 %
(Adhikari et al., 2013) or modeling all three PSFs separately
(Viscarra Rossel et al., 2015; Chagas et al., 2016; Mulder
et al., 2016; Taghizadeh-mehrjardi et al., 2016; Pahlavan-
Rad and Akbarimoghaddam, 2018) and post-processing the
predictions to ensure that they are all non-negative and sum
to 100 %. For BIS-4D, we decided to model PSFs sepa-
rately followed by post-processing (Sect. 2.5) for three rea-
sons. Firstly, we wanted to use the additional locations where
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Table 1. Abbreviations, units and description of methods used for laboratory measurements and field estimates of target soil properties.
Mineral soil is defined as the dried soil fraction (105 °C) put through a 2 mm sieve after the removal of SOM and CaCO3.

Soil property Abbreviation Unit Description

Clay – % Soil particles < 2 µm as a mass percentage of the mineral soil fraction. Mea-
sured in the laboratory using the pipette method (NEN 5753, 2020) and esti-
mated in the field following ten Cate et al. (1995), de Bakker and Schelling
(1966) and de Bakker and Schelling (1989).

Silt – % Soil particles of 2–50 µm as a mass percentage of the mineral soil fraction
measured in the laboratory using the pipette method (NEN 5753, 2020).

Sand – % Soil particles of 50–2000 µm as a mass percentage of the mineral soil frac-
tion measured in the laboratory using the pipette method (NEN 5753, 2020).

Bulk density BD g cm−3 Dry bulk density of the oven-dry fine earth fraction divided by known-
volume cores.

Soil organic matter SOM % Measured in the laboratory using loss on ignition at 550 °C as a mass per-
centage of the mineral soil fraction or estimated in the field following ten
Cate et al. (1995), de Bakker and Schelling (1966) and de Bakker and
Schelling (1989).

pH [KCl] pH – Measured in the laboratory using pH in 1M KCl soil suspension.

Total N Ntot mg kg−1 Measured in the laboratory mainly using the Jodlbauer method (Maring
et al., 2009, Appendix E, p. 79).

Oxalate-extractable P Pox mmol kg−1 Measured in the laboratory mainly using extraction with ammonium oxalate
at pH 3 (Maring et al., 2009, Appendix E, p. 81).

Cation exchange capacity CEC mmol(c) kg−1 Measured in the laboratory mainly using extraction with silver thiourea or
calcium acetate at pH 6.5 (Maring et al., 2009, Appendix E, p. 81).

only one or two PSFs were observed (Table 2). Secondly,
modeling soil texture as a compositional variable does not
necessarily improve model performance (Amirian-Chakan
et al., 2019). Thirdly, modeling separately followed by post-
processing is easy to implement.

2.1.1 Soil point data for model calibration

We used laboratory measurements and field estimates from
the Boring Bodemkundig pakket (BPK) and Profielbeschri-
jving (PFB) datasets in BIS for model selection, tuning and
calibration (Tables 2 and 3, Fig. 3). Observations in BPK and
PFB were made by soil horizon and the range of years of
soil sampling are given in Table 2. Laboratory measurements
and field estimates were available for all depths between 0
and 2 m (Table 3). All laboratory measurements were made
at PFB locations. These locations are arranged in a purposive
sampling design selected in the past to create the national
1 : 50000-scale soil type map (de Vries et al., 2003). For the
majority of the target soil properties, these locations covered
soil variability in the Netherlands well (Fig. 2). The majority
of field estimates are part of the BPK dataset and are spatially
clustered in specific areas for regional soil mapping purposes
or specific projects (Fig. 2 in Helfenstein et al., 2024c). Most
soil properties follow a skewed distribution, especially SOM,

Ntot, Pox and CEC (Fig. 3). However, pH, sand and, to a lesser
extent, silt followed bimodal distributions. The distributions
of the target soil properties likely affected model predictions
(Sect. 4.1).

The laboratory measurements were deemed more impor-
tant than field estimates because they are more accurate and
locations with laboratory measurements were less spatially
clustered. Nevertheless, field estimates from BPK and PFB
also provide valuable information, expanding spatial cover-
age and, for SOM, temporal coverage from 1953–2022 as
well (Table 2). In addition, since around 2000, most observa-
tions that were added to the BIS are field estimates, a trend
which is likely to continue into the future due to limited bud-
gets for laboratory measurements. Other national mapping
studies have also used field estimates in the past (van den
Berg et al., 2017). We accounted for differences in data qual-
ity between laboratory measurements and field estimates us-
ing rigorous model tuning based on optimizing model perfor-
mance (Sect. 2.3). Field estimates were removed if there was
a laboratory measurement available from the same location
and soil horizon (and year in case of SOM). Methods for es-
timating clay content, BD and SOM in the field are described
in ten Cate et al. (1995), de Bakker and Schelling (1966) and
de Bakker and Schelling (1989).
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Table 2. Descriptive statistics of soil point data used for model calibration (field estimates and laboratory measurements) across all depths.
Locations: number of locations, Obs.: number of observations, min: minimum, max: maximum, year: years during which observations were
made, lab: laboratory measurements, field: field estimates. Minimum, median, mean and maximum values are in units of measurement of
each soil property (Table 1). Soil point data used for model calibration are publicly available (see Sect. 3).

Soil property Dataset Method Locations Obs. Min Median Mean Max Year

Clay
PFB Lab 3489 13 140 0 7 14.82 90.3 1953–2012
PFB, BPK Field 200 427 618 586 0 18 20.47 95 1955–2022

Silt PFB Lab 3376 12 912 0 17.8 24.29 97.5 1953–2002

Sand PFB Lab 3386 12 918 0 73.95 60.68 100 1953–2007

BD
PFB Lab 951 3362 0.1 1.43 1.33 1.96 1957–1988
PFB, BPK Field 2586 12 509 0.1 1.5 1.49 2 1955–2002

pH PFB Lab 4216 15 248 0.9 4.8 5.2 9 1953–2010

SOM
PFB Lab 4298 15 312 0 2.1 7 99.9 1953–2011
PFB, BPK Field 334 668 840 638 0 4 15.33 99 1954–2022

Ntot PFB Lab 2511 5739 0 1300 3287.38 36 700 1953–2003

Pox PFB Lab 1655 6084 0 3.44 8.34 95.2 1955–2011

CEC PFB Lab 1332 3815 0 103 165.73 1541 1955–2010

Table 3. Number of laboratory measurements (lab) and field estimates (field) used for model calibration per standard GSM depth layer for
each soil property.

Observation type Depth [cm] Clay Silt Sand BD pH SOM Ntot Pox CEC

Lab

0–5 400 299 299 65 919 1049 765 311 556
5–15 3844 3838 3840 3080 4524 5538 3258 2967 933

15–30 1803 1794 1802 632 2519 2500 1200 961 502
30–60 3731 3723 3725 2568 5392 5329 1192 3308 824

60–100 4397 4294 4291 3630 5228 6170 1667 3972 728
100–200 1262 1261 1258 1328 2329 2249 149 1566 272

Field

0–5 12 184 – – 1547 – 18 873 – – –
5–15 124 749 – – 1372 – 230 710 – – –

15–30 57 050 – – 1360 – 117 800 – – –
30–60 134 156 – – 2242 – 209 918 – – –

60–100 129 640 – – 2395 – 138 122 – – –
100–200 171 859 – – 3593 – 130 836 – – –

2.1.2 Soil point data for statistical validation

For clay, silt, sand and CEC, no separate dataset with labo-
ratory measurements was available for statistical validation,
meaning all observations were used for model calibration.
Therefore, statistical validation of these four soil properties
was conducted using cross validation (CV) of PFB laboratory
measurements (Sect. 2.6).

For BD, pH, SOM, Ntot and Pox, laboratory measurements
from either the Landelijke Steekproef Kaarteenheden (LSK)
or the Carbon Content NL (CCNL) dataset were available for
model validation (Table 4). LSK is a separate and indepen-
dent dataset gathered between 1993 and 2000, where loca-
tions were determined using probability sampling. The LSK

locations are shown in Fig. 1 in Helfenstein et al. (2022).
The stratified simple random sample contains 94 strata de-
fined based on soil type and groundwater class (Finke et al.,
2001; Visschers et al., 2007), with the original purpose being
to validate the national soil type map (de Vries et al., 2003).
Observations were made for each soil horizon. Statistical val-
idation of BD, pH, SOM, Ntot and Pox maps was conducted
using LSK because map accuracy should preferably be esti-
mated with design-based statistical inference using a proba-
bility sample (Brus et al., 2011). LSK data were also used to
validate earlier versions of soil pH (Helfenstein et al., 2022)
and SOM maps (Helfenstein et al., 2024c).

