Articles | Volume 15, issue 2
https://doi.org/10.5194/essd-15-555-2023
https://doi.org/10.5194/essd-15-555-2023
Data description paper
 | 
03 Feb 2023
Data description paper |  | 03 Feb 2023

UGS-1m: fine-grained urban green space mapping of 31 major cities in China based on the deep learning framework

Qian Shi, Mengxi Liu, Andrea Marinoni, and Xiaoping Liu

Related authors

3D-GloBFP: the first global three-dimensional building footprint dataset
Yangzi Che, Xuecao Li, Xiaoping Liu, Yuhao Wang, Weilin Liao, Xianwei Zheng, Xucai Zhang, Xiaocong Xu, Qian Shi, Jiajun Zhu, Honghui Zhang, Hua Yuan, and Yongjiu Dai
Earth Syst. Sci. Data, 16, 5357–5374, https://doi.org/10.5194/essd-16-5357-2024,https://doi.org/10.5194/essd-16-5357-2024, 2024
Short summary
An improved global land cover mapping in 2015 with 30 m resolution (GLC-2015) based on a multisource product-fusion approach
Bingjie Li, Xiaocong Xu, Xiaoping Liu, Qian Shi, Haoming Zhuang, Yaotong Cai, and Da He
Earth Syst. Sci. Data, 15, 2347–2373, https://doi.org/10.5194/essd-15-2347-2023,https://doi.org/10.5194/essd-15-2347-2023, 2023
Short summary
MAPPING FOREST DISTURBANCE USING PURE FOREST INDEX TIME SERIES AND CCDC ALGORITHM
Y. Cai, Q. Shi, and X. Liu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-W1-2022, 1–6, https://doi.org/10.5194/isprs-archives-XLVIII-3-W1-2022-1-2022,https://doi.org/10.5194/isprs-archives-XLVIII-3-W1-2022-1-2022, 2022

Related subject area

Domain: ESSD – Land | Subject: Land Cover and Land Use
U-Surf: a global 1 km spatially continuous urban surface property dataset for kilometer-scale urban-resolving Earth system modeling
Yifan Cheng, Lei Zhao, TC Chakraborty, Keith Oleson, Matthias Demuzere, Xiaoping Liu, Yangzi Che, Weilin Liao, Yuyu Zhou, and Xinchang “Cathy” Li
Earth Syst. Sci. Data, 17, 2147–2174, https://doi.org/10.5194/essd-17-2147-2025,https://doi.org/10.5194/essd-17-2147-2025, 2025
Short summary
The Earth Topography 2022 (ETOPO 2022) global DEM dataset
Michael MacFerrin, Christopher Amante, Kelly Carignan, Matthew Love, and Elliot Lim
Earth Syst. Sci. Data, 17, 1835–1849, https://doi.org/10.5194/essd-17-1835-2025,https://doi.org/10.5194/essd-17-1835-2025, 2025
Short summary
The 20 m Africa rice distribution map of 2023
Jingling Jiang, Hong Zhang, Ji Ge, Lijun Zuo, Lu Xu, Mingyang Song, Yinhaibin Ding, Yazhe Xie, and Wenjiang Huang
Earth Syst. Sci. Data, 17, 1781–1805, https://doi.org/10.5194/essd-17-1781-2025,https://doi.org/10.5194/essd-17-1781-2025, 2025
Short summary
A 30m resolution annual cropland extent dataset of Africa in recent decades of the 21st century
Zihang Lou, Dailiang Peng, Zhou Shi, Hongyan Wang, Yaqiong Zhang, Xue Yan, Zhongxing Chen, Su Ye, Le Yu, Jinkang Hu, Yulong Lv, Hao Peng, Yizhou Zhang, and Bing Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-133,https://doi.org/10.5194/essd-2025-133, 2025
Revised manuscript accepted for ESSD
Short summary
Revised and updated geospatial monitoring of 21st century forest carbon fluxes
David A. Gibbs, Melissa Rose, Giacomo Grassi, Joana Melo, Simone Rossi, Viola Heinrich, and Nancy L. Harris
Earth Syst. Sci. Data, 17, 1217–1243, https://doi.org/10.5194/essd-17-1217-2025,https://doi.org/10.5194/essd-17-1217-2025, 2025
Short summary

Cited articles

Badrinarayanan, V., Kendall, A., and Cipolla, R.: Segnet: A deep convolutional encoder-decoder architecture for image segmentation, IEEE T. Pattern Anal., 39, 2481–2495, https://doi.org/10.1109/TPAMI.2016.2644615, 2017. a, b
Cao, Y. and Huang, X.: A deep learning method for building height estimation using high-resolution multi-view imagery over urban areas: A case study of 42 Chinese cities, Remote Sens. Environ., 264, 112590, https://doi.org/10.1016/j.rse.2021.112590, 2021. a
Chen, B., Tu, Y., Wu, S., Song, Y., Jin, Y., Webster, C., Xu, B., and Gong, P.: Beyond green environments: multi-scale difference in human exposure to greenspace in China, Environ. Int., 166, 107348, https://doi.org/10.1016/j.envint.2022.107348, 2022a. a
Chen, B., Wu, S., Song, Y., Webster, C., Xu, B., and Gong, P.: Contrasting inequality in human exposure to greenspace between cities of Global North and Global South, Nat. Commun., 13, 1–9, 2022b. a
Chen, J. and Chen, J.: GlobeLand30: Operational global land cover mapping and big-data analysis, Sci. China Earth Sci., 61, 1533–1534, 2018. a, b
Download
Short summary
A large-scale and high-resolution urban green space (UGS) product with 1 m of 31 major cities in China (UGS-1m) is generated based on a deep learning framework to provide basic UGS information for relevant UGS research, such as distribution, area, and UGS rate. Moreover, an urban green space dataset (UGSet) with a total of 4454 samples of 512 × 512 in size are also supplied as the benchmark to support model training and algorithm comparison.
Share
Altmetrics
Final-revised paper
Preprint