Articles | Volume 15, issue 9
https://doi.org/10.5194/essd-15-4077-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-4077-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Inventory of glaciers and perennial snowfields of the conterminous USA
Department of Geology, Portland State University, 1721 SW Broadway, Portland, OR 97212, USA
Bryce Glenn
Department of Geology, Portland State University, 1721 SW Broadway, Portland, OR 97212, USA
Christopher Mcneil
US Geological Survey, Alaska Science Center, 4210 University Dr, Anchorage, AK 99508, USA
Related authors
Elijah N. Boardman, Andrew G. Fountain, Joseph W. Boardman, Thomas H. Painter, Evan W. Burgess, Laura Wilson, and Adrian A. Harpold
The Cryosphere, 19, 3193–3225, https://doi.org/10.5194/tc-19-3193-2025, https://doi.org/10.5194/tc-19-3193-2025, 2025
Short summary
Short summary
Watersheds on the downwind side of a mountain range have deeper seasonal snow and more abundant glaciers due to topographic controls that favor wind drifting. Despite receiving less total snow, these drift-prone watersheds produce relatively more late-summer streamflow due to a combination of slow-melting snow drifts and mass loss from glaciers (and other perennial snow/ice features).
Brian Menounos, Alex Gardner, Caitlyn Florentine, and Andrew Fountain
The Cryosphere, 18, 889–894, https://doi.org/10.5194/tc-18-889-2024, https://doi.org/10.5194/tc-18-889-2024, 2024
Short summary
Short summary
Glaciers in western North American outside of Alaska are often overlooked in global studies because their potential to contribute to changes in sea level is small. Nonetheless, these glaciers represent important sources of freshwater, especially during times of drought. We show that these glaciers lost mass at a rate of about 12 Gt yr-1 for about the period 2013–2021; the rate of mass loss over the period 2018–2022 was similar.
Gunnar Johnson, Heejun Chang, and Andrew Fountain
Earth Syst. Sci. Data, 13, 3979–3994, https://doi.org/10.5194/essd-13-3979-2021, https://doi.org/10.5194/essd-13-3979-2021, 2021
Short summary
Short summary
We present the Portland State University Active Rock Glacier Inventory (n = 10 343) for the contiguous United States, derived from manual classification of remote sensing imagery. This geospatial inventory will allow past rock glacier research findings to be spatially extrapolated, facilitating rock glacier research by identifying field study sites and serving as a valuable training set for the development of automated rock glacier identification methods applicable to other regional studies.
Elijah N. Boardman, Andrew G. Fountain, Joseph W. Boardman, Thomas H. Painter, Evan W. Burgess, Laura Wilson, and Adrian A. Harpold
The Cryosphere, 19, 3193–3225, https://doi.org/10.5194/tc-19-3193-2025, https://doi.org/10.5194/tc-19-3193-2025, 2025
Short summary
Short summary
Watersheds on the downwind side of a mountain range have deeper seasonal snow and more abundant glaciers due to topographic controls that favor wind drifting. Despite receiving less total snow, these drift-prone watersheds produce relatively more late-summer streamflow due to a combination of slow-melting snow drifts and mass loss from glaciers (and other perennial snow/ice features).
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024, https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary
Short summary
Satellites have made it possible to observe glacier elevation changes from all around the world. In the present study, we compared the results produced from two different types of satellite data between different research groups and against validation measurements from aeroplanes. We found a large spread between individual results but showed that the group ensemble can be used to reliably estimate glacier elevation changes and related errors from satellite data.
Brian Menounos, Alex Gardner, Caitlyn Florentine, and Andrew Fountain
The Cryosphere, 18, 889–894, https://doi.org/10.5194/tc-18-889-2024, https://doi.org/10.5194/tc-18-889-2024, 2024
Short summary
Short summary
Glaciers in western North American outside of Alaska are often overlooked in global studies because their potential to contribute to changes in sea level is small. Nonetheless, these glaciers represent important sources of freshwater, especially during times of drought. We show that these glaciers lost mass at a rate of about 12 Gt yr-1 for about the period 2013–2021; the rate of mass loss over the period 2018–2022 was similar.