For SOM and Ntot, the CCNL dataset was used for sta-
tistical validation (Table 4). The CCNL dataset consists of
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Figure 2. Observation density for locations with laboratory measurements used for model calibration of all BIS-4D target soil properties.
All of these locations are part of the PFB dataset.

laboratory measurements from re-visited LSK locations in
2018, excluding locations that were no longer accessible.
In contrast to LSK, during which soil samples were taken
by soil horizon, CCNL locations were re-sampled at two
fixed depth layers (0–30 and 30–100 cm). LSK and CCNL
datasets were also used and their methodological sampling
differences were explained in van Tol-Leenders et al. (2019),

van den Elsen et al. (2020), and Knotters et al. (2022). Since
LSK was sampled by soil horizon at more locations and also
below 1 m depth, it is preferable to use it rather than CCNL.

For 3D+T maps of SOM, four different datasets were
used for statistical validation with the specific purpose to
assess SOM maps for specific years (Helfenstein et al.,
2024c): location-grouped 10-fold cross validation of PFB
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Figure 3. Histograms of soil property observations used for model calibration, colored by observation type.

Table 4. Descriptive statistics of separate soil point datasets used for statistical validation across all depths. Note that for statistical validation,
only laboratory measurements were used. Separate datasets were not available for clay, silt, sand and CEC. Locations: number of locations,
obs.: number of observations, min: minimum, max: maximum, year: periods during which observations were made.

Soil property Dataset Locations Obs. Min Median Mean Max Year

BD LSK 1363 5644 0.17 1.43 1.29 1.69 1993–2000

pH LSK 1363 5663 1.9 5.2 5.54 8.2 1993–2000

SOM
CCNL 1144 2284 0.5 3.4 7.51 78.7 2018
LSK 1185 4952 0.1 2.5 6.52 93.6 1993–2000
1SOM 63 276 0 1.9 9.97 96.9 1953–1995

Ntot CCNL 1145 2286 0 1360 2784.85 24 690 2018

Pox LSK 1480 6220 0 3.98 7.05 96.55 1989–2000

data (1953–2011; lab measurements shown in Table 2 and
Fig. 3), design-based inference using LSK (1993–2000),
design-based inference using CCNL (2018), and a separate
set of PFB locations that were re-sampled in 2022 and used
to assess changes in SOM over time (Table 4). Design-based

inference and cross-validation procedures are explained in
Sect. 2.6.
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2.2 Covariates

In line with the DSM methodology (McBratney et al., 2003;
Scull et al., 2003), we used 366 covariates as explanatory
variables that were representative of the soil-forming fac-
tors: climate, organisms, relief (topography), parent mate-
rial (geology) and time (Dokuchaev, 1899; Jenny, 1941). Ac-
counting for Tobler’s first law of Geography (Tobler, 1970)
and spatial autocorrelation, easting (x coordinate) and nor-
thing (y coordinate) were also included as covariates. Nu-
merous studies have used spatial position and geographical
distances as covariates (Li et al., 2011; Behrens et al., 2018b;
Hengl et al., 2018; Møller et al., 2020; Sekulić et al., 2020).
Sampling depth information, more specifically the upper and
lower boundary and midpoint of each sampled horizon, were
included as covariates so that predictions could be made at
any chosen depth and depth interval. See Ma et al. (2021)
for an overview of models using depth as a covariate in com-
parison to non-3D DSM methods. The majority of static co-
variates used in BIS-4D were previously used to map soil
pH (Helfenstein et al., 2022). Others, mainly derivations of
monthly mosaics from Sentinel-2 RGB and NIR bands, were
added to map SOM (Helfenstein et al., 2024c). In order to
map SOM in 3D+T, we extended upon established methods
by also deriving the covariate variable in time (2D+T) and
variable over depth and time (3D+T), as described in detail
in Helfenstein et al. (2024c). All covariates were re-sampled
at 25 m resolution according to the resolution of the national
land use maps (WENR, 2020; Hazeu et al., 2020).

We created a regression matrix containing the BIS-4D tar-
get soil property observations and static covariate values by
performing a spatial overlay. For SOM, this was extended
to a space–time overlay for 2D+T covariates and a space–
depth–time overlay for 3D+T covariates (Helfenstein et al.,
2024c).

2.3 Model selection, tuning and calibration

For model selection as defined by Hastie et al. (2009), we
removed covariates in a two-step procedure using decorrela-
tion followed by recursive feature elimination (RFE), as in
Poggio et al. (2021). From any pair of covariates for which
the Pearson correlation coefficient was > 0.85 or <−0.85,
the covariate that was more correlated with all remaining
covariates was removed. RFE (Guyon et al., 2002) was im-
plemented using the caret package (Kuhn, 2019) and the
number of covariates was chosen with the lowest root mean
squared error (RMSE; Eq. 3). From 366 covariates, this re-
sulted in a set of 50, 30, 20, 15 or 10 covariates depending
on the target soil property (Table 5), further used in model
tuning, calibration and prediction.

For model tuning, we grew random forest (RF) models
(Breiman, 2001) and optimized hyperparameters for mean
predictions. We tuned the model using a location-grouped
10-fold cross validation, meaning that all measurements from

the same soil profile location were forced to be in the same
fold. Location-grouped cross validation was chosen because
observations from the same profile in both model training and
validation can lead to overly optimistic model accuracy met-
rics. Field estimates were excluded from the holdout fold. We
assessed all combinations of the same hyperparameters as in
Sect. 2.4 of Helfenstein et al. (2022) and chose the combina-
tion with the lowest RMSE (Eq. 3; Table 6).

For soil properties where both laboratory and field esti-
mates were available (clay, silt, sand, BD and SOM), we also
tuned whether designating a larger case weight for laboratory
measurements improved model performance in order to ac-
count for the lower accuracy of field estimates compared to
laboratory measurements. Values of 2, 5, 10 and 15 times the
weight of field estimates were tested for laboratory measure-
ments (Table 6). In addition, we also tested excluding field
estimates entirely. The final set of hyper parameters was cho-
sen based on the lowest RMSE (Eq. 3) across the cross val-
idation. When the increase in RMSE was below 0.1 %, the
model with fewer trees was chosen to reduce computation
time during prediction. For silt and sand, model performance
was the highest when using only laboratory measurements,
so field estimates were excluded in model calibration (Ta-
ble 6).

For model calibration and prediction, we used RF to pre-
dict the mean and quantile regression forest (QRF) due to
its ability to predict the entire conditional distribution (Mein-
shausen, 2006). The final models used for prediction were
fitted using all soil observations in the calibration set (Ta-
ble 2), the selected covariates (Table 5) and the final set of
hyperparameters (Table 6).

2.4 Variable importance

During model calibration, we assessed variable importance
using the permutation method for pH, Ntot, Pox, CEC, silt and
sand, and the impurity method for clay, BD and SOM. Per-
mutation gives a better estimate of the variable importance
than impurity because impurity has a bias towards covari-
ates with more distinct values, making it negatively biased
towards categorical covariates as they have a finite number
of binary splits due to their limited number of classes (Sandri
and Zuccolotto, 2008, 2010). However, the permutation mea-
sure is dependent on the out-of-bag error (Breiman, 2002).
When case weights are high, out-of-bag estimation is not
possible because the observations with high weights are se-
lected in the bootstrap sample of all trees, regardless of the
sample fraction. Hence, we could not compute the out-of-bag
error and use the permutation variable importance measure
for these observations in clay, BD and SOM models because
they were never out of bag.

https://doi.org/10.5194/essd-16-2941-2024 Earth Syst. Sci. Data, 16, 2941–2970, 2024



2950 A. Helfenstein et al.: BIS-4D

Table 5. Covariates used during model calibration and prediction for different responses (soil properties), i.e., after covariate removal
based on decorrelation and recursive feature elimination (RFE; Sect. 2.3). “All” implies that a covariate was used in tuning, calibration and
prediction of all soil properties. Further information can be found in the metadata files and description of the provided covariates (Sect. 3).

