Articles | Volume 15, issue 9
https://doi.org/10.5194/essd-15-4219-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-4219-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
IWIN: the Isfjorden Weather Information Network
Department of Arctic Geophysics, University Centre in Svalbard, Longyearbyen, Norway
Geophysical Institute, University of Bergen, Bergen, Norway
Marius Opsanger Jonassen
Department of Arctic Geophysics, University Centre in Svalbard, Longyearbyen, Norway
Geophysical Institute, University of Bergen, Bergen, Norway
Teresa Remes
Development Centre for Weather Forecasting, Norwegian Meteorological Institute, Oslo, Norway
Florina Roana Schalamon
Department of Arctic Geophysics, University Centre in Svalbard, Longyearbyen, Norway
Institute for Atmospheric Physics, Johannes Gutenberg University, Mainz, Germany
now at: Department of Geography and Regional Sciences, University of Graz, Graz, Austria
Agnes Stenlund
Department of Arctic Geophysics, University Centre in Svalbard, Longyearbyen, Norway
Department of Earth Sciences, Uppsala University, Uppsala, Sweden
now at: Department of Environmental Science, Stockholm University, Stockholm, Sweden
Related authors
Lukas Frank, Jon Albretsen, Ragnheid Skogseth, Frank Nilsen, and Marius Opsanger Jonassen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1721, https://doi.org/10.5194/egusphere-2025-1721, 2025
Short summary
Short summary
West of Svalbard, warm Atlantic Water frequently deviates from the West Spitsbergen Current onto shallow shelf areas, with significant implications for the regional climate system. The intrusions can be triggered by different processes, but their depths ultimately depend on the density difference between the intruding and the ambient shelf water. These findings are an important step toward a better understanding of how warm Atlantic Water eventually reaches the fjords of Svalbard.
Rafael Kenji Horota, Christian Haug Eide, Kim Senger, Marius Opsanger Jonassen, and Marie Annette Vander Kloet
EGUsphere, https://doi.org/10.5194/egusphere-2025-2248, https://doi.org/10.5194/egusphere-2025-2248, 2025
Short summary
Short summary
We explored how virtual tools can help students prepare for and reflect on outdoor learning in the Arctic. Using surveys from university courses in Svalbard, we found that digital field visits helped students feel more confident, better understand the landscape, and learn more effectively. These tools do not replace real fieldwork but make it more accessible and inclusive. Our research shows how technology can support hands-on learning in remote environments.
Lukas Frank, Jon Albretsen, Ragnheid Skogseth, Frank Nilsen, and Marius Opsanger Jonassen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1721, https://doi.org/10.5194/egusphere-2025-1721, 2025
Short summary
Short summary
West of Svalbard, warm Atlantic Water frequently deviates from the West Spitsbergen Current onto shallow shelf areas, with significant implications for the regional climate system. The intrusions can be triggered by different processes, but their depths ultimately depend on the density difference between the intruding and the ambient shelf water. These findings are an important step toward a better understanding of how warm Atlantic Water eventually reaches the fjords of Svalbard.
Florina Roana Schalamon, Sebastian Scher, Andreas Trügler, Lea Hartl, Wolfgang Schöner, and Jakob Abermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-4060, https://doi.org/10.5194/egusphere-2024-4060, 2025
Short summary
Short summary
Atmospheric patterns influence the air temperature in Greenland. We investigate two warming periods, from 1922–1932 and 1993–2007, both showing similar temperature increases. Using a neural network-based clustering method, we defined predominant atmospheric patterns for further analysis. Our findings reveal that while the connection between these patterns and local air temperature remains stable, the distribution of patterns changes between the warming periods and the full period (1900–2015).
Andrew W. Seidl, Aina Johannessen, Alena Dekhtyareva, Jannis M. Huss, Marius O. Jonassen, Alexander Schulz, Ove Hermansen, Christoph K. Thomas, and Harald Sodemann
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-293, https://doi.org/10.5194/essd-2024-293, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
ISLAS2020 set out to measure the stable water isotopic composition of Arctic moisture. By not only measuring at different sites around Ny-Ålesund, Svalbard, but also measuring at variable heights above surface level, we aim to characterize processes that produce or modify the isotopic composition. We also collect precipitation samples from sites that were typically downstream of Ny-Ålesund, so as to capture the isotopic composition during removal from the atmospheric water cycle.