Gunnar Johnson, Heejun Chang, and Andrew Fountain
Earth Syst. Sci. Data, 13, 3979–3994, https://doi.org/10.5194/essd-13-3979-2021, https://doi.org/10.5194/essd-13-3979-2021, 2021
Short summary
Short summary
We present the Portland State University Active Rock Glacier Inventory (n = 10 343) for the contiguous United States, derived from manual classification of remote sensing imagery. This geospatial inventory will allow past rock glacier research findings to be spatially extrapolated, facilitating rock glacier research by identifying field study sites and serving as a valuable training set for the development of automated rock glacier identification methods applicable to other regional studies.
Cited articles
Alley, R. B., Cuffey, K. M., and Zoet, L. K.: Glacial erosion: status and outlook, Ann. Glaciol., 60, 1–13, https://doi.org/10.1017/aog.2019.38, 2019.
Andreassen, L. M., Nagy, T., Kjøllmoen, B., and Leigh, J. R.: An inventory of Norway's glaciers and ice-marginal lakes from 2018–19 Sentinel-2 data, J. Glaciol., 68, 1085–1106, https://doi.org/10.1017/jog.2022.20, 2022.
Armstrong, R. L.: Mass balance history of Blue Glacier, Washington, USA, in: Glacier Fluctuations and Climatic Change, edited by: Oerlemans, J., Springer Netherlands, 183–192, https://doi.org/10.1007/978-94-015-7823-3_12, 1989.
Bard, J. A.: High-resolution digital elevation dataset for Glacier Peak and vicinity, Washington, based on lidar surveys of August–November, 2014 and June, 2015, https://doi.org/10.5066/F7H41PJG, 2017a.
Bard, J. A.: High-resolution digital elevation dataset for Mt Baker and vicinity, Washington, based on lidar surveys of 2015, https://doi.org/10.5066/F7WD3XR0, 2017b.
Bard, J. A.: High-resolution digital elevation dataset for Mount Adams and vicinity, Washington, based on lidar surveys of August–September, 2016, https://doi.org/10.5066/P9Z1HF1K, 2019.
Beason, S. R., Legg, N. T., Kenyon, T. R., Jost, R. P., and Kennard, P. M.: Forecasting and seismic detection of debris flows in pro-glacial rivers at Mount Rainier National Park, Washington, USA, Contain. Proc. Seventh Int. Conf. Debris-Flow Hazards Mitig. Gold. Colo., USA, 10–13 June 2019, https://doi.org/10.25676/11124/173232, 2018.
Benn, D. I. and Evans, D. J. A.: Glaciers and glaciation, 2nd edn., Hodder Education, London, 802 pp., https://doi.org/10.4324/9780203785010, 2010.
Bolch, T., Menounos, B., and Wheate, R.: Landsat-based inventory of glaciers in western Canada, 1985–2005, Remote Sens. Environ., 114, 127–137, https://doi.org/10.1016/j.rse.2009.08.015, 2010.
Bolch, T., Rohrbach, N., Kutuzov, S., Robson, B. A., and Osmonov, A.: Occurrence, evolution and ice content of ice-debris complexes in the Ak-Shiirak, Central Tien Shan revealed by geophysical and remotely-sensed investigations: Ice-debris complexes in Ak-Shiirak, Earth Surf. Proc. Land., 44, 129–143, https://doi.org/10.1002/esp.4487, 2019.
Bowerman, N. D. and Clark, D. H.: Holocene glaciation of the central Sierra Nevada, California, Quaternary Sci. Rev., 30, 1067–1085, https://doi.org/10.1016/j.quascirev.2010.10.014, 2011.
Brardinoni, F., Scotti, R., Sailer, R., and Mair, V.: Evaluating sources of uncertainty and variability in rock glacier inventories, Earth Surf. Proc. Land., 44, 2450–2466, https://doi.org/10.1002/esp.4674, 2019.
Cadbury, S. L., Hannah, D. M., Milner, A. M., Pearson, C. P., and Brown, L. E.: Stream temperature dynamics within a New Zealand glacierized river basin, River Res. Appl., 24, 68–89, https://doi.org/10.1002/rra.1048, 2008.
Chiarle, M., Iannotti, S., Mortara, G., and Deline, P.: Recent debris flow occurrences associated with glaciers in the Alps, Global Planet. Change, 56, 123–136, https://doi.org/10.1016/j.gloplacha.2006.07.003, 2007.