Soil-
forming
factor

Description Source Soil property

Soil
Peat classes’ starting depth and thickness National soil map (de Vries et al., 2003) Clay, BD, pH, Ntot, CEC
Groundwater classes in agricultural areas; sub-
surface material in groundwater zones

de Gruijter et al. (2004), Hoogland et al.
(2014), Knotters et al. (2018)

All

Climate
Long-term mean, min and max temperature KNMI (2020) BD, Ntot, Pox, CEC
Long-term mean precipitation KNMI (2020) Clay, silt, BD, SOM, Ntot,

Pox

Organism

Land use 1900, 1960, 1970, 1980 and 1986–
2022

HGN (Alterra, 2004); LGN (WENR,
2020; Hazeu et al., 2020)

Clay, silt, sand, pH, SOM,
Ntot

Sentinel-2 RGB and NIR bands and spectral in-
dices (2015–2022) as in Loiseau et al. (2019)

Roerink and Mücher (2023) All

Manure application, ammonia and total N emis-
sions, management type

Besluit Gebruik Dierlijke Meststoffen
(BGDM; RIVM, 2020), BIJ12 (2019)

Clay, silt, sand, BD, pH,
Pox, CEC

Land cover and vegetation types Bakker et al. (1989) Clay, pH, CEC
Forest vegetation types, tree species and age de Vries and Al (1992), Clement (2001) Clay, silt, sand, pH, Pox,

CEC
Water drainage classes, areas behind dikes or
not, riparian zone land cover

Maas et al. (2019) Clay, silt, sand, pH

Relief
Digital elevation model (DEM) and derivatives AHN (2023) All
Low- vs. high-elevation regions (binary) Knotters et al. (2018) Clay, silt, sand, pH

Parent
material

Geological units/classes and chronostrati-
graphic formation period

Kombrink et al. (2012), van der Meulen
et al. (2013)

Clay, silt, sand, pH, CEC

Geomorphology based on geomorphological
classes, genesis, form, formation time and relief

Koomen and Maas (2004), Maas et al.
(2019)

Clay, silt, sand, BD, pH,
SOM, Ntot, CEC

Physical geographic regions and landscape
types

EZK (2013) Clay, silt, sand, BD, pH,
SOM, Ntot, CEC

(Paleo-)geographical maps (9000–250 BCE,
100–1850 BC)

Vos (2015), Vos et al. (2020) Clay, silt, sand, BD, pH,
SOM, Ntot

Spatial
position

Easting and northing – Clay, silt, sand, BD, pH,
SOM, Pox, CEC

Upper, midpoint and lower boundary of soil
layer

– All

Time
2D+T dynamic covariates of land use (Helfen-
stein et al., 2024c)

HGN (Alterra, 2004); LGN (WENR,
2020; Hazeu et al., 2020)

SOM

2D+T and 3D+T dynamic covariates of peat
classes and peat occurrence (Helfenstein et al.,
2024c)

Original (1960–1995) and updated
(2014–2021) national soil map
(de Vries et al., 2003)

SOM

2.5 Prediction maps

The calibrated RF and QRF and final set of covariates were
used to estimate the mean, median (0.50 quantile; q0.50), 0.05
quantile (q0.05) and 0.95 quantile (q0.95) at every 25 m pixel
and each standard depth layer specified by GSM (0–5, 5–
15, 15–30, 30–60, 60–100 and 100–200 cm) over the Nether-
lands. In addition, spatially explicit 90 % prediction interval
widths (PI90) were obtained at every 25 m pixel as a measure

of prediction uncertainty as follows:

PI90= q0.95− q0.05. (1)

We post-processed the mean and median PSF prediction
maps to ensure that the three PSF maps summed to 100 %.
The predictions of clay, silt and sand were divided by the
sum of the three at that location and multiplied by 100 for
every 25 m pixel. We chose not to use kriging of the QRF
prediction residuals (regression kriging) because there was
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Table 6. Final covariate count (post-decorrelation and RFE) and optimized hyperparameters for each modeled soil property. In instances
without case weights, optimal performance was achieved excluding field estimates (silt and sand) or when the property was not estimated in
the field (pH, Ntot, Pox, and CEC).

Soil property Number of covariates Number of trees Mtry Min node size Sample fraction Split rule Case weight

Clay 50 500 12 1 0.8 Variance 5
Silt 50 500 10 1 0.8 Variance –
Sand 50 500 10 1 0.8 Variance –
BD 30 250 8 1 0.8 Variance 5
pH 50 500 12 1 0.8 Variance –
SOM 33 500 7 1 0.8 Variance 10
Ntot 20 500 4 1 0.8 Variance –
Pox 30 500 6 1 0.8 Variance –
CEC 50 500 10 1 0.63 Variance –

no spatial autocorrelation in the residuals and to simplify the
procedure.

2.6 Accuracy assessment

We evaluated map quality using internal (model-based) and
external (model-free) accuracy assessment. At the location
and depth, and year in the case of SOM, of a soil property
measurement, all quantiles from 0 to 1 at steps of 0.02 were
predicted to obtain the PI90 (Eq. 1) as well as the prediction
interval coverage probability (PICP) of prediction intervals
between 0.02 and 1. The PICP is the proportion of indepen-
dent observations that fall into the corresponding prediction
interval (Papadopoulos et al., 2001). We refer to the PICP of
the PI90 as the PICP90. The PICP is an indication of how ac-
curately QRF quantifies uncertainty. Prediction uncertainty
using PI90 is an example of a model-internal accuracy as-
sessment since it is QRF-dependent, whereas PICP is an ex-
ternal accuracy metric.

Besides PICP, we used two different statistical validation
methods for an external accuracy assessment: (1) design-
based inference (Brus et al., 2011; Brus, 2022) using ei-
ther LSK or CCNL laboratory measurements and (2) non-
design-based inference using PFB laboratory measurements
(Sect. 2.1.2; Table 4). We used the same approach as de-
scribed in detail in Helfenstein et al. (2022) to adapt design-
based inference for statistical validation of prediction maps at
different depth layers. However, design-based inference was
not used to assess clay, silt, sand and CEC predictions as it
was not measured in LSK or CCNL. For non-design-based
inference, we used location-grouped 10-fold cross valida-
tion of the PFB laboratory measurements, similarly to during
model tuning.

To obtain commonly used accuracy metrics, both mean
and median predictions were used to calculate residuals.
From these residuals, we estimated the mean error (ME or

bias), the RMSE and the model efficiency coefficient (MEC):

M̂E=
1
n

n∑
i=1

(yi − ŷi) , (2)

R̂MSE=

√√√√1
n

n∑
i=1

(yi − ŷi)2, (3)

M̂EC= 1 −
∑n

i=1(yi − ŷi)2∑n
i=1(yi − y)2 , (4)

where n is the number of validation observations; yi and ŷi

are the ith observation and prediction, respectively, at a cer-
tain location, depth and year (for SOM); and y is the mean of
all validation observations. Equations (2)–(4) apply for non-
design-based inference. The adapted equations for design-
based inference are Eqs. (5), (8) and (11) in Helfenstein et al.
(2022). We computed these accuracy metrics for all observa-
tions and separated into observations pertaining to each depth
layer as the latter was necessary for design-based inference
(Helfenstein et al., 2022).

In addition to rigorous quantitative accuracy assessment,
we also evaluated the spatial patterns of BIS-4D prediction
maps qualitatively by comparing them to existing soil maps
in the Netherlands (de Vries et al., 2003; Brus et al., 2009;
Schoumans and Chardon, 2015; van den Berg et al., 2017;
Heinen et al., 2022; Knotters et al., 2022) and based on ex-
pert judgment. We acknowledge that qualitative evaluation
was not definitive and is indicative only. Note that we did not
compare visual patterns of the national soil map (de Vries
et al., 2003) and the soil physical units map (BOFEK; Heinen
et al., 2022) to BIS-4D predictions in peat areas, as covari-
ates of peat classes were used in model calibration (Table 5
and Fig. 5 in Helfenstein et al., 2024c).