Jonathan J. Day, Gunilla Svensson, Barbara Casati, Taneil Uttal, Siri-Jodha Khalsa, Eric Bazile, Elena Akish, Niramson Azouz, Lara Ferrighi, Helmut Frank, Michael Gallagher, Øystein Godøy, Leslie M. Hartten, Laura X. Huang, Jareth Holt, Massimo Di Stefano, Irene Suomi, Zen Mariani, Sara Morris, Ewan O'Connor, Roberta Pirazzini, Teresa Remes, Rostislav Fadeev, Amy Solomon, Johanna Tjernström, and Mikhail Tolstykh
Geosci. Model Dev., 17, 5511–5543, https://doi.org/10.5194/gmd-17-5511-2024, https://doi.org/10.5194/gmd-17-5511-2024, 2024
Short summary
Short summary
The YOPP site Model Intercomparison Project (YOPPsiteMIP), which was designed to facilitate enhanced weather forecast evaluation in polar regions, is discussed here, focussing on describing the archive of forecast data and presenting a multi-model evaluation at Arctic supersites during February and March 2018. The study highlights an underestimation in boundary layer temperature variance that is common across models and a related inability to forecast cold extremes at several of the sites.
Cited articles
Bromwich, D. H., Wilson, A. B., Bai, L.-S., Moore, G. W., and Bauer, P.: A
comparison of the regional Arctic System Reanalysis and the global
ERA-Interim Reanalysis for the Arctic, Q. J. Roy.
Meteor. Soc., 142, 644–658, 2016. a
Cottier, F., Nilsen, F., Enall, M. E., Gerland, S., Tverberg, V., and Svendsen,
H.: Wintertime warming of an Arctic shelf in response to large-scale
atmospheric circulation, Geophys. Res. Lett., 34, 10607,
https://doi.org/10.1029/2007GL029948, 2007. a, b
Dahlke, S., Hughes, N. E., Wagner, P. M., Gerland, S., Wawrzyniak, T., Ivanov,
B., and Maturilli, M.: The observed recent surface air temperature
development across Svalbard and concurring footprints in local sea ice
cover, Int. J. Climatol., 40, 5246–5265,
https://doi.org/10.1002/joc.6517, 2020. a
Descamps, S., Aars, J., Fuglei, E., Kovacs, K. M., Lydersen, C., Pavlova, O.,
Pedersen, A., Ravolainen, V., and Strøm, H.: Climate change impacts on
wildlife in a High Arctic archipelago–Svalbard, Norway, Glob.
Change Biol., 23, 490–502, 2017. a
Dyrrdal, A. V., Nilsen, I. B., Mayer, S., and Hygen, H. O.: Norsk Klima
Service Senter, https://seklima.met.no/, last access: 12 September 2023. a
Esau, I. and Repina, I.: Wind climate in kongsfjorden, svalbard, and
attribution of leading wind driving mechanisms through turbulence-resolving
simulations, Adv. Meteorol., 2012, 568454, https://doi.org/10.1155/2012/568454, 2012. a
Frank, L. and Jonassen, M. O.: Iwin,
Zenodo [code]
https://doi.org/10.5281/zenodo.8338313, 2023. a
Frank, L., Jonassen, M. O., and Remes, T.: IWIN: The Isfjorden Weather
Information Network, Norwegian Meteorological Institute/Arctic Data Centre [data set], https://doi.org/10.21343/ebrw-w846,
2023a. a, b, c, d
Frank, L., Jonassen, M. O., and Remes, T.: IWIN: The Isfjorden Weather
Information Network (August 2021–June 2023), Zenodo [data set],
https://doi.org/10.5281/zenodo.8137588, 2023b. a, b