Cogley, J. G., Hock, R., Rasmussen, L. A., Arendt, A. A., Bauder, A., Braithwaite, R. J., Jansson, P., Kaser, G., Möller, M., Nicholson, L. I., and Zemp, M.: Glossary of Glacier Mass Balance and Related Terms, UNESCO-IHP, Paris, 2011.
Davis, P. T.: Holocene glacier fluctuations in the American Cordillera, Quaternary Sci. Rev., 7, 129–157, 1988.
Denton, G. H.: Conterminous US, Chap. 1, in: Mountain glaciers of the Northern Hemisphere, vol. 1, edited by: Field, W. O., Corps of Engineers, US Army, Technical Information Analysis Center, Cold Regions Research and Engineering Laboratory, 1975.
DeVisser, M. H. and Fountain, A. G.: A century of glacier change in the Wind River Range, WY, Geomorphology, 232, 103–116, https://doi.org/10.1016/j.geomorph.2014.10.017, 2015.
Dewitz, J.: National Land Cover Database (NLCD) 2016 Products (ver. 2.0, July 2020), https://doi.org/10.5066/P96HHBIE, 2019.
Dick, K.: Glacier Change of the North Cascades, Washington 1900–2009, MS thesis, Portland State University, Portland, OR, 127 pp., https://doi.org/10.15760/etd.1062, 2013.
Dussaillant, I., Berthier, E., Brun, F., Masiokas, M., Hugonnet, R., Favier, V., Rabatel, A., Pitte, P., and Ruiz, L.: Two decades of glacier mass loss along the Andes, Nat. Geosci., 12, 802–808, https://doi.org/10.1038/s41561-019-0432-5, 2019.
Earl, L. and Gardner, A.: A satellite-derived glacier inventory for North Asia, Ann. Glaciol., 57, 50–60, https://doi.org/10.3189/2016AoG71A008, 2016.
Evans, I. S.: Local aspect asymmetry of mountain glaciation: A global survey of consistency of favoured directions for glacier numbers and altitudes, Geomorphology, 73, 166–184, https://doi.org/10.1016/j.geomorph.2005.07.009, 2006.
Fagre, D. B., McKeon, L. A., Dick, K. A., and Fountain, A. G.: Glacier margin time series (1966, 1998, 2005, 2015) of the named glaciers of Glacier National Park, MT, USA, https://doi.org/10.5066/f7p26wb1, 2017.
Fellman, J. B., Nagorski, S., Pyare, S., Vermilyea, A. W., Scott, D., and Hood, E.: Stream temperature response to variable glacier coverage in coastal watersheds of Southeast Alaska, Hydrol. Process., 28, 2062–2073, https://doi.org/10.1002/hyp.9742, 2014.
Fischer, A., Seiser, B., Stocker Waldhuber, M., Mitterer, C., and Abermann, J.: Tracing glacier changes in Austria from the Little Ice Age to the present using a lidar-based high-resolution glacier inventory in Austria, The Cryosphere, 9, 753–766, https://doi.org/10.5194/tc-9-753-2015, 2015.
Fountain, A. G. and Glenn, B.: Data From: Inventory of Glaciers and Perennial Snowfields of the Coterminous USA (2022), Portland State University, Portland, OR, https://doi.org/10.15760/geology-data.03,
2022.
Fountain, A. G. and Tangborn, W. V.: The effect of glaciers on streamflow variations, Water Resour. Res., 21, 579–586, 1985.
Fountain, A. G., Hoffman, M. J., Jackson, K., Basagic, H. J., Nylen, T. H., and Percy, D.: Digital outlines and the topography of the Glaciers of the American West, US Geological Survey, https://doi.org/10.3133/ofr20061340, 2007.
Fountain, A. G., Glenn, B., and Basagic, H. J.: The Geography of Glaciers and Perennial Snowfields in the American West, Arct. Antarct. Alp. Res., 49, 391–410, https://doi.org/10.1657/AAAR0017-003, 2017.
Garwood, J. M., Fountain, A. G., Lindke, K. T., van Hattem, M. G., and Basagic, H. J.: 20th Century Retreat and Recent Drought Accelerated Extinction of Mountain Glaciers and Perennial Snowfields in the Trinity Alps, California, Northwest Sci., 94, 44, https://doi.org/10.3955/046.094.0104, 2020.