2.7 BIS-4D updates: pH and SOM

Previous map versions of soil pH in 3D and SOM in 3D+T
have recently been published using BIS-4D (Helfenstein
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et al., 2022, 2024c). For soil pH, the version presented here
contains several important updates. Firstly, covariates of peat
classes (de Vries et al., 2003), groundwater classes in agri-
cultural areas (Knotters et al., 2018), and Sentinel-2 RGB
and NIR bands and spectral indices (Roerink and Mücher,
2023) were added, all of which were selected and thus used
for model calibration and prediction of the updated version
(Table 5). We also included decorrelation and RFE to in-
crease the signal-to-noise ratio and make models more par-
simonious (Sect. 2.3). For 3D+T maps of SOM, we included
the latest national land use map (year 2022) to derive the dy-
namic 2D+T land use covariates and predict SOM for the
year 2023.

2.8 Software and computational framework

The computational framework of BIS-4D is entirely based on
open-source software and was operationalized on an Ubuntu
22.04 operating system with 48 cores and 128 GB working
memory (RAM). Model input data (soil point data and co-
variates), scripts and model outputs (BIS-4D soil property
prediction maps and their associated uncertainty maps) are
openly accessible (Sect. 3).

BIS-4D is mostly based on R (version 4.3.1; R Core
Team, 2023), although GDAL (version 3.7.2; GDAL/OGR
contributors, 2023) and SAGA-GIS (version 7.8.4; Conrad
et al., 2015) were used during covariate preparation and pro-
cessing because this massively decreased computation time
compared to using similar functions in R. Further details
about re-sampling, masking and processing of covariates
and reclassification of categorical covariates can be found
in Sect. 2.7 of Helfenstein et al. (2022). The indices nec-
essary for the location-grouped 10-fold CV were made us-
ing the CAST R package (Meyer, 2023). The caret pack-
age (Kuhn, 2008, 2019, 2022) was used for the tuning and
selection of hyperparameters. We used the ranger pack-
age (Wright and Ziegler, 2017) with the option quantreg to
grow a QRF during calibration and without it to grow a RF
during RFE and tuning. For predictions, the option quantiles
was used to predict quantiles, while the option response was
used to predict the mean. A combination of the ranger
and terra packages was used for predicting at all loca-
tions and depths. We used QGIS (version 3.32.3; QGIS De-
velopment Team, 2023) and the rasterVis (Lamigueiro
and Hijmans, 2023) and mapview (Appelhans et al., 2023)
R packages for exploratory and qualitative analysis and vi-
sualization of covariates and prediction maps. The compu-
tational workflow for all BIS-4D maps took approximately
5700 CPU hours.

3 Code and data availability

The BIS-4D soil property prediction maps at 25 m resolu-
tion can be downloaded at https://doi.org/10.4121/0c934ac6-
2e95-4422-8360-d3a802766c71 (Helfenstein et al., 2024a).

Prediction maps of the mean, median, 0.05 and 0.95 quan-
tiles and the PI90 are available for each standard depth layer
specified by GSM (0–5, 5–15, 15–30, 30–60, 60–100 and
100–200 cm). For SOM, maps at the same resolution and for
the same depth layers are available for the years 1953, 1960,
1970, 1980, 1990, 2000, 2010, 2020 and 2023.

Regarding BIS-4D model inputs, the soil point data on
laboratory measurements and field estimates used during
model calibration (PFB and BPK data) are publicly avail-
able at https://doi.org/10.4121/c90215b3-bdc6-4633-b721-
4c4a0259d6dc (Helfenstein et al., 2024d). The georeferenced
soil point data of PFB and BPK can also be viewed at https://
bodemdata.nl/bodemprofielen (last access: 23 January 2024).
LSK and CCNL data used for design-based inference are
not open due to privacy agreements. The pre-processed co-
variates that are openly available can be downloaded at
25 m resolution at https://doi.org/10.4121/6af610ed-9006-
4ac5-b399-4795c2ac01ec (Helfenstein et al., 2024b). This
includes the majority of the covariates used for BIS-4D, with
the main exception being the covariates related to the na-
tional forestry inventory, since these data are closed. The co-
ordinate reference system of the spatial point and raster data
is EPSG:28992 (Amersfoort/RD New).

A frozen version of the BIS-4D code is available
at https://doi.org/10.5281/zenodo.12238785 (Helfenstein,
2024b). The GitLab code repository is complete with the ex-
ception of BIS database credentials and the LSK and CCNL
data. All data and code are available under the CC BY 4.0
license, except for the covariates (Helfenstein et al., 2024b),
which are available under the CC BY-NC-SA 4.0 license.

4 Results and discussion

BIS-4D prediction maps for every GSM depth
layer at 25 m resolution can be downloaded at
https://doi.org/10.4121/0c934ac6-2e95-4422-8360-
d3a802766c71 (Helfenstein et al., 2024a). These include
predictions of the mean, 0.05, 0.50 (median) and 0.95
quantiles and the PI90 of clay, silt, sand, BD, pH, Ntot, Pox
and CEC. For SOM, these prediction maps are available
for the years 1953, 1960, 1970, 1980, 1990, 2000, 2010,
2020 and 2023 (Sect. 3). An overview of all prediction maps
together with the associated accuracy metrics (ME, RMSE,
MEC and PICP) and variable important information can be
found in the Supplement, which is organized by target soil
property.

4.1 Accuracy assessment

4.1.1 Quantitative accuracy assessment

The accuracy of the produced maps varied considerably de-
pending on the soil property (Tables 7 and 8; see the Sup-
plement). Based on 10-fold cross validation (Table 7), the
accuracy of mean predictions over all depths for clay, sand,
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BD, pH and Ntot maps was the highest (MEC > 0.70), fol-
lowed by SOM and silt (MEC > 0.60). Mean predictions for
Pox and CEC were the least accurate (MEC of 0.54 and 0.49,
respectively). Design-based inference separated by the depth
layer confirms the high accuracy of pH prediction maps (Ta-
ble 8). MEC values computed for mean and median predic-
tions using design-based inference were lower for BD (0.34–
0.78) and Ntot (0.27–0.52) than when using 10-fold cross
validation. Mean and median Pox maps were very inaccurate
(MEC of −0.11–0.38) based on design-based inference. The
large differences in accuracy between 10-fold cross valida-
tion using PFB laboratory measurements and design-based
inference using LSK laboratory measurements for BD and
Pox may be due to the clustered and limited spatial distribu-
tion of calibration data for those soil properties (Fig. 2d and
h). Therefore, for BD and Pox, metrics using 10-fold cross
validation are likely overly optimistic.

The RMSE and ME were low for most soil properties (Ta-
ble 7 and the Supplement). The RMSE of sand was higher
than for clay and silt, even though the MEC of sand indi-
cates higher model performance for sand than for silt. This
can be explained by the high proportion of regions in the
Netherlands with very high sand content (> 75 %), i.e., the
Pleistocene sandy areas shown in pink in Fig. 4d and h. In
comparison, laboratory measurements of clay and silt con-
tent were rarely > 75 % (Fig. 3).

The differences in accuracy between mean and median
prediction maps varied slightly between soil properties. The
low and high values of the mean predictions were systemati-
cally biased so that the low values of the observed soil prop-
erty were overestimated and the high values underestimated,
both to varying degrees for different target soil properties
(Figs. S10, S21, S32, S43, S54, S65, S76, S87 and S98).
Thus, while the mean predictions were slightly less biased
than the median predictions when averaging over all values
except for SOM (Table 7), they were more biased than the
median predictions for the low and high values. For soil prop-
erties where calibration data were positively skewed (Fig. 3),
i.e., all soil properties except sand, BD and pH, the bias of
mean predictions was negative, whereas the bias of median
predictions was positive (Table 7). In contrast to the find-
ings based on 10-fold cross validation, design-based infer-
ence of Ntot revealed that median predictions were less bi-
ased (between −609 and 120 mg kg−1; see the Supplement)
than mean predictions (between −511 and −1408 mg kg−1;
see the Supplement). Higher accuracy of median predicted
Ntot was also reflected in lower RMSE (Table S7) and higher
MEC values (Table 8). In summary, although it depends on
the use, we overall recommend to use median predictions
since low and high values were less biased and ME, RMSE
and MEC values for both mean and median predictions were
similar.

Mean predictions are more sensitive to extreme values and
outliers than median predictions. For instance, in mineral
soils, the predicted conditional distribution of SOM, Ntot,

Pox and CEC was positively skewed and median predictions
were usually smaller than mean predictions (e.g., von Hip-
pel, 2005, Fig. 1 therein). In peat soils, the opposite was the
case. Here, the predicted conditional distribution of SOM,
Ntot, Pox and CEC was negatively skewed and median pre-
dictions were larger than mean predictions. For these soil
properties, mean predictions were thus systematically higher
than median predictions in mineral soils, whereas mean pre-
dictions were systematically lower than median predictions
in peat soils.

