Articles | Volume 15, issue 8
https://doi.org/10.5194/essd-15-3711-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-3711-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A synthetic optical database generated by radiative transfer simulations in support of studies in ocean optics and optical remote sensing of the global ocean
Hubert Loisel
CORRESPONDING AUTHOR
Laboratoire d'Océanologie et de Géosciences, Université du Littoral-Côte-d'Opale, Université Lille, CNRS, IRD, UMR 8187, LOG,
32 avenue Foch, Wimereux, France
Daniel Schaffer Ferreira Jorge
Laboratoire d'Océanologie et de Géosciences, Université du Littoral-Côte-d'Opale, Université Lille, CNRS, IRD, UMR 8187, LOG,
32 avenue Foch, Wimereux, France
Rick A. Reynolds
Marine Physical Laboratory, Scripps Institution of Oceanography,
University of California San Diego, La Jolla, California 92093-0238, USA
Dariusz Stramski
Marine Physical Laboratory, Scripps Institution of Oceanography,
University of California San Diego, La Jolla, California 92093-0238, USA
Related authors
Alain Fumenia, Hubert Loisel, Rick A. Reynolds, and Dariusz Stramski
Biogeosciences, 22, 2461–2484, https://doi.org/10.5194/bg-22-2461-2025, https://doi.org/10.5194/bg-22-2461-2025, 2025
Short summary
Short summary
Particulate organic nitrogen (PON) plays a central role in ocean biogeochemistry, yet limited in situ data hinder a full understanding of PON variability and associated processes. Measurements of optical properties offer an alternative for assessing PON across diverse marine environments. Our analysis reveals strong relationships between PON and optical properties, supporting a promising means to assess PON from optical measurements performed in situ or conducted from remote-sensing platforms.
Roy El Hourany, Juan Pierella Karlusich, Lucie Zinger, Hubert Loisel, Marina Levy, and Chris Bowler
Ocean Sci., 20, 217–239, https://doi.org/10.5194/os-20-217-2024, https://doi.org/10.5194/os-20-217-2024, 2024
Short summary
Short summary
Satellite observations offer valuable information on phytoplankton abundance and community structure. Here, we employ satellite observations to infer seven phytoplankton groups at a global scale based on a new molecular method from Tara Oceans. The link has been established using machine learning approaches. The output of this work provides excellent tools to collect essential biodiversity variables and a foundation to monitor the evolution of marine biodiversity.
Hubert Loisel, Lucile Duforêt-Gaurier, Trung Kien Tran, Daniel Schaffer Ferreira Jorge, François Steinmetz, Antoine Mangin, Marine Bretagnon, and Odile Hembise Fanton d'Andon
State Planet, 1-osr7, 11, https://doi.org/10.5194/sp-1-osr7-11-2023, https://doi.org/10.5194/sp-1-osr7-11-2023, 2023
Short summary
Short summary
In this paper, we will show how a proxy for particulate composition (PPC), classifying the suspended particulate matter into its organic, mineral, or mixed fractions, can be estimated from remote-sensing observations. The selected algorithm will then be applied to MERIS observations (2002–2012) over global coastal waters to discuss the significance of this new product. A specific focus will be on the English Channel and the southern North Sea.
Tihomir S. Kostadinov, Lisl Robertson Lain, Christina Eunjin Kong, Xiaodong Zhang, Stéphane Maritorena, Stewart Bernard, Hubert Loisel, Daniel S. F. Jorge, Ekaterina Kochetkova, Shovonlal Roy, Bror Jonsson, Victor Martinez-Vicente, and Shubha Sathyendranath
Ocean Sci., 19, 703–727, https://doi.org/10.5194/os-19-703-2023, https://doi.org/10.5194/os-19-703-2023, 2023
Short summary
Short summary
We present a remote sensing algorithm to estimate the size distribution of particles suspended in natural near-surface ocean water using ocean color data. The algorithm can be used to estimate the abundance and carbon content of phytoplankton, photosynthesizing microorganisms that are at the basis of the marine food web and play an important role in Earth’s carbon cycle and climate. A merged, multi-sensor satellite data set and the model scientific code are provided.