Gesch, D., Oimoen, M., Greenlee, S., Nelson, C., Steuck, M., and Tyler, D.: The national elevation dataset, Photogramm. Eng. Rem. S., 68, 5–32, 2002.
Heard, J.: Late Pleistocene and Holocene Aged Glacial and Climatic Reconstructions in the Goat Rocks Wilderness, Washington, United States, https://doi.org/10.15760/etd.557, 2000.
Hock, R., de Woul, M., Radić, V., and Dyurgerov, M.: Mountain glaciers and ice caps around Antarctica make a large sea-level rise contribution: Mountain Glaciers and Ice Caps, Geophys. Res. Lett., 36, L07501, https://doi.org/10.1029/2008GL037020, 2009.
Hoffman, M. J., Fountain, A. G., and Achuff, J. M.: 20th-century variations in area of cirque glaciers and glacierets, Rocky Mountain National Park, Rocky Mountains, Colorado, USA, Ann. Glaciol., 46, 349–354, https://doi.org/10.3189/172756407782871233, 2007.
Huss, M. and Hock, R.: Global-scale hydrological response to future glacier mass loss, Nat. Clim. Change, 8, 135–140, https://doi.org/10.1038/s41558-017-0049-x, 2018.
Jin, S., Homer, C., Yang, L., Danielson, P., Dewitz, J., Li, C., Zhu, Z., Xian, G., and Howard, D.: Overall Methodology Design for the United States National Land Cover Database 2016 Products, Remote Sens.-Basel, 11, 2971, https://doi.org/10.3390/rs11242971, 2019.
King, C.: On the discovery of actual glaciers on the Mountains of the Pacific Slope, Am. J. Sci. Arts, 1, 157–167, 1871.
Krimmel, R. M.: Glaciers of the conterminous United States, in: Satellite image atlas of glaciers of the world: North America, edited by: Williams, Jr., R. S. and Ferrigno, J., US Geological Survey Professional Paper, Washington, DC, J329–J381, https://doi.org/10.3133/pp1386j, 2002.
Leigh, J. R., Stokes, C. R., Carr, R. J., Evans, I. S., Andreassen, L. M., and Evans, D. J. A.: Identifying and mapping very small (< 0.5 km2) mountain glaciers on coarse to high-resolution imagery, J. Glaciol., 65, 873–888, https://doi.org/10.1017/jog.2019.50, 2019.
Linsbauer, A., Paul, F., and Haeberli, W.: Modeling glacier thickness distribution and bed topography over entire mountain ranges with GlabTop: Application of a fast and robust approach, J. Geophys. Res., 117, F03007, https://doi.org/10.1029/2011JF002313, 2012.
Linsbauer, A., Huss, M., Hodel, E., Bauder, A., Fischer, M., Weidmann, Y., Bärtschi, H., and Schmassmann, E.: The New Swiss Glacier Inventory SGI2016: From a Topographical to a Glaciological Dataset, Front. Earth Sci., 9, https://doi.org/10.3389/feart.2021.704189, 2021.
Lu, Y., Zhang, Z., Kong, Y., and Hu, K.: Integration of optical, SAR and DEM data for automated detection of debris-covered glaciers over the western Nyainqentanglha using a random forest classifier, Cold Reg. Sci. Technol., 193, 103421, https://doi.org/10.1016/j.coldregions.2021.103421, 2022.
Meier, M. F.: Distribution and variations of glaciers in the United States exclusive of Alaska, Int. Assoc. Sci. Hydrol., 54, 420–429, 1961.
Meier, M. F.: Contribution of small glaciers to global sea level, Science, 226, 1418–1421, 1984.
Mishra, A., Nainwal, H. C., Bolch, T., Shah, S. S., and Shankar, R.: Glacier inventory and glacier changes (1994–2020) in the Upper Alaknanda Basin, Central Himalaya, J. Glaciol., 69, 591–606, https://doi.org/10.1017/jog.2022.87, 2023.
Moore, R. D., Fleming, S. W., Menounos, B., Wheate, R., Fountain, A., Stahl, K., Holm, K., and Jakob, M.: Glacier change in western North America: influences on hydrology, geomorphic hazards and water quality, Hydrol. Process., 23, 42–61, https://doi.org/10.1002/hyp.7162, 2009.