The maps of prediction uncertainty (PI90) for every GSM
depth layer revealed that uncertainty was high when mean
and median predictions fell within a range with limited cal-
ibration data (Supplement). This meant that for most soil
properties, uncertainty was high in areas where predictions
were high due to the positively skewed distribution of ob-
servation data (Fig. 3). For example, the positive correlation
between increasing uncertainty with increasing predictions
can be clearly observed for clay and silt in Fig. 4e, f, i and
j. The same positive correlation between predictions and un-
certainty was observed for Ntot over depth (Fig. 5e and f). We
found a similar pattern of high uncertainty in peatlands due to
high predictions in these areas for SOM, Pox and CEC. How-
ever, given its bimodal distribution, the uncertainty for sand
was the highest in areas where predictions ranged between
25 % and 75 % (for example, in the river areas) and uncer-
tainty was comparatively low in marine clay areas (< 25 %
sand) and Pleistocene areas (> 75 % sand) (Fig. 4c, g and k).

Prediction uncertainty for most soil properties increased
with increasing depth (e.g., Fig. 5f), except if mean and me-
dian predictions decreased substantially over depth, as was
the case for Pox (Figs. S78–S85 in the Supplement). Higher
uncertainty at lower depths is in line with worse accuracy
metrics at lower depths (Table 8 in the Supplement) and this
tendency was found in the majority of recently reviewed
DSM studies (Chen et al., 2022). Deeper soil layers are
generally more difficult to predict because limited informa-
tion about the subsoil can be derived from most covariates,
and especially remote sensing products. However, for BD
and pH, the accuracy from 15–30 cm depth may have been
higher than from 0–15 cm depth because only 245 observa-
tions were available for statistical validation in LSK from
15–30 cm depth (Tables S4 and S6). Therefore, the metrics
computed via design-based inference from 15–30 cm depth
for BD and pH are likely less representative of map quality
compared to metrics of the other depth layers, where many
more observations were available.

Prediction uncertainty in most soil properties was also
higher in urban areas, which can be attributed to limited
soil samples and heavily disturbed soils in urban areas. With
increasing population growth in an already densely popu-
lated country, this highlights the need to map urban soils
(Römkens and Oenema, 2004; Vasenev et al., 2014, 2021;
Kortleve et al., 2023).
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Table 7. Accuracy metrics of BIS-4D soil property maps using mean and median predictions, computed using 10-fold cross validation
(Sect. 2.6). Units of ME and RMSE are in units of the measured soil property (Table 1).

Soil property ME (mean) ME (median) RMSE (mean) RMSE (median) MEC (mean) MEC (median) PICP90

Clay −0.23 0.42 8.1 7.7 0.77 0.78 0.84
Silt −0.28 0.59 12 13 0.62 0.57 0.91
Sand 0.35 −1.2 17 17 0.74 0.74 0.92
BD −0.011 −0.032 0.21 0.22 0.71 0.68 0.86
pH −0.010 −0.023 0.71 0.72 0.73 0.72 0.93
SOM −1.0 0.97 9.5 9.7 0.64 0.64 0.88
Ntot −37 390 2800 2900 0.72 0.69 0.91
Pox −0.33 1.5 7.5 7.7 0.54 0.52 0.92
CEC −3.6 26 130 140 0.49 0.46 0.92

Table 8. MEC for mean and median predictions of BIS-4D soil property maps, separated by the depth layer and computed using either
10-fold cross validation (CV) of PFB laboratory measurements or design-based inference (DBI) using LSK or CCNL data (Table 4). DBI for
Ntot at 100–200 cm depth was not possible because soil samples were not collected below 100 cm in CCNL (Sect. 2.1.2 and 2.6). However,
for this depth layer, CV metrics are included in the Supplement (Table S7).

Statistical validation method CV CV CV DBI DBI DBI DBI DBI CV

Prediction Depth [cm] Clay Silt Sand BD pH SOM Ntot Pox CEC

Mean

0–15 0.84 0.70 0.80 0.39 0.71 0.52 0.44 0.25 0.59
15–30 0.84 0.68 0.81 0.78 0.91 0.53 0.44 0.17 0.49
30–60 0.77 0.62 0.75 0.54 0.73 0.34 0.27 -0.11 0.47

60–100 0.69 0.54 0.67 0.49 0.74 0.46 0.27 0.04 0.38
100–200 0.60 0.51 0.61 0.47 0.77 0.44 – 0.04 0.16

Median

0–15 0.84 0.67 0.79 0.34 0.71 0.48 0.52 0.20 0.56
15–30 0.85 0.65 0.82 0.78 0.92 0.68 0.52 0.38 0.43
30–60 0.79 0.58 0.75 0.54 0.72 0.27 0.41 0.05 0.42

60–100 0.72 0.48 0.67 0.44 0.74 0.53 0.41 0.00 0.36
100–200 0.63 0.44 0.61 0.41 0.76 0.54 – 0.11 0.26

The PICP90 (Table 7) and the PICP (the Supplement) indi-
cated that prediction uncertainty was estimated relatively ac-
curately using QRF, but small differences were found among
the predicted soil properties. For clay content, the PICP90
was between 0.82 and 0.86 (Table S1) and hence less than
0.90, indicating that the uncertainty in clay predictions was
underestimated. The uncertainty in BD based on PFB labo-
ratory measurements was slightly underestimated (0.86; Ta-
ble 7) but was slightly overestimated based on LSK labo-
ratory measurements (0.88–0.95; Table S4). For SOM, the
PICP90 varied strongly with depth (0.75–0.96; Table S5), but
the PICP was overall very accurate for all depths combined
(Fig. S53). In our study, the soil properties for which field es-
timates were included during calibration were the only ones
for which the PI90 was sometimes underestimated. Simi-
larly, Chen et al. (2023) found that increasing the proportion
of spectral estimates combined with conventional laboratory
measurements decreased the PI90. Hence, if calibration data
are a smoothed version of the truth, which may be the case
with predictions of spectral models and field estimates, this
tends to lead to underestimation of the “true” uncertainty.

The aim of sharp, i.e., narrow conditional probability distri-
butions by including various types of observational data is
desirable only if ensuring that the uncertainty is still reliable,
e.g., by computing the PICP (Schmidinger and Heuvelink,
2023). This is important to avoid presenting overoptimistic
results to end users. Besides clay, BD and SOM, prediction
uncertainty for the remaining target soil properties was accu-
rate but marginally overestimated (0.89–0.97) based on the
independent datasets used for statistical validation (LSK and
CCNL; see the Supplement). Hence, the PICP indicates that
silt, sand, pH, Ntot, Pox and CEC maps are somewhat more
accurate than suggested by the prediction uncertainty (PI90).

4.1.2 Qualitative accuracy assessment

The BIS-4D maps of the nine predicted soil properties align
with the national soil map of the Netherlands (de Vries et al.,
2003). This can be seen when comparing our maps (Figs. 4
and 5; see the Supplement) with the soil physical units map
(BOFEK; Fig. 4d and h; Heinen et al., 2022) derived from
the national soil map of the Netherlands. Further informa-
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Figure 4. Mean predicted clay [%] (a, e), silt [%] (b, f) and sand [%] content (c, g) at 60–100 cm depth and associated prediction uncertainty
(PI90: 90th prediction interval width) and the soil physical units map of the Netherlands (BOFEK; Heinen et al., 2022; d, h) in comparison.
The soil physical unit codes can be found in Heinen et al. (2022); here grouped into the main categories (code beginning with 1 representing
peat, with 2 peaty, with 3 sand, with 4 loam/clay and with 5 loess). The zoomed-in area around Wageningen was chosen since this area
contains all main soil physical categories except loess.

tion on the comparison of BIS-4D maps to previous soil pH
maps (Brus et al., 2009) can be found in Sect. 4.2 of Helfen-
stein et al. (2022) and to previous SOM maps (Brus et al.,
2009; van den Berg et al., 2017; Knotters et al., 2022) in
Helfenstein et al. (2024c). Nonetheless, visual evaluation of
the maps also revealed several limitations.