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Thomas Jackson, Andrei Chuprin, Malcolm Taberner, Ruth Airs, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Yngve Borsheim, Astrid Bracher, Vittorio Brando, Robert J. W. Brewin, Elisabetta Canuti, Francisco P. Chavez, Andrés Cianca, Hervé Claustre, Lesley Clementson, Richard Crout, Afonso Ferreira, Scott Freeman, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Ralf Goericke, Richard Gould, Nathalie Guillocheau, Stanford B. Hooker, Chuamin Hu, Mati Kahru, Milton Kampel, Holger Klein, Susanne Kratzer, Raphael Kudela, Jesus Ledesma, Steven Lohrenz, Hubert Loisel, Antonio Mannino, Victor Martinez-Vicente, Patricia Matrai, David McKee, Brian G. Mitchell, Tiffany Moisan, Enrique Montes, Frank Muller-Karger, Aimee Neeley, Michael Novak, Leonie O'Dowd, Michael Ondrusek, Trevor Platt, Alex J. Poulton, Michel Repecaud, Rüdiger Röttgers, Thomas Schroeder, Timothy Smyth, Denise Smythe-Wright, Heidi M. Sosik, Crystal Thomas, Rob Thomas, Gavin Tilstone, Andreia Tracana, Michael Twardowski, Vincenzo Vellucci, Kenneth Voss, Jeremy Werdell, Marcel Wernand, Bozena Wojtasiewicz, Simon Wright, and Giuseppe Zibordi
Earth Syst. Sci. Data, 14, 5737–5770, https://doi.org/10.5194/essd-14-5737-2022, https://doi.org/10.5194/essd-14-5737-2022, 2022
Short summary
Short summary
A compiled set of in situ data is vital to evaluate the quality of ocean-colour satellite data records. Here we describe the global compilation of bio-optical in situ data (spanning from 1997 to 2021) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Marie Barbieux, Julia Uitz, Alexandre Mignot, Collin Roesler, Hervé Claustre, Bernard Gentili, Vincent Taillandier, Fabrizio D'Ortenzio, Hubert Loisel, Antoine Poteau, Edouard Leymarie, Christophe Penkerc'h, Catherine Schmechtig, and Annick Bricaud
Biogeosciences, 19, 1165–1194, https://doi.org/10.5194/bg-19-1165-2022, https://doi.org/10.5194/bg-19-1165-2022, 2022
Short summary
Short summary
This study assesses marine biological production in two Mediterranean systems representative of vast desert-like (oligotrophic) areas encountered in the global ocean. We use a novel approach based on non-intrusive high-frequency in situ measurements by two profiling robots, the BioGeoChemical-Argo (BGC-Argo) floats. Our results indicate substantial yet variable production rates and contribution to the whole water column of the subsurface layer, typically considered steady and non-productive.
Alain Fumenia, Hubert Loisel, Rick A. Reynolds, and Dariusz Stramski
Biogeosciences, 22, 2461–2484, https://doi.org/10.5194/bg-22-2461-2025, https://doi.org/10.5194/bg-22-2461-2025, 2025
Short summary
Short summary
Particulate organic nitrogen (PON) plays a central role in ocean biogeochemistry, yet limited in situ data hinder a full understanding of PON variability and associated processes. Measurements of optical properties offer an alternative for assessing PON across diverse marine environments. Our analysis reveals strong relationships between PON and optical properties, supporting a promising means to assess PON from optical measurements performed in situ or conducted from remote-sensing platforms.
Roy El Hourany, Juan Pierella Karlusich, Lucie Zinger, Hubert Loisel, Marina Levy, and Chris Bowler
Ocean Sci., 20, 217–239, https://doi.org/10.5194/os-20-217-2024, https://doi.org/10.5194/os-20-217-2024, 2024
Short summary
Short summary
Satellite observations offer valuable information on phytoplankton abundance and community structure. Here, we employ satellite observations to infer seven phytoplankton groups at a global scale based on a new molecular method from Tara Oceans. The link has been established using machine learning approaches. The output of this work provides excellent tools to collect essential biodiversity variables and a foundation to monitor the evolution of marine biodiversity.
Hubert Loisel, Lucile Duforêt-Gaurier, Trung Kien Tran, Daniel Schaffer Ferreira Jorge, François Steinmetz, Antoine Mangin, Marine Bretagnon, and Odile Hembise Fanton d'Andon
State Planet, 1-osr7, 11, https://doi.org/10.5194/sp-1-osr7-11-2023, https://doi.org/10.5194/sp-1-osr7-11-2023, 2023
Short summary
Short summary
In this paper, we will show how a proxy for particulate composition (PPC), classifying the suspended particulate matter into its organic, mineral, or mixed fractions, can be estimated from remote-sensing observations. The selected algorithm will then be applied to MERIS observations (2002–2012) over global coastal waters to discuss the significance of this new product. A specific focus will be on the English Channel and the southern North Sea.
