Articles | Volume 15, issue 7
https://doi.org/10.5194/essd-15-2711-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-2711-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
AlgaeTraits: a trait database for (European) seaweeds
Biology Department, Research Group Phycology, Ghent University, Ghent,
9000, Belgium
Flanders Marine Institute (VLIZ), InnovOcean Campus, Jacobsenstraat 1,
Oostende, 8400, Belgium
Marine Robuchon
Institut de Systématique, Évolution, Biodiversité (ISYEB),
Muséum National d'Histoire Naturelle, Centre National de la Recherche
Scientifique, Sorbonne Université, École Pratique des Hautes Études,
Université des Antilles, Paris, 75005, France
Centre d'Écologie et des Sciences de la Conservation (CESCO),
Muséum National d'Histoire Naturelle, Centre National de la Recherche
Scientifique, Sorbonne Université, Paris, 75005, France
Joint Research Centre (JRC) of the European Commission, Directorate
for Sustainable Resources, Ispra (VA), 21027, Italy
Stefanie Dekeyzer
Biology Department, Research Group Phycology, Ghent University, Ghent,
9000, Belgium
Ignacio Bárbara
BIOCOST Research Group, Faculdade de Ciencias, Universidade da
Coruña, A Coruña, 15071, Spain
Inka Bartsch
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, 27570 Bremerhaven, Germany
Aurélie Blanfuné
CNRS, IRD,
Mediterranean Institute of Oceanography (MIO), Aix-Marseille University and Université de Toulon, Marseille, UM 110, France
Charles-François Boudouresque
CNRS, IRD,
Mediterranean Institute of Oceanography (MIO), Aix-Marseille University and Université de Toulon, Marseille, UM 110, France
Wim Decock
Biology Department, Research Group Phycology, Ghent University, Ghent,
9000, Belgium
Christophe Destombe
IRL 3614, CNRS, SU, UACH, PUC, Station Biologique de Roscoff, Place
Georges Teissier, Roscoff, 29688, France
Bruno de Reviers
Institut de Systématique, Évolution, Biodiversité (ISYEB),
Muséum National d'Histoire Naturelle, Centre National de la Recherche
Scientifique, Sorbonne Université, École Pratique des Hautes Études,
Université des Antilles, Paris, 75005, France
Pilar Díaz-Tapia
BIOCOST Research Group, Faculdade de Ciencias, Universidade da
Coruña, A Coruña, 15071, Spain
Centro Nacional Instituto Español de Oceanografía
(IEO-CSIC), Centro Oceanográfico de A Coruña, A Coruña, 15001,
Spain
Anne Herbst
Department Maritime Systeme, Interdisziplinäre Fakultät,
18057 Rostock, Germany
Romain Julliard
Centre d'Écologie et des Sciences de la Conservation (CESCO),
Muséum National d'Histoire Naturelle, Centre National de la Recherche
Scientifique, Sorbonne Université, Paris, 75005, France
Rolf Karez
State Agency for Agriculture, Environment and Rural Areas
Schleswig-Holstein, 24220 Flintbek, Germany
Priit Kersen
Plant Protection and Fertilisers Department, Agriculture and Food Board, Teaduse 2, Saku, Harjumaa, 75501, Estonia
Stacy A. Krueger-Hadfield
Department of Biology, University of Alabama at Birmingham,
Birmingham, Alabama 35294, USA
Ralph Kuhlenkamp
Phycomarin, 21149 Hamburg, Germany
Akira F. Peters
Bezhin Rosko, Santec, 29250, France
Viviana Peña
BIOCOST Research Group, Faculdade de Ciencias, Universidade da
Coruña, A Coruña, 15071, Spain
Cristina Piñeiro-Corbeira
BIOCOST Research Group, Faculdade de Ciencias, Universidade da
Coruña, A Coruña, 15071, Spain
Fabio Rindi
Dipartimento di Scienze della Vita e dell'Ambiente, Università
Politecnica delle Marche, Via Brecce Bianche, Ancona, 60131, Italy
Florence Rousseau
Centre d'Écologie et des Sciences de la Conservation (CESCO),
Muséum National d'Histoire Naturelle, Centre National de la Recherche
Scientifique, Sorbonne Université, Paris, 75005, France
Jan Rueness
Department of Biosciences, University of Oslo, Oslo, 0315, Norway
Hendrik Schubert
Institute for Biosciences, University Rostock, Rostock, 18051,
Germany
Kjersti Sjøtun
Department of Biological Sciences, University of Bergen, Bergen,
5020, Norway
Marta Sansón
Departamento de Botánica, Ecología y Fisiología
Vegetal, Universidad de La Laguna, La Laguna, 38200, Canary Islands, Spain
Dan Smale
Marine Biological Association of the United Kingdom, Citadel Hill,
Plymouth, PL1 2PB, UK
Thierry Thibaut
CNRS, IRD,
Mediterranean Institute of Oceanography (MIO), Aix-Marseille University and Université de Toulon, Marseille, UM 110, France
Myriam Valero
IRL 3614, CNRS, SU, UACH, PUC, Station Biologique de Roscoff, Place
Georges Teissier, Roscoff, 29688, France
Leen Vandepitte
Biology Department, Research Group Phycology, Ghent University, Ghent,
9000, Belgium
Bart Vanhoorne
Biology Department, Research Group Phycology, Ghent University, Ghent,
9000, Belgium
Alba Vergés
Marine Resources and Biodiversity Research Group (GRMAR), Institute
of Aquatic Ecology, University of Girona, Girona, 17003, Spain
Marc Verlaque
CNRS, IRD,
Mediterranean Institute of Oceanography (MIO), Aix-Marseille University and Université de Toulon, Marseille, UM 110, France
Christophe Vieira
Research Institute for Basic Sciences, Jeju National University,
Jeju, 63243, South Korea
Line Le Gall
Institut de Systématique, Évolution, Biodiversité (ISYEB),
Muséum National d'Histoire Naturelle, Centre National de la Recherche
Scientifique, Sorbonne Université, École Pratique des Hautes Études,
Université des Antilles, Paris, 75005, France
Frederik Leliaert
Meise Botanic Garden, Meise, 1860, Belgium
Olivier De Clerck
CORRESPONDING AUTHOR
Biology Department, Research Group Phycology, Ghent University, Ghent,
9000, Belgium
Related authors
No articles found.