The maps of soil texture or particle size fractions (clay, silt
and sand) of the mineral soil component should be used with
caution in peatlands (approximately 15 % of the surface area)
since natural peat only consists of organic matter without a
mineral component. However, the low-lying fen peatlands,
located mostly in the west and northwest of the Netherlands,
typically also contain some clay, silt or sometimes even sand
due to past flooding events (Edelmann, 1950; de Bakker and
Schelling, 1966, 1989; Brouwer et al., 2023). Drained or-
ganic soils, particularly when under agricultural use, can also
contain mineral components introduced or mixed in from
mineral soil horizons from below or above the organic soil
horizon. Nonetheless, 30 % clay content in a soil composed

mostly of peat in absolute terms contains less clay than a
mineral soil with 30 % clay content.

Visual examination of the BIS-4D maps reveals artifacts
from the covariates. Although water and buildings were
cropped out, some mapping artifacts remained, such as small
buildings, roads and railways. For instance, the road on top
of the dike, parallel to and south of the Rhine River is clearly
visible in Fig. 4e–k. This highlights the difficulty of spatial
modeling approaches such as DSM that rely strongly on re-
mote sensing products. Other artifacts were due to the com-
bination of several Sentinel-2 images from different days in
1 month to obtain one monthly, cloud-free mosaic (Sect. 2.2).
Image mosaicking created artificial lines due to alterations in
the brightness, hue and colors from images of different days.
In addition, a few 25 m pixels contain no data even though
they were not water or buildings. This may be due to no data
values in some covariates but should be explored further in
an updated version. Finally, there were also orthogonal ar-
tifacts, most likely due to using northing and easting coor-
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Figure 5. Median predicted BD [g cm−3] (a), Ntot [mg kg−1] (b), Pox [mmol kg−1] (c), and CEC [mmol(c) kg−1] (d) at 0–5 cm depth; and
median predicted Ntot (e) and PI90 (90th prediction interval width) as a measure of the associated prediction uncertainty (f) along the depth
transect shown in (b).

dinates as covariates, which can be largely removed by also
including oblique axes in many additional directions (Møller
et al., 2020).

4.2 Strengths

BIS-4D maps fill the missing data gap of spatial soil property
information on a national scale in the Netherlands and bring
substantial improvements to previously mapped soil proper-
ties. The main strengths of BIS-4D are (1) the ability to pro-
vide information of soil properties as opposed to soil types;
(2) the high spatial resolution (25 m); (3) the accuracy and
uncertainty assessment based on best practices; (4) the ben-
efits of machine learning combined with large amounts of
data; (5) the flexibility to predict in 3D and 3D+T; and (6) the

open availability of model code and data, making BIS-4D
fully reproducible and easy to update.

The BIS-4D maps have several advantages compared to
previous soil maps of the Netherlands. While categorical
maps of soil type (de Vries et al., 2003) and derived the-
matic maps (Brouwer and van der Werff, 2012; Brouwer
et al., 2018; van Delft and Maas, 2022, 2023; Heinen et al.,
2022) are important and useful, many users require informa-
tion on specific numerical soil properties (Sect. 1). We ac-
knowledge that clay content (Brus et al., 2009), SOM (Brus
et al., 2009; van den Berg et al., 2017; Knotters et al., 2022),
pH (Brus et al., 2009), and soil properties related to soil tex-
ture (Heinen et al., 2022) and Pox (Schoumans and Chardon,
2015) have previously been mapped on a national scale in
the Netherlands. However, these maps were at much coarser
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resolution, accuracy was either not assessed or not assessed
using design-based statistical inference, quantification and
evaluation of uncertainty were missing, mapping approaches
did not include machine learning and used only a few co-
variates, and predictions for one or several depth layers were
modeled separately and only Knotters et al. (2022) assessed
changes over time. The only standard GSM soil properties
that we did not map are SOC, plant exploitable (effective)
depth, depth to rock and coarse fragments (Arrouays et al.,
2014a, b, 2015). We mapped SOM instead of SOC because,
in the Netherlands, SOC was not included in routine soil
analyses until recent years. However, SOC can be derived
from SOM, as investigated in other studies in the Netherlands
(van Tol-Leenders et al., 2019; van den Elsen et al., 2020;
Teuling et al., 2021; Knotters et al., 2022). Plant exploitable
(effective) depth is mostly limited by high groundwater lev-
els in most regions of the country. Since groundwater levels
have been extensively mapped in the Netherlands (de Grui-
jter et al., 2004; Hoogland et al., 2014; Knotters et al., 2018),
mapping plant exploitable (effective) depth was not deemed
necessary. Depth to rock and coarse fragments are not rele-
vant on a national scale in the Netherlands, as the substrate
materials of Dutch soils are almost exclusively either Pleis-
tocene sand, fine-grained Quaternary sediments or peat.

Another strength of BIS-4D is that maps are at a high spa-
tial resolution of 25 m. As covariates such as remote sens-
ing products and national maps of land use (Hazeu et al.,
2023) and digital elevation models (AHN, 2023) are nowa-
days available at 5–25 m resolution, useful information for
modeling complex relationships between soil-forming fac-
tors such as land cover and topography and soil properties
is provided on these scales. The increasing availability of
high-resolution information in soil-related domains has also
increased the demand for high-resolution soil maps. While
high-resolution products such as BIS-4D bring many advan-
tages, it is crucial to emphasize that resolution is not an indi-
cator of accuracy and should not be used solely to determine
a map’s fitness for use (de Bruin et al., 2001; Malone et al.,
2013; Knotters and Walvoort, 2020; Szatmári et al., 2021).

One of the main advantages of BIS-4D is the rigorous
map quality evaluation using design-based statistical infer-
ence and prediction uncertainty. Based on sampling the-
ory (Cochran, 1977; de Gruijter et al., 2006; Gregoire and
Valentine, 2007), map accuracy should be assessed with
design-based statistical inference using a probability sam-
ple whenever possible, as this provides a better estimate of
the true map accuracy compared to non-design-based ap-
proaches (Brus et al., 2011). Moreover, it also produces con-
fidence intervals (Tables S4–S8) so that we know how close
the estimate of the map accuracy is to the true map accu-
racy. We were able to use design-based inference for BD, pH,
SOM, Ntot and Pox maps due to the availability of the LSK
and CCNL datasets. We are not aware of any other GSM
products that used design-based inference to evaluate map
accuracy on a national scale. For soil properties for which

design-based inference was not possible, i.e., for clay, silt,
sand and CEC, we used location-grouped 10-fold cross val-
idation, as recommended in the case of non-clustered data
(Wadoux et al., 2021a; de Bruin et al., 2022). In addition,
BIS-4D maps provide spatially explicit estimations of pre-
diction uncertainty (PI90), including GSM accuracy thresh-
olds for soil pH (Helfenstein et al., 2022), and we evaluated
the accuracy of the uncertainty using PICP.

Another strength of BIS-4D, for example, when compared
to previous soil property maps in the Netherlands (e.g., Brus
and Heuvelink, 2007; Brus et al., 2009; van den Berg et al.,
2017), is that machine learning leads to more accurate pre-
dictions than other geostatistical and regression techniques.
Ensemble decision tree models such as RF and QRF have
repeatedly outperformed other spatial interpolation methods
(e.g., Hengl et al., 2015; Nussbaum et al., 2017; Keskin et al.,
2019; Khaledian and Miller, 2020). Ensemble decision tree
models are able to capture complex, non-linear relationships
between the covariates and soil properties and are widely
used in recent DSM studies (Vaysse and Lagacherie, 2017;
Heuvelink et al., 2020; Poggio et al., 2021; Baltensweiler
et al., 2021; Nussbaum et al., 2023).