Tihomir S. Kostadinov, Lisl Robertson Lain, Christina Eunjin Kong, Xiaodong Zhang, Stéphane Maritorena, Stewart Bernard, Hubert Loisel, Daniel S. F. Jorge, Ekaterina Kochetkova, Shovonlal Roy, Bror Jonsson, Victor Martinez-Vicente, and Shubha Sathyendranath
Ocean Sci., 19, 703–727, https://doi.org/10.5194/os-19-703-2023, https://doi.org/10.5194/os-19-703-2023, 2023
Short summary
Short summary
We present a remote sensing algorithm to estimate the size distribution of particles suspended in natural near-surface ocean water using ocean color data. The algorithm can be used to estimate the abundance and carbon content of phytoplankton, photosynthesizing microorganisms that are at the basis of the marine food web and play an important role in Earth’s carbon cycle and climate. A merged, multi-sensor satellite data set and the model scientific code are provided.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Thomas Jackson, Andrei Chuprin, Malcolm Taberner, Ruth Airs, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Yngve Borsheim, Astrid Bracher, Vittorio Brando, Robert J. W. Brewin, Elisabetta Canuti, Francisco P. Chavez, Andrés Cianca, Hervé Claustre, Lesley Clementson, Richard Crout, Afonso Ferreira, Scott Freeman, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Ralf Goericke, Richard Gould, Nathalie Guillocheau, Stanford B. Hooker, Chuamin Hu, Mati Kahru, Milton Kampel, Holger Klein, Susanne Kratzer, Raphael Kudela, Jesus Ledesma, Steven Lohrenz, Hubert Loisel, Antonio Mannino, Victor Martinez-Vicente, Patricia Matrai, David McKee, Brian G. Mitchell, Tiffany Moisan, Enrique Montes, Frank Muller-Karger, Aimee Neeley, Michael Novak, Leonie O'Dowd, Michael Ondrusek, Trevor Platt, Alex J. Poulton, Michel Repecaud, Rüdiger Röttgers, Thomas Schroeder, Timothy Smyth, Denise Smythe-Wright, Heidi M. Sosik, Crystal Thomas, Rob Thomas, Gavin Tilstone, Andreia Tracana, Michael Twardowski, Vincenzo Vellucci, Kenneth Voss, Jeremy Werdell, Marcel Wernand, Bozena Wojtasiewicz, Simon Wright, and Giuseppe Zibordi
Earth Syst. Sci. Data, 14, 5737–5770, https://doi.org/10.5194/essd-14-5737-2022, https://doi.org/10.5194/essd-14-5737-2022, 2022
Short summary
Short summary
A compiled set of in situ data is vital to evaluate the quality of ocean-colour satellite data records. Here we describe the global compilation of bio-optical in situ data (spanning from 1997 to 2021) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Marie Barbieux, Julia Uitz, Alexandre Mignot, Collin Roesler, Hervé Claustre, Bernard Gentili, Vincent Taillandier, Fabrizio D'Ortenzio, Hubert Loisel, Antoine Poteau, Edouard Leymarie, Christophe Penkerc'h, Catherine Schmechtig, and Annick Bricaud
Biogeosciences, 19, 1165–1194, https://doi.org/10.5194/bg-19-1165-2022, https://doi.org/10.5194/bg-19-1165-2022, 2022
Short summary
Short summary
This study assesses marine biological production in two Mediterranean systems representative of vast desert-like (oligotrophic) areas encountered in the global ocean. We use a novel approach based on non-intrusive high-frequency in situ measurements by two profiling robots, the BioGeoChemical-Argo (BGC-Argo) floats. Our results indicate substantial yet variable production rates and contribution to the whole water column of the subsurface layer, typically considered steady and non-productive.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Maria Paula da Silva, Lino A. Sander de Carvalho, Evlyn Novo, Daniel S. F. Jorge, and Claudio C. F. Barbosa
Biogeosciences, 17, 5355–5364, https://doi.org/10.5194/bg-17-5355-2020, https://doi.org/10.5194/bg-17-5355-2020, 2020
Short summary
Short summary
In this study, we analyze the seasonal changes in the dissolved organic matter (DOM) quality (based on its optical properties) in four Amazon floodplain lakes. DOM plays a fundamental role in surface water chemistry, controlling metal bioavailability and mobility, and nutrient cycling. The model proposed in our paper highlights the potential to study DOM quality at a wider spatial scale, which may help to better understand the persistence and fate of DOM in the ecosystem.
Cited articles
Antoine, D., Siegel, D. A., Kostadinov, T., Maritorena, S., Nelson, N. B.,
Gentili, B., Vellucci, V., and Guillocheau, N.: Variability in optical particle
backscattering in contrasting bio-optical oceanic regimes, Limnol.
Oceanogr., 56, 955–973, https://doi.org/10.4319/lo.2011.56.3.0955, 2011.
Aurin, D., Mannino, A., and Lary, D.: Remote sensing of CDOM, CDOM spectral
slope, and dissolved organic carbon in the Global Ocean, Appl. Sci., 8,
2687, https://doi.org/10.3390/app8122687, 2018.