Marine Di Stefano, David Nerini, Itziar Alvarez, Giandomenico Ardizzone, Patrick Astruch, Gotzon Basterretxea, Aurélie Blanfuné, Denis Bonhomme, Antonio Calò, Ignacio Catalan, Carlo Cattano, Adrien Cheminée, Romain Crec'hriou, Amalia Cuadros, Antonio Di Franco, Carlos Diaz-Gil, Tristan Estaque, Robin Faillettaz, Fabiana C. Félix-Hackradt, José Antonio Garcia-Charton, Paolo Guidetti, Loïc Guilloux, Jean-Georges Harmelin, Mireille Harmelin-Vivien, Manuel Hidalgo, Hilmar Hinz, Jean-Olivier Irisson, Gabriele La Mesa, Laurence Le Diréach, Philippe Lenfant, Enrique Macpherson, Sanja Matić-Skoko, Manon Mercader, Marco Milazzo, Tiffany Monfort, Joan Moranta, Manuel Muntoni, Matteo Murenu, Lucie Nunez, M. Pilar Olivar, Jérémy Pastor, Ángel Pérez-Ruzafa, Serge Planes, Nuria Raventos, Justine Richaume, Elodie Rouanet, Erwan Roussel, Sandrine Ruitton, Ana Sabatés, Thierry Thibaut, Daniele Ventura, Laurent Vigliola, Dario Vrdoljak, and Vincent Rossi
Earth Syst. Sci. Data, 16, 3851–3871, https://doi.org/10.5194/essd-16-3851-2024, https://doi.org/10.5194/essd-16-3851-2024, 2024
Short summary
Short summary
We build a compilation of early-life dispersal traits for coastal fish species. The database contains over 110 000 entries collected from 1993 to 2021 in the western Mediterranean. All observations are harmonized to provide information on dates and locations of spawning and settlement, along with pelagic larval durations. When applicable, missing data are reconstructed from dynamic energy budget theory. Statistical analyses reveal sampling biases across taxa, space and time.
Julien Jouanno, Rachid Benshila, Léo Berline, Antonin Soulié, Marie-Hélène Radenac, Guillaume Morvan, Frédéric Diaz, Julio Sheinbaum, Cristele Chevalier, Thierry Thibaut, Thomas Changeux, Frédéric Menard, Sarah Berthet, Olivier Aumont, Christian Ethé, Pierre Nabat, and Marc Mallet
Geosci. Model Dev., 14, 4069–4086, https://doi.org/10.5194/gmd-14-4069-2021, https://doi.org/10.5194/gmd-14-4069-2021, 2021
Short summary
Short summary
The tropical Atlantic has been facing a massive proliferation of Sargassum since 2011, with severe environmental and socioeconomic impacts. We developed a modeling framework based on the NEMO ocean model, which integrates transport by currents and waves, and physiology of Sargassum with varying internal nutrient quota, and considers stranding at the coast. Results demonstrate the ability of the model to reproduce and forecast the seasonal cycle and large-scale distribution of Sargassum biomass.
Markus Franz, Christian Lieberum, Gesche Bock, and Rolf Karez
Earth Syst. Sci. Data, 11, 947–957, https://doi.org/10.5194/essd-11-947-2019, https://doi.org/10.5194/essd-11-947-2019, 2019
Short summary
Short summary
The water parameters in coastal zones are highly variable, making predictions about its dynamics difficult. However, in situ measurements performed in these habitats are still scarce. Therefore we designed a monitoring study to record the environmental conditions in shallow waters by using data loggers and the collection of water samples. The data reveal great variabilities of water parameters and could be used to support experimental and modeling approaches.
Related subject area
Domain: ESSD – Ocean | Subject: Biological oceanography
AIGD-PFT: the first AI-driven global daily gap-free 4 km phytoplankton functional type data product from 1998 to 2023
Early-life dispersal traits of coastal fishes: an extensive database combining observations and growth models
An update of data compilation on the biological response to ocean acidification and overview of the OA-ICC data portal
First release of the Pelagic Size Structure database: global datasets of marine size spectra obtained from plankton imaging devices
Global biogeography of N2-fixing microbes: nifH amplicon database and analytics workflow
Metazoan zooplankton in the Bay of Biscay: a 16-year record of individual sizes and abundances obtained using the ZooScan and ZooCAM imaging systems
PANABIO: a point-referenced PAN-Arctic data collection of benthic BIOtas
Microbial plankton occurrence database in the North American Arctic region: synthesis of recent diversity of potentially toxic and harmful algae
The Western Channel Observatory: a century of physical, chemical and biological data compiled from pelagic and benthic habitats in the western English Channel
A global daily gap-filled chlorophyll-a dataset in open oceans during 2001–2021 from multisource information using convolutional neural networks
A new global oceanic multi-model net primary productivity data product
MAREL Carnot data and metadata from the Coriolis data center
Bio-optical properties of the cyanobacterium Nodularia spumigena
An atlas of seabed biodiversity for Aotearoa New Zealand
A synthetic optical database generated by radiative transfer simulations in support of studies in ocean optics and optical remote sensing of the global ocean
The