NAIP: National agricultural imagery program (NAIP) Information Sheet, United States Department of Agriculture, 2017.
O'Connor, J. E., Hardison, J. H., and Costa, J. E.: Debris flows from failures of Neoglacial-age moraine dams in the Three Sisters and Mount Jefferson wilderness areas, Oregon: a study of the recent debris flows from moraine-dammed lake releases at central Oregon Cascade Range volcanoes – Mt. Jefferson, Three Fingered Jack and the Three Sisters/Broken Top, US Geological Survey, Reston, VA, 93 pp., https://doi.org/10.3133/pp1606, 2001.
Osborn, G., Menounos, B., Ryane, C., Riedel, J. L., Clague, J. J., Koch, J., Clark, D., Scott, K., and Davis, P. T.: Latest Pleistocene and Holocene glacier fluctuations on Mount Baker, Washington, Quaternary Sci. Rev., 49, 33–51, https://doi.org/10.1016/j.quascirev.2012.06.004, 2012.
Parkes, D. and Marzeion, B.: Twentieth-century contribution to sea-level rise from uncharted glaciers, Nature, 563, 551–554, https://doi.org/10.1038/s41586-018-0687-9, 2018.
Paul, F., Kääb, A., and Haeberli, W.: Recent glacier changes in the Alps observed by satellite: Consequences for future monitoring strategies, Global Planet. Change, 56, 111–122, https://doi.org/10.1016/j.gloplacha.2006.07.007, 2007.
Paul, F., Barrand, N. E., Baumann, S., Berthier, E., Bolch, T., Casey, K., Frey, H., Joshi, S. P., Konovalov, V., Le Bris, R., Mölg, N., Nosenko, G., Nuth, C., Pope, A., Racoviteanu, A., Rastner, P., Raup, B., Scharrer, K., Steffen, S., and Winsvold, S.: On the accuracy of glacier outlines derived from remote-sensing data, Ann. Glaciol., 54, 171–182, https://doi.org/10.3189/2013AoG63A296, 2013.
Paul, F., Rastner, P., Azzoni, R. S., Diolaiuti, G., Fugazza, D., Le Bris, R., Nemec, J., Rabatel, A., Ramusovic, M., Schwaizer, G., and Smiraglia, C.: Glacier shrinkage in the Alps continues unabated as revealed by a new glacier inventory from Sentinel-2, Earth Syst. Sci. Data, 12, 1805–1821, https://doi.org/10.5194/essd-12-1805-2020, 2020.
Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner, A. S., Hagen, J.-O., Hock, R., Kaser, G., and Kienholz, C.: The Randolph Glacier Inventory: a globally complete inventory of glaciers, J. Glaciol., 60, 537–552, https://doi.org/10.3189/2014JoG13J176, 2014.
Post, A., Richardson, D., Tangborn, W. V., and Rosselot, F.: Inventory of glaciers in the North Cascades, Washington, USGS Professional Paper 705-A, US Geological Survey, Washington, DC, 1971.
Pritchard, H. D.: Asia's shrinking glaciers protect large populations from drought stress, Nature, 569, 649–654, https://doi.org/10.1038/s41586-019-1240-1, 2019.
Rabatel, A., Sirguey, P., Drolon, V., Maisongrande, P., Arnaud, Y., Berthier, E., Davaze, L., Dedieu, J.-P., and Dumont, M.: Annual and Seasonal Glacier-Wide Surface Mass Balance Quantified from Changes in Glacier Surface State: A Review on Existing Methods Using Optical Satellite Imagery, Remote Sens.-Basel, 9, 507, https://doi.org/10.3390/rs9050507, 2017.
Rasmussen, L. A.: South Cascade Glacier mass balance, 1935–2006, Ann. Glaciol., 50, 215–220, 2009.
RGIK: Towards standard guidelines for inventorying rock glaciers: baseline concepts (version 4.2.2), IPA Action Group Rock glacier inventories and kinematics, https://doi.org/10.5194/icg2022-478, 2022.
Robinson, J. E.: Digital topographic data based on lidar survey of Mount Shasta Volcano, California, July–September 2010, Reston, VA, https://doi.org/10.3133/ds852, 2014.