Babin, M., Stramski, D., Ferrari, G. M., Claustre, H., Bricaud, A.,
Obolensky, G., and Hoepffner, N.: Variations in the light absorption coe?cients
of phytoplankton, nonalgal particles, and dissolved organic matter in
coastal waters around Europe. J. Geophys. Res., 108, 3211,
https://doi.org/10.1029/2001JC000882, 2003.
Bonelli, A. G., Vantrepotte, V., Jorge, D. S. F., Demaria, J., Jamet, C.,
Dessailly, D., Mangin, A., Fanton d'Andon, O., Kwiatkowska, E., and Loisel, H.:
Colored dissolved organic matter absorption at global scale from ocean color
radiometry observation: spatio-temporal variability and contribution to the
absorption budget, Remote Sens. Environ., 265, 112637,
https://doi.org/10.1016/j.rse.2021.112637, 2021.
Bricaud, A., Morel, A., Babin, M., Allali, K., and Claustre, H.: Variation of
light absorption by suspended particles with chlorophyll a concentration in
oceanic (case 1) waters: Analysis and implications for bio-optical models,
J. Geophys. Res., 103, 31033–31044, https://doi.org/10.1029/98JC02712,
1998.
Bricaud, A., Babin, M., Claustre, H., Ras, J., and Tieche, F.: Light absorption
properties and absorption budget of Southeast Pacific waters. J. Geophys.
Res., 115, C0800910, https://doi.org/10.1029/2009JC005517, 2010.
Casey, K. A., Rousseaux, C. S., Gregg, W. W., Boss, E., Chase, A. P., Craig, S. E., Mouw, C. B., Reynolds, R. A., Stramski, D., Ackleson, S. G., Bricaud, A., Schaeffer, B., Lewis, M. R., and Maritorena, S.: A global compilation of in situ aquatic high spectral resolution inherent and apparent optical property data for remote sensing applications, Earth Syst. Sci. Data, 12, 1123–1139, https://doi.org/10.5194/essd-12-1123-2020, 2020.
Claustre, H., Sciandra, A., and Vaulot, D.: Introduction to the special section bio-optical and biogeochemical conditions in the South East Pacific in late 2004: the BIOSOPE program, Biogeosciences, 5, 679–691, https://doi.org/10.5194/bg-5-679-2008, 2008.
Craig, S. E., Lee, Z., and Du, K.: Top of Atmosphere, Hyperspectral Synthetic
Dataset for PACE (Phytoplankton, Aerosol, and ocean Ecosystem) Ocean Color
Algorithm Development, National Aeronautics and Space Administration,
PANGAEA [data set], https://doi.org/10.1594/PANGAEA.915747, 2020.
Donlon, C., Berruti, B., Buongiorno, A., Ferreira, M.-H., Féménias,
P., Frerick, J., Goryl, P., Klein, U., Laur, H., Mavrocordatos, C., Nieke,
J., Rebhan, H., Seitz, B., Stroede, J., and Sciarra, R.: The Global Monitoring
for Environment and Security (GMES) Sentinel-3 mission, Remote Sens.
Environ., 120, 37–57, https://doi.org/10.1016/j.rse.2011.07.024, 2012.
Durack, P. J., Wijffels, S. E., and Boyer, T. P.: Long-term salinity changes and
implications for the global water cycle, in: Ocean Circulation and Climate:
A 21st Century Perspective, edited by: Siedler, G., Griffies, S. M., Gould,
J., and Church, J. A., International Geophysics, vol. 103,
Academic Press, Elsevier, Oxford, UK, 727–757,
https://doi.org/10.1016/B978-0-12-391851-2.00028-3, 2013.
Fournier G. R. and Forand, J. L.: Analytic phase function for ocean water, in:
Ocean Optics XII, edited by: Jaffe, J. S., Proc. SPIE, Vol. 2258,
194–201, https://doi.org/10.1117/12.190063, 1994.
Huot, Y., Morel, A., Twardowski, M. S., Stramski, D., and Reynolds, R. A.: Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern South Pacific Ocean, Biogeosciences, 5, 495–507, https://doi.org/10.5194/bg-5-495-2008, 2008.
IOCCG Report: Remote Sensing of Inherent Optical Properties: Fundamentals,
Tests of Algorithms, and Applications, in: Reports of the International
Ocean-Colour Coordinating Group (IOCCG), edited by: Lee, Z.-P. and Lee, Z.-P., No. 5, 126 pp., IOCCG, Dartmouth, NS, Canada,
https://ioccg.org/wp-content/uploads/2015/10/ioccg-report-05.pdf (last access: 1 March 2023), 2006.
IOCCG Protocol Series: Inherent Optical Property Measurements and Protocols:
Absorption Coefficient, in: IOCCG Ocean Optics and Biogeochemistry Protocols
for Satellite Ocean Colour Sensor Validation, edited by: Neeley, A. R. and
Mannino, A., vol. 1.0, 78 pp., IOCCG, Dartmouth, NS, Canada,
https://doi.org/10.25607/OBP-119, 2018.