BIS-4D maps for clay, silt, sand, BD, pH, Ntot, Pox and
CEC are in 3D (between 0 and 2 m depth) and, for SOM, they
are also dynamic (3D+T; see the Supplement and Helfenstein
et al., 2024c). This fills a largely missing gap of soil informa-
tion in deeper layers (Chen et al., 2022). In addition, BIS-4D
can predict at any depth as opposed to recalibrating models
when mapping individual depth layers separately (Ma et al.,
2021). This improves model flexibility and efficiency and a
larger amount of data can be leveraged during model tuning
and calibration. For example, routine agronomic soil sam-
pling depths in the Netherlands are 0–10 cm for grasslands
and 0–25 cm for croplands, thereby deviating from the GSM
standard depths (Arrouays et al., 2014a, b, 2015). Predictions
and associated uncertainty for those depths can be provided
using BIS-4D without recalibrating models. This is particu-
larly useful for uncertainty, which, unlike mean and median
predictions, cannot be aggregated using, e.g., weighted av-
eraging over depth layers (Sect. 4.1.1). In addition, we de-
veloped innovative covariates explicit in 3D+T, presenting a
novel opportunity to extend the predictive power of machine
learning to 3D+T (Helfenstein et al., 2024c). This provided a
new opportunity for monitoring SOM-related soil health us-
ing a method that is explicit in 3D space.

Lastly, compared to the time-consuming effort of updat-
ing conventional soil maps, DSM products such as BIS-4D
can be easily extended to other soil properties in BIS and can
be updated and delivered on demand (Heuvelink et al., 2010;
Kempen et al., 2009, 2012b, 2015). In comparison to an ear-
lier version for soil pH (Helfenstein et al., 2022), the number
of covariates has been substantially decreased during model
selection (Sect. 2.3), which benefits reproducibility and pos-
sibilities of updating maps. The model code, workflow, in-
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puts and outputs are well documented and openly available,
making procedures reproducible and easy to update (Sect. 3).

4.3 Limitations and improvements

Uncertainty in DSM products such as BIS-4D can be linked
to three overarching sources: (1) the quantity and quality of
soil point data, (2) the quantity and quality of covariates, and
(3) the model structure (Heuvelink, 2014, 2018). In the fol-
lowing, we discuss the limitations of BIS-4D maps with re-
gard to these three sources of uncertainty and suggest im-
provements.

4.3.1 Soil point data

Measurement errors and differences in measurement meth-
ods of the soil point data may have contributed to the un-
certainty in BIS-4D maps. For example, Fe, Al and P ex-
tracted by oxalate extraction are considered to consist of
amorphous iron and aluminum (hydr)oxides and P bound to
those oxides. However, a fraction of oxalate-extractable P in
peat soils likely consist of P bound to organically complexed
Fe and Al since those are also partially extracted during
the oxalate extraction (McKeague, 1967; McKeague et al.,
1971; van der Zee et al., 1990; Schoumans, 2013; Schoumans
and Chardon, 2015). Recent research has devised methods
to quantify the uncertainty in soil laboratory measurements
(van Leeuwen et al., 2021) and to incorporate these errors
into machine learning algorithms (van der Westhuizen et al.,
2022). Furthermore, several slightly different methods, stan-
dards and laboratory facilities were used to measure Ntot,
Pox and CEC (Maring et al., 2009, Appendix E). This in-
troduced uncertainty that can be minimized by standardizing
laboratory measurements and procedures. Positional uncer-
tainty due to marking locations on a 1 : 25000 topographic
map most likely also contributed to overall uncertainty in the
BIS-4D maps, as investigated in other studies (Carré et al.,
2007; Grimm and Behrens, 2010).

There were several limitations related to the spatial and
spatio-temporal distribution of the soil point data used in
BIS-4D. The calibration data of BD, Pox and, to a lesser
extent, CEC were spatially clustered (Fig. 2), which most
likely affected mapping accuracy of those soil properties
(Sect. 4.1). In addition, no wet-chemical laboratory measure-
ments were available as part of a probability sample (LSK
and CCNL) for design-based statistical inference of clay, silt,
sand and CEC prediction maps (Sect. 2.1.2). As most of the
soil point data were collected between 1950 and 2000, soil
measurement age and time should be addressed also for other
soil properties besides SOM (Arrouays et al., 2017). Ntot and
CEC are strongly linked to SOM and thus temporal changes
may be similar to mapped SOM changes (Helfenstein et al.,
2024c). BD, pH, Ntot, Pox and CEC likely changed due to
land use and management. However, yearly variation in Pox
is relatively small since P binds strongly to soil particles, and

the plant available fractions of P with short turnover times
are less than 15 % of the total reversibly bound P pool (With-
ers et al., 2014, Fig. 3), which is what is measured with Pox
(Lookman et al., 1995; Neyroud and Lischer, 2003). Large
quantities of topsoil data are collected for agronomic surveys
every 4 years in the Netherlands (BZK, 2022; Eurofins Agro,
2024a, b), but only a small part of these are not privacy-
protected, making it challenging to incorporate in DSM ap-
proaches. Although the point data suggest good spatial cov-
erage of most of the basic soil properties in the Netherlands,
there is a major lack of repeated laboratory measurements
collected using identical sampling strategies over time, as
discussed in Knotters et al. (2022) and Helfenstein et al.
(2024c). A consistent national soil monitoring scheme would
be beneficial for modelling dynamic soil properties in 3D+T,
updating static BIS-4D maps and accuracy assessment with
more recent data.

4.3.2 Covariates

Although BIS-4D was able to make use of a large range of
high-quality, country-specific covariates (Table 5), the main
variable missing in our modelling approach is more detailed
land management data, which is a common challenge in
DSM (Finke, 2012; Arrouays et al., 2021). Land cover and
land use covariates only indirectly provided information on
land management. From 2005 onwards, annual data on the
specific crop type for every agricultural parcel in the Nether-
lands were available (BRP Gewaspercelen; EZK, 2019), but
these were never selected among the final covariates used for
model calibration (and therefore are not shown in Table 5).
This implies that they did not provide additional useful infor-
mation for the spatial distribution of the target soil properties
at the national scale, although different drivers may be rel-
evant on regional and local scales (Sect. 4.4). However, re-
gardless of the scale, national crop parcel data do not capture
information on management decisions such as fertilizer in-
puts, liming and ploughing frequency on agricultural lands,
and maintaining forests and nature areas. These management
decisions are highly relevant for many of the mapped soil
properties, with the exception of particle size fractions. For
example, BD is strongly dependent on the size and driving
frequency of agricultural machinery on the fields (Stettler
et al., 2014).

As another example, Pox exhibits considerable small-scale
spatial variability, as discussed and made evident by the high
nugget in the semivariogram in Fig. 6 of Lookman et al.
(1995). As P in the form of phosphate is bound in the soil
much stronger than N or other plant nutrients affected by the
base cation saturation and CEC, there are large legacy effects
due to historic management not captured in the covariates
currently used in BIS-4D. In our study, the three most impor-
tant covariates for modelling Pox were the covariates related
to soil horizon sampling depth (Fig. S88). The relationship
of Pox with soil depth is supported by empirical findings of
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the maximum P sorption capacity decreasing with soil depth,
especially in sandy soils. P from fertilization largely stays
in the upper soil layers. Moreover, given that Pox map qual-
ity was poor (Table 8 and the Supplement), the relative im-
portance of depth suggests that the other covariates did not
explain the spatial variation in Pox well, likely due to miss-
ing (historic) management data. This is supported by other
studies of mapping soil P content at high resolution (Delmas
et al., 2015; Matos-Moreira et al., 2017; Kull et al., 2023).
Although this does not solve the problem of missing manage-
ment data, one easy step towards improving the accuracy of
BD and Pox and other management-dependent soil properties
is to only map them for agricultural areas, as was done in the
Netherlands for amorphous iron and aluminum (hydr)oxides
(van Doorn et al., 2024). We expect that including dynamic
covariates of land management and climate, as discussed in
Helfenstein et al. (2024c), would likely also improve mod-
elling dynamic soil properties in 3D+T.

4.3.3 Model structure

Despite the many advantages of using QRF for DSM
(Sect. 4.2), predictions may be further improved using meth-
ods such as convolutional or recursive neural networks (deep
learning; Behrens et al., 2005, 2018a; Padarian et al., 2019b;
Wadoux, 2019; Wadoux et al., 2019) or transfer learning
(Liu et al., 2018; Padarian et al., 2019a; Seidel et al., 2019;
Helfenstein et al., 2021; Baumann et al., 2021), defined as
the process of sharing intra-domain information and rules
learned by general models to a local domain (Pan and Yang,
2010). We recommend future research to investigate the use
of deep learning and transfer learning in the Netherlands
for SOM due to the large amount of SOM data and more
opportunities in accounting for differences in observational
quality (field estimates and laboratory measurements) using
more complex models. However, to the best of our knowl-
edge, deep learning has only outperformed ensemble deci-
sion tree models when using a small number of covariates
covering only some of the soil-forming factors, from which
hyper-covariates are then derived (Wadoux, 2019). Hence,
deep learning may not improve predictions in the Nether-
lands, where large amounts of high-quality covariates are
readily available for all soil-forming factors. In addition,
quantifying model-based uncertainty using deep learning re-
mains a challenge. Although model-free approaches of esti-
mating uncertainty using deep learning, e.g., involving boot-
strapping (Padarian et al., 2019b; Wadoux, 2019), have been
used, we are not aware of studies that have compared the
accuracy of these uncertainty estimations to QRF-based un-
certainty (PI90).