Frank, L., Jonassen, M. O., and Remes, T.:
IWIN: The Isfjorden Weather Information Network,
Norwegian Meteorological Institute [data set],
https://thredds.met.no/thredds/unis-obs/unis-obs.html, (last access: 12 September 2023), 2023. a
Gjelten, H. M., Nordli, O., Isaksen, K., Førland, E. J., Sviashchennikov,
P. N., Wyszynski, P., Prokhorova, U. V., Przybylak, R., Ivanov, B. V., and
Urazgildeeva, A. V.: Air temperature variations and gradients along the coast
and fjords of western Spitsbergen, Polar Res., 35, 29878, https://doi.org/10.3402/polar.v35.29878,
2016. a
Hanssen-Bauer, I., Førland, E., Hisdal, H., Mayer, S., Sandø, A., Sorteberg,
A., Adakudlu, M., Andresen, J., Bakke, J., Beldring, S., Benestad, R.,
van der Bilt, W., Bogen, J., Borstad, C., Breili, K., Breivik, O., Børsheim,
K., Christiansen, H., Dobler, A., and Wong, W.: Climate in Svalbard 2100 -
A knowledge base for climate adaptation, NCSS report,
https://doi.org/10.13140/RG.2.2.10183.75687, 2019. a
Isaksen, K., Nordli, O., Ivanov, B., Køltzow, M., Aaboe, S., Gjelten, H. M.,
Mezghani, A., Eastwood, S., Førland, E., Benestad, R. E., Hanssen-Bauer, I.,
Brækkan, R., Sviashchennikov, P. N., Demin, V., Revina, A., and
Karandasheva, T.:
Exceptional warming over the Barents area, Sci. Rep., 12, 1–18,
2022. a
Jackson, P. L. and Steyn, D. G.: Gap Winds in a Fjord. Part II:
Hydraulic Analog, Mon. Weather Rev., 122, 2666–2676, 1994. a
Jung, T., Gordon, N. D., Bauer, P., Bromwich, D. H., Chevallier, M., Day,
J. J., Dawson, J., Doblas-Reyes, F., Fairall, C., Goessling, H. F., Holland,
M., Inoue, J., Iversen, T., Klebe, S., Lemke, P., Losch, M., Makshtas, A.,
Mills, B., Nurmi, P., Perovich, D., Reid, P., Renfrew, I. A., Smith, G.,
Svensson, G., Tolstykh, M., and Yang, Q.: Advancing polar prediction capabilities on daily to seasonal time
scales, B. Am. Meteorol. Soc., 97, 1631–1647,
2016. a
Køltzow, M., Casati, B., Bazile, E., Haiden, T., and Valkonen, T.: An NWP
model intercomparison of surface weather parameters in the European
Arctic during the year of polar prediction special observing period
Northern Hemisphere 1, Weather Forecast., 34, 959–983, 2019. a
Køltzow, M., Grote, R., and Singleton, A.: On the configuration of a regional
Arctic Numerical Weather Prediction system to maximize predictive
capacity, Tellus A, 73, 1–18,
2021. a
Muckenhuber, S., Nilsen, F., Korosov, A., and Sandven, S.: Sea ice cover in Isfjorden and Hornsund, Svalbard (2000–2014) from remote sensing data, The Cryosphere, 10, 149–158, https://doi.org/10.5194/tc-10-149-2016, 2016. a, b
Müller, M., Batrak, Y., Kristiansen, J., Køltzow, M., Noer, G., and Korosov,
A.: Characteristics of a convective-scale weather forecasting system for the
European Arctic, Mon. Weather Rev., 145, 4771–4787,
2017. a
Müller, M., Kelder, T., and Palerme, C.: Decline of sea-ice in the Greenland
Sea intensifies extreme precipitation over Svalbard, Weather Climate
Extremes, 36, 100437, https://doi.org/10.1016/j.wace.2022.100437, 2022.