Jonasz, M. and Fournier, G. R.: Light Scattering by Particles in Water:
Theoretical and Experimental Foundations, Academic Press, Amsterdam, ISBN-13: 978-0-12-388751-1, https://doi.org/10.1016/B978-0-12-388751-1.X5000-5,
2007.
Jorge, D. S. F., Loisel, H., Jamet, C., Dessailly, D., Demaria, J., Bricaud,
A., Maritorena, S., Zhang, X., Antoine, D., Kutser, T., Bélanger, S.,
Brando, V. O., Werdell, J., Kwiatkowska, E., Mangin, A., and Fanton d'Andon, O.:
A three-step semi analytical algorithm (3SAA) for estimating inherent
optical properties over oceanic, coastal, and inland waters from remote
sensing reflectance, Remote Sens. Environ., 263, 112537,
https://doi.org/10.1016/j.rse.2021.112537, 2021.
Kishino, M., Takahashi, M., Okami, N., and Ichimura, S.: Estimation of the
spectral absorption coefficient of phytoplankton in the sea, Bull. Mar.
Sci., 37, 634–642, 1985.
Kostakis, I., Twardowski, M., Roesler, C., Röttgers, R., Stramski, D.,
McKee, D., Tonizzo, A., and Drapeau, S.: Hyperspectral optical absorption
closure experiment in complex coastal waters, Limnol. Oceanogr. Methods, 19,
589–625, https://doi.org/10.1002/lom3.10447, 2021.
Kou, L., Labrie, D., and Chylek, P.: Refractive indices of water and ice in the
0.65 to 2.5 µm spectral range, Appl. Opt., 32, 3531–3540,
https://doi.org/10.1364/AO.32.003531, 1993.
Lévy, M., Lehahn, Y., André, J.-M., L. Mémery, L., Loisel, H., and E. Heifetz, E.: Production regimes in the northeast Atlantic: A study based on Sea-viewing Wide Field-of-view Sensor (SeaWiFS) chlorophyll and ocean general circulation model mixed layer depth, J. Geophys. Res., 110, C07S10, https://doi.org/10.1029/2004JC002771, 2005.
Loisel, H. and Morel, A.: Light scattering and chlorophyll concentration in
case 1 waters: a re-examination, Limnol. Oceanogr., 43, 847–857, 1998.
Loisel, H. and Stramski, D:. Estimation of the inherent optical properties of natural waters from irradiance attenuation coefficient and reflectance in the presence of Raman scattering, Appl. Opt., 39, 3001–3011, https://doi.org/10.1364/ao.39.003001, 2000.
Loisel, H., Nicolas, J.-M., Sciandra, A., Stramski, D., and Poteau, A.: Spectral
dependency of optical backscattering by marine particles from satellite
remote sensing of the global ocean, J. Geophys. Res.-Oceans, 111, C09024,
https://doi.org/10.1029/2005JC003367, 2006.
Loisel, H., Mériaux, X., Berthon, J.-F., and Poteau, A.: Investigation of the
optical backscattering to scattering ratio of marine particles in relation
to their biogeochemical composition in the eastern English Channel and
southern North Sea, Limnol. Oceanogr., 52, 739–752,
https://doi.org/10.4319/lo.2007.52.2.0739, 2007.
Loisel, H., Mériaux, X., Poteau, A., Artigas, L. F., Lubac, B., Gardel,
A., Caillaud, J., and Lesourd, S.: Analyze of the inherent optical properties of French Guiana
coastal waters for remote sensing applications, J. Coast. Res., SI 56,
1532–1536, 2009.
Loisel, H., Vantrepotte, V., Norkvist, K., Mériaux, X., Kheireddine, M., Ras, J., Pujo-Pay, M., Combet, Y., Leblanc, K., Dall'Olmo, G., Mauriac, R., Dessailly, D., and Moutin, T.: Characterization of the bio-optical anomaly and diurnal variability of particulate matter, as seen from scattering and backscattering coefficients, in ultra-oligotrophic eddies of the Mediterranean Sea, Biogeosciences, 8, 3295–3317, https://doi.org/10.5194/bg-8-3295-2011, 2011.
Loisel, H., Stramski, D., Dessailly, D., Jamet, C., Li, L., and Reynolds, R. A.:
An inverse model for estimating the optical absorption and backscattering
coefficients of seawater from remote-sensing reflectance over a broad range
of oceanic and coastal marine environments, J. Geophys. Res.-Oceans, 123,
2141–2171, https://doi.org/10.1002/2017JC013632, 2018.