One of the main limitations of the BIS-4D modelling ap-
proach is that QRF predictions cannot be used to compute
the uncertainty in spatial aggregates, for example, when ag-
gregating prediction maps of different depth layers or com-
puting average values of a soil property for a specific land

use or province. This requires quantifying cross and spatial
correlation in prediction errors, which can be accounted for
by taking a multivariate or geostatistical approach (Szatmári
et al., 2021; van der Westhuizen et al., 2022; Wadoux and
Heuvelink, 2023).

4.4 Assessment scale

We recommend using BIS-4D maps on a national scale as
long as the map quality based on the provided accuracy met-
rics (Tables 7 and 8; see the Supplement) and prediction un-
certainty (Figs. 4i–k and 5f; see the Supplement) is sufficient
for the intended use. The model was developed for the na-
tional scale for multiple land uses. Foremost, BIS-4D maps
contribute to the GSM project by delivering high-resolution
3D (and 3D+T for SOM) maps of key soil properties with
quantified uncertainty according to GSM specifications for
the Netherlands. The BIS-4D maps may be especially use-
ful for initiatives that require spatially explicit soil informa-
tion across all land uses and soil types of the Netherlands.
This may include national contributions to United Nations
and pan-European directives and policies (Panagos et al.,
2022), such as the Green Deal, Common Agricultural Policy,
Zero Pollution Action Plan, EU Soil Strategy for 2030, Soil
Deal (European Commission, 2021) and Proposal for a Di-
rective on Soil Monitoring and Resilience (European Com-
mission, 2023). For example, clay, silt, sand and SOM maps
can be used to improve estimates of soil-derived greenhouse
gas emissions from the LULUCF sector for the Netherlands
(Arets et al., 2020).

Many potential users of BIS-4D may require information
specifically for one land use or soil type. Perhaps most com-
monly, users may need information for agricultural soils. For
example, maps of clay, silt, sand and SOM content can pro-
vide information used to estimate the carbon sequestration
potential for the Smart Land Use project (Slier et al., 2023),
which is focused specifically on mineral soils under agricul-
tural use on a national scale. Policymakers are mostly inter-
ested in more complex soil information such as soil health,
soil functions or soil-based ecosystem services. Complex soil
information can be quantified more accurately using a com-
bination of basic soil properties, such as provided using BIS-
4D, employing methods like pedotransfer functions and ex-
isting tools. For agricultural soils in the Netherlands, such
tools include OSI (Ros et al., 2022; Ros, 2023) and BLN
2.0 (Ros et al., 2023). Although pH, Ntot, Pox and CEC can
be used as approximations on a national scale, pH, plant-
available N and P, and CEC are part of routine agronomic
soil analyses. Therefore, maps of these soil properties may
be more useful for forests and nature areas, where the base
cation occupation of the CEC and pH should generally re-
main high enough to prevent Al toxicity. For soil pH, BIS-4D
predictions should be compared to predictions in Wamelink
et al. (2019), who mapped soil pH in Dutch nature areas.
As soil variability is linked to soil type (e.g., mineral vs. or-
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ganic) and land use, we expect that BIS-4D model predic-
tions would improve when modeling only one land use or
soil type separately. However, this was not the scale of as-
sessment aimed for with BIS-4D.

BIS-4D maps may also be used on a regional scale as long
as the accuracy allows for it and no better product is avail-
able. By regional scale we mean the level of provinces; re-
gional water authorities, which are typically composed of
one or more polders or watersheds; or large municipalities.
These recommendations hold true for clay and sand content
and pH in particular, which were predicted with higher accu-
racy than the other soil properties. However, regional man-
agement decisions come with social and economical risks.
The costs of poor management decisions due to the use of
inaccurate or soil information that is not detailed enough are
often several magnitudes larger than investments for con-
ducting a more detailed regional soil survey (Knotters and
Vroon, 2015; Keller et al., 2018). In agreement with Chen
et al. (2022), more research is necessary in relating DSM per-
formance indicators such as uncertainty to cost–benefit and
risk assessment analysis for improving decision support. We
do not recommend the use of BIS-4D maps on a farm or field
scale, as the uncertainty in predictions is most likely too high
for the precision required by the farmer. Drivers of soil vari-
ation vary locally and were presumably not captured on this
scale by the soil point data, covariates and model structure.
As shown in Helfenstein et al. (2022), even for a soil prop-
erty like soil pH, which was relatively easy to predict, less
than 10 % of the map pixels were designated with one of the
highest two GSM accuracy thresholds (AA and AAA). On
such a local scale, we expect that the time and costs invested
in a new soil survey outweigh the risks of using inaccurate
soil data (Lemercier et al., 2022).

4.5 Good practices for proper use

Based on the accuracy assessment of BIS-4D maps
(Sect. 4.1.1), clay, sand and pH maps were the most accu-
rate. This is mostly in agreement with Chen et al. (2022),
which found that pH was the best predicted standard GSM
soil property, and PSFs (i.e., clay, silt and sand) were pre-
dicted to be third-best, based on a review of 244 articles.
BIS-4D map quality of silt, BD, SOM, Ntot and CEC was
lower. For Pox, we only recommend the produced maps for a
qualitative overview of Pox spatial distribution in the Nether-
lands. We have summarized the following simple chronolog-
ical steps for users to help decide whether BIS-4D maps may
be suitable for their intended purpose:

1. Choose one or multiple soil properties of interest.

2. Choose the depth layer(s) (0–5, 5–15, 15–30, 30–60,
60–100 and 100–200 cm) and, in the case of SOM, the
year (1953, 1960, 1970, 1980, 1990, 2000, 2010, 2020,
2023), for which soil information is needed.

3. Consult the accuracy metrics of mean and median pre-
dictions of the soil property and depth layer of interest
(Tables 7 and 8; see the Supplement), keeping in mind
that the accuracy in the intended area of use may dif-
fer from the overall accuracy of the map. If the overall
map quality based on these accuracy metrics is within
an acceptable range for the intended purpose, continue
to step 4. Use accuracy metrics based on design-based
statistical inference for the soil properties for which it is
available, i.e., BD, pH, SOM, Ntot and Pox (Table 8; see
the Supplement).

4. Choose whether to use mean or median prediction maps
by comparing accuracy metrics of mean and median
predictions (Tables 7 and 8; see the Supplement). Con-
sult Sect. 4.1.1 for differences in mean and median pre-
dictions found using BIS-4D.

5. Download the mean and/or median prediction maps for
the chosen soil property and depth layer as well as maps
of the associated uncertainty (0.05 quantile, 0.95 quan-
tile and/or PI90) and open them using GIS software. If
soil information is required for a specific area, continue
to step 6.

6. Prediction uncertainty is only useful for end users if it is
reliable (Schmidinger and Heuvelink, 2023). Therefore,
check whether the prediction uncertainty is reliable by
consulting the PICP. If the PICP90 is close to 0.90 (Ta-
ble 7) and the PICP plot close to the 1 : 1 line (Supple-
ment), then the provided prediction uncertainty map is
reliable.

7. Ideally, prediction uncertainty should also be sharp; i.e.,
the PI90 should be as narrow as possible (Schmidinger
and Heuvelink, 2023). Decide whether the PI90 is
within an acceptable range for the intended purpose. If
possible, fitness for use can be determined by analyzing
how uncertainties in BIS-4D maps propagate through
the intended usage, for example, for an environmental
model that uses BIS-4D maps as input. Commonly used
uncertainty propagation methods include the Taylor se-
ries or Monte Carlo methods (Heuvelink, 2018).

Video supplement. A short research pitch of BIS-4D is available
at https://www.youtube.com/watch?v=ENCYUnqc-wo (Helfen-
stein, 2024a).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-16-2941-2024-supplement.
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