a
Nilsen, F., Skogseth, R., Vaardal-Lunde, J., and Inall, M.: A simple shelf
circulation model: Intrusion of Atlantic water on the West
Spitsbergen Shelf, J. Phys. Oceanogr., 46, 1209–1230,
https://doi.org/10.1175/JPO-D-15-0058.1,
2016. a, b
Peeters, B., Pedersen, A. O., Loe, L. E., Isaksen, K., Veiberg, V., Stien, A.,
Kohler, J., Gallet, J.-C., Aanes, R., and Hansen, B. B.: Spatiotemporal
patterns of rain-on-snow and basal ice in high Arctic Svalbard: detection
of a climate-cryosphere regime shift, Environ. Res. Lett., 14,
015002, https://doi.org/10.1088/1748-9326/aaefb3, 2019. a
Rantanen, M., Karpechko, A. Y., Lipponen, A., Nordling, K., Hyvärinen, O.,
Ruosteenoja, K., Vihma, T., and Laaksonen, A.: The Arctic has warmed nearly
four times faster than the globe since 1979, Comm. Earth
Environ., 3, 1–10, 2022. a
Reen, S. V.: CFD Simulation of the Air Flow Field around a Ship,
Master's thesis, Aalto University, Norwegian University of Science and
Technology, Aalto, Trondheim, http://urn.fi/URN:NBN:fi:aalto-202212187036 (last access: 19 September 2023), 2022. a
Schalamon, F.: Evaluation of the AROME Arctic Model Based on Mobile
Observations in Isfjorden, Svalbard, Master's thesis, Johannes
Gutenberg University, Mainz, https://bibsys-almaprimo.hosted.exlibrisgroup.com/permalink/f/khgud4/BIBSYS_ILS71659707010002201 (last access: 19 September 2023), 2022. a
Schuler, T. V., Kohler, J., Elagina, N., Hagen, J. O. M., Hodson, A. J., Jania,
J. A., Kääb, A. M., Luks, B., Malecki, J., Moholdt, G.,
Pohjola, V. A., Sobota, I., and van Pelt, W. J. J.:Reconciling Svalbard glacier mass balance, Front. Earth
Sci., 8, 156, https://doi.org/10.3389/feart.2020.00156, 2020. a
Skeie, P. and Gronas, S.: Strongly stratified easterly flows across
Spitsbergen, Tellus A, 52,
473–486, https://doi.org/10.3402/tellusa.v52i5.12281,
2000. a
Skogseth, R., Olivier, L. L. A., Nilsen, F., Falck, E., Fraser, N., Tverberg,
V., Ledang, A. B., Vader, A., Jonassen, M. O., Søreide, J., Cottier, F.,
Berge, J., Ivanov, B. V., and Falk-Petersen, S.: Variability and decadal
trends in the Isfjorden (Svalbard) ocean climate and circulation – An
indicator for climate change in the European Arctic, Prog.
Oceanogr., 187, 102394, https://doi.org/10.1016/j.pocean.2020.102394, 2020. a, b
Stenlund, A.: A Statistical Overview of the Spatial Atmospheric
Variability Over Isfjorden, Svalbard, Master's thesis, Uppsala
University, Uppsala, https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-488105 (last access: 19 September 2023),
2022. a
Walczowski, W. and Piechura, J.: Influence of the West Spitsbergen
Current on the local climate, Int. J. Climatol., 31,
1088–1093, https://doi.org/10.1002/joc.2338, 2011. a
Wickström, S., Jonassen, M., Cassano, J., and Vihma, T.: Present
Temperature, Precipitation, and Rain-on-Snow Climate in Svalbard,
J. Geophys. Res.-Atmos., 125, 032155,
https://doi.org/10.1029/2019JD032155, 2020. a
Short summary
The Isfjorden Weather Information Network (IWIN) provides continuous meteorological near-surface observations from Isfjorden in Svalbard. The network combines permanent automatic weather stations on lighthouses along the coast line with mobile stations on board small tourist cruise ships regularly trafficking the fjord during spring to autumn. All data are available online in near-real time. Besides their scientific value, IWIN data crucially enhance the safety of field activities in the region.
The Isfjorden Weather Information Network (IWIN) provides continuous meteorological near-surface...
Altmetrics
Final-revised paper
Preprint