Loisel, H., Jorge, D. S. F., Reynolds, R. A., and Stramski, D.: A synthetic
database of hyperspectral ocean optical properties, Dryad [data set],
https://doi.org/10.6076/D1630T, 2023.
Lubac, B., Loisel, H., Guiselin, N., Astoreca, R., Artigas, L. F., and
Mériaux, X.: Hyperspectral versus multispectral remote sensing approach
to detect phytoplankton blooms in coastal waters: Application to a
Phaeocystis globosa bloom, J. Geophys. Res.-Oceans, 113, C06026,
https://doi.org/10.1029/2007JC004451, 2008.
Maritorena, S., Morel, A., and Gentili, B.: Determination of the fluorescence
quantum yield by oceanic phytoplankton in their natural habitat, Appl. Opt.
39, 6725–6737, https://doi.org/10.1364/AO.39.006725, 2000.
Maritorena, S., Siegel, D. A., and Peterson, A. R.: Optimization of a
semianalytical ocean color model for global-scale applications, Appl. Opt.,
41, 2705–2714, 2002.
Marshall, B. R. and Smith, R. C.: Raman scattering and in-water optical
properties, Appl. Opt., 29, 71–84, https://doi.org/10.1364/AO.29.000071,
1990.
Mélin, F. and Vantrepotte, V.: How optically diverse is the coastal ocean?,
Remote Sens. Environ., 160, 235–251,
https://doi.org/10.1016/j.rse.2015.01.023, 2015.
Mobley, C.: A numerical model for the computation of radiance distributions
in natural waters with wind-roughened surfaces, Limnol. Oceanogr., 34,
1473–1483, https://doi.org/10.4319/lo.1989.34.8.1473, 1989.
Mobley, C. D.: Light and Water. Radiative Transfer in Natural Waters,
Academic Press, San Diego, ISBN 0-12-502750-8, 1994.
Mobley, C. D.: Hydrolight Technical Note 10: Interpretation of Raman
Scattering Computations, Sequoia Scientific, Bellevue, WA, 2012.
Mobley, C. D. and Sundman, L. K.: HydroLight 5 EcoLight 5 Technical
Documentation, Sequoia Scientific, Bellevue, WA, 2008.
Mobley, C. D., Gentili, B., Gordon, H. R., Jin, Z., Kattawar, G. W., Morel,
A., Reinersman, P., Stamnes, K., and Stavn, R.: Comparison of numerical models
for the computation of underwater light fields, Appl. Opt., 32,
7484–7504, https://doi.org/10.1364/AO.32.007484, 1993.
Morel, A.: Optical properties of pure water and pure seawater, in: Optical
Aspects of Oceanography, edited by: Jerlov, N. G. and Steeman Nielsen, E., Academic Press, London, 1–24, ISBN-10: 0123849500, 1974.
Morel, A.: Are the empirical relationships describing the bio-optical
properties of case 1 waters consistent and internally compatible?, J.
Geophys. Res., 114, C01016, https://.org/10.1029/2008JC004803, 2009.
Morel, A. and Gentili, B.: Diffuse reflectance of oceanic waters: its
dependence on Sun angles as influenced by the molecular scattering
contribution, Appl. Opt., 30, 4427–4438,
https://doi.org/10.1364/AO.30.004427, 1991.
Morel, A. and Loisel, H.: Apparent Optical properties of oceanic waters:
dependence on molecular scattering contribution, Appl. Opt. 37, 4765–4776, https://doi.org/10.1364/ao.37.004765, 1998.
Morel, A. and Maritorena, S.: Bio-optical properties of oceanic waters: a
reappraisal, J. Geophys. Res., 106, 7163–7180,
https://doi.org/10.1029/2000JC000319, 2001.
Morel, A., Huot, Y., Gentili, B., Werdell, P. J., Hooker, S. B., and Franz, B.
A.: Examining the consistency of products derived from various ocean color
sensors in open ocean (Case 1) waters in the perspective of a multi-sensor
approach, Remote Sens. Environ., 111, 69–88,
https://doi.org/10.1016/j.rse.2007.03.012, 2007.
Morrison, J. R.: In situ determination of the quantum yield of phytoplankton
chlorophyll a fluorescence: A simple algorithm, observations, and a model,
Limnol. Oceanogr., 48, 618–631, https://doi.org/10.4319/lo.2003.48.2.0618,
2003.
Mueller, J. L.: SeaWiFS algorithm for the diffuse attenuation coefficient,
K(490), using water-leaving radiances at 490 and 555 nm, in: SeaWiFS
Postlaunch Calibration and Validation Analyses, Part 3, edited by: Hooker,
S. B. and Firestone, E. R., NASA/TM-2000-206892, Vol. 11, NASA
Goddard Space Flight Center, Greenbelt, Maryland, 24–27, 2000.