Robson, B. A., Bolch, T., MacDonell, S., Hölbling, D., Rastner, P., and Schaffer, N.: Automated detection of rock glaciers using deep learning and object-based image analysis, Remote Sens. Environ., 250, 112033, https://doi.org/10.1016/j.rse.2020.112033, 2020.
Russell, I. C.: The glaciers of North America, Geogr. J., 12, 553–564, 1898.
Schiefer, E., Menounos, B., and Wheate, R.: Recent volume loss of British Columbian glaciers, Canada: Volume loss of BC glaciers, Geophys. Res. Lett., 34, L16503, https://doi.org/10.1029/2007GL030780, 2007.
Selkowitz, D. J. and Forster, R. R.: Automated mapping of persistent ice and snow cover across the western U. S. with Landsat, ISPRS J. Photogramm., 117, 126–140, https://doi.org/10.1016/j.isprsjprs.2016.04.001, 2016.
Sitts, D. J., Fountain, A. G., and Hoffman, M. J.: Twentieth Century Glacier Change on Mount Adams, Washington, USA, Northwest Sci., 84, 378–385, https://doi.org/10.3955/046.084.0407, 2010.
Smiraglia, C., Azzoni, R. S., D'Agata, C., Maragno, D., Fugazza, D., and Diolaiuti, G. A.: The New Italian Glacier Inventory: a didactic tool for a better knowledge of the natural Alpine environment, J-Read.-J. Res. Didact. Geogr., 4, https://doi.org/10.4458/5196-08, 2015.
Spicer, R.: Glaciers in the Olympic Mountains, Washington – Present distribution and recent variations, MS thesis, University of Washington, Seattle, WA, 158 pp., 1986.
Sun, M., Liu, S., Yao, X., Guo, W., and Xu, J.: Glacier changes in the Qilian Mountains in the past half-century: Based on the revised First and Second Chinese Glacier Inventory, J. Geogr. Sci., 28, 206–220, https://doi.org/10.1007/s11442-018-1468-y, 2018.
Trcka, A.: Inventory of Rock Glaciers in the American West and Their Topography and Climate, https://doi.org/10.15760/etd.7509, 2020.
Usery, E. L., Varanka, D., and Finn, M. P.: A 125 year history of topographic mapping and GIS in the U. S. Geological Survey 1884–2009, part 1: 1884–1980, ArcNews, 31, p. 39, 2009.
Wickham, J., Stehman, S. V., Sorenson, D. G., Gass, L., and Dewitz, J. A.: Thematic accuracy assessment of the NLCD 2016 land cover for the conterminous United States, Remote Sens. Environ., 257, 112357, https://doi.org/10.1016/j.rse.2021.112357, 2021.
Yao, T., Pu, J., Lu, A., Wang, Y., and Yu, W.: Recent glacial retreat and its impact on hydrological processes on the Tibetan Plateau, China, and surrounding regions, Arct. Antarct. Alp. Res., 39, 642–650, 2007.
Zalazar, L., Ferri, L., Castro, M., Gargantini, H., Gimenez, M., Pitte, P., Ruiz, L., Masiokas, M., Costa, G., and Villalba, R.: Spatial distribution and characteristics of Andean ice masses in Argentina: results from the first National Glacier Inventory, J. Glaciol., 66, 938–949, https://doi.org/10.1017/jog.2020.55, 2020.
Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J., Barandun, M., Machguth, H., Nussbaumer, S. U., Gärtner-Roer, I., Thomson, L., Paul, F., Maussion, F., Kutuzov, S., and Cogley, J. G.: Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016, Nature, 568, 382–386, https://doi.org/10.1038/s41586-019-1071-0, 2019.
Short summary
Glaciers are rapidly shrinking globally. To identify past change and provide a baseline for future change, we inventoried the extent of glaciers and perennial snowfields across the western USA excluding Alaska. Using mostly aerial imagery, we digitized the outlines of all glaciers and perennial snowfields equal to or larger than 0.01 km2 using a geographical information system. We identified 1331 (366.52 km2) glaciers and 1176 (31.00 km2) snowfields.
Glaciers are rapidly shrinking globally. To identify past change and provide a baseline for...
Altmetrics
Final-revised paper
Preprint