Nechad, B., Ruddick, K., Schroeder, T., Oubelkheir, K., Blondeau-Patissier, D., Cherukuru, N., Brando, V., Dekker, A., Clementson, L., Banks, A. C., Maritorena, S., Werdell, P. J., Sá, C., Brotas, V., Caballero de Frutos, I., Ahn, Y.-H., Salama, S., Tilstone, G., Martinez-Vicente, V., Foley, D., McKibben, M., Nahorniak, J., Peterson, T., Siliò-Calzada, A., Röttgers, R., Lee, Z., Peters, M., and Brockmann, C.: CoastColour Round Robin data sets: a database to evaluate the performance of algorithms for the retrieval of water quality parameters in coastal waters, Earth Syst. Sci. Data, 7, 319–348, https://doi.org/10.5194/essd-7-319-2015, 2015.
Neukermans, G., Loisel, H., Mériaux, X., Astoreca, R., and McKee, D.: In
situ variability of mass-specific beam attenuation and backscattering of
marine particles with respect to particle size, density, and composition,
Limnol. Oceanogr., 57, 124–144, https://doi.org/10.4319/lo.2012.57.1.0124,
2012.
Neukermans, G., Reynolds, R. A., and Stramski, D.: Optical classification and
characterization of marine particle assemblages within the western Arctic
Ocean. Limnol. Oceanogr., 61, 1472–1494, https://doi.org/10.1002/lno.10316,
2016.
O'Reilly, J. E. and Werdell, P. J.: Chlorophyll algorithms for ocean color
sensors – OC4, OC5 & OC6, Remote Sens. Environ., 229, 32–47,
https://doi.org/10.1016/j.rse.2019.04.021, 2019.
Petzold, T. J: Volume scattering functions for selected natural waters,
Scripps Inst. Oceanogr. Contrib. 72–78, San Diego, CA, 1972.
Pope, R. M. and Fry, E. S.: Absorption spectrum (380–700 nm) of pure water. II.
Integrating cavity measurements, Appl. Opt., 36, 8710–8723,
https://doi.org/10.1364/AO.36.008710, 1997.
Reynolds, R. A. and Stramski, D.: Optical characterization of marine
phytoplankton assemblages within surface waters of the western Arctic Ocean,
Limnol. Oceanogr., 64, 2478–2496, https://doi.org/10.1002/lno.11199, 2019.
Reynolds, R. A., Stramski, D., and Mitchell, B. G.: A chlorophyll-dependent
semianalytical reflectance model derived from field measurements of
absorption and backscattering coefficients within the Southern Ocean, J.
Geophys. Res., 106, 7125–7138, https://doi.org/10.1029/1999JC000311,
2001.
Reynolds, R. A., Stramski, D., and Neukermans, G.: Optical backscattering of
particles in Arctic seawater and relationships to particle mass
concentration, size distribution, and bulk composition, Limnol. Oceanogr.,
61, 1869–1890, https://doi.org/10.1002/lno.10341, 2016.
Stamnes, K., Thomas, G. E., and Stamnes, J. J.: Radiative Transfer in the
Atmosphere and Ocean, 2nd edn., University Cambridge Press, Online ISBN 9781316148549, https://doi.org/10.1017/9781316148549, 2017.
Stavn, R. H.: Effects of Raman scattering across the visible spectrum in
clear ocean water: A Monte Carlo study, Appl. Opt., 32, 6853–6863,
https://doi.org/10.1364/AO.32.006853, 1993.
Stramski, D., Reynolds, R. A., Babin, M., Kaczmarek, S., Lewis, M. R., Röttgers, R., Sciandra, A., Stramska, M., Twardowski, M. S., Franz, B. A., and Claustre, H.: Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans, Biogeosciences, 5, 171–201, https://doi.org/10.5194/bg-5-171-2008, 2008.
Stramski, D., Reynolds, R. A., Kaczmarek, S., Uitz, J., and Zheng, G.:
Correction of pathlength amplification in the filter-pad technique for
measurements of particulate absorption coefficient in the visible spectral
region, Appl. Opt., 54, 6763–6782, https://doi.org/10.1364/AO.54.006763,
2015.
Stramski, D., Li, L., and Reynolds, R. A.: Model for separating the
contributions of non-algal particles and colored dissolved organic matter to
light absorption by seawater, Appl. Opt., 58, 3790–3806,
https://doi.org/10.1364/AO.58.003790, 2019.
Stramski, D., Joshi, I., and Reynolds, R. A.: Ocean color algorithms to estimate
the concentration of particulate organic carbon in surface waters of the
global ocean in support of a long-term data record from multiple satellite
missions, Remote Sens. Environ., 269, 112776,
https://doi.org/10.1016/j.rse.2021.112776, 2022.
Sugihara, S., Kishino, M., and Okami, M.: Contribution of Raman scattering to
upward irradiance in the sea, J. Oceanogr. Soc. Japan, 40, 397–404, 1984.
Uitz, J., Stramski, D., Reynolds, R. A., and Dubranna, J.: Assessing
phytoplankton community composition from hyperspectral measurements of
phytoplankton absorption coefficient and remote-sensing reflectance in
open-ocean environments, Remote Sens. Environ., 171, 58–74,
https://doi.org/10.1016/j.rse.2015.09.027.
Valente, A., Sathyendranath, S., Brotas, V., Groom, S., Grant, M., Taberner, M., Antoine, D., Arnone, R., Balch, W. M., Barker, K., Barlow, R., Bélanger, S., Berthon, J.-F., Beşiktepe, Ş., Borsheim, Y., Bracher, A., Brando, V., Canuti, E., Chavez, F., Cianca, A., Claustre, H., Clementson, L., Crout, R., Frouin, R., García-Soto, C., Gibb, S. W., Gould, R., Hooker, S. B., Kahru, M., Kampel, M., Klein, H., Kratzer, S., Kudela, R., Ledesma, J., Loisel, H., Matrai, P., McKee, D., Mitchell, B. G., Moisan, T., Muller-Karger, F., O'Dowd, L., Ondrusek, M., Platt, T., Poulton, A. J., Repecaud, M., Schroeder, T., Smyth, T., Smythe-Wright, D., Sosik, H. M., Twardowski, M., Vellucci, V., Voss, K., Werdell, J., Wernand, M., Wright, S., and Zibordi, G.: A compilation of global bio-optical in situ data for ocean-colour satellite applications – version two, Earth Syst. Sci. Data, 11, 1037–1068, https://doi.org/10.5194/essd-11-1037-2019, 2019.
Voss, K. J.: A spectral model of the beam attenuation coefficient in the
ocean and coastal areas, Limnol. Oceanogr., 37, 501–509, 1992.
Werdell, P. J.: OceanColor K490 algorithm evaluation, NASA Ocean Color Web,
https://oceancolor.gsfc.nasa.gov (last access: 1 March 2023), 2005.
Werdell, P. J.: Diffuse attenuation coefficient (KD) for downwelling
irradiance at 490 nm, NASA Ocean Color Web,
https://oceancolor.gsfc.nasa.gov (last access: 1 March 2023), 2009.
Werdell, P. J. and Bailey, S. W.: An improved in situ bio-optical data set for
ocean color algorithm development and satellite data product validation,
Remote Sens. Environ., 98, 122–140,
https://doi.org/10.1016/j.rse.2005.07.001, 2005.
Westberry, T. K., Boss, E., and Lee, Z.-P.: Influence of Raman scattering on
ocean color inversion models, Appl. Opt., 52, 5552–5561,
https://doi.org/10.1364/AO.52.005552, 2013.
Whitmire, A. L., Pegau, W. S., Karp-Boss, L., Boss, E., and Cowles, T. J.: Spectral
backscattering properties of marine phytoplankton cultures, Opt. Express,
18, 15073–15093, https://doi.org/10.1364/OE.18.015073, 2010.
Zhang, X. and Hu, L.: Estimating scattering of pure water from density
fluctuation of the refractive index, Opt. Express, 17, 1671–1678,
https://doi.org/10.1364/OE.17.001671, 2009.
Zhang, X., Hu, L., and He, M.-X.: Scattering by pure seawater: effect of
salinity, Opt. Express, 17, 5698–5710,
https://doi.org/10.1364/OE.17.012685, 2009.
Zhang, X., Huot, Y., Bricaud, A., and Sosik, H. M: Inversion of spectral
absorption coefficients to infer phytoplankton size classes, chlorophyll
concentration, and detrital matter, Appl. Opt., 54, 5805–5816,
https://doi.org/10.1364/AO.54.005805, 2015.
Zheng, G., Stramski, D., and Reynolds, R. A.: Evaluation of the Quasi-Analytical
Algorithm for estimating the inherent optical properties of seawater from
ocean color: Comparison of Arctic and lower-latitude waters, Remote Sens.
Environ., 155, 194–209, https://doi.org/10.1016/j.rse.2014.08.020, 2014.
Short summary
Studies of light fields in aquatic environments require data from radiative transfer simulations that are free of measurement errors. In contrast to previously published synthetic optical databases, the present database was created by simulations covering a broad range of seawater optical properties that exhibit probability distributions consistent with a global ocean dominated by open-ocean pelagic environments. This database is intended to support ocean color science and applications.
Studies of light fields in aquatic environments require data from radiative transfer simulations...
Altmetrics
Final-revised paper
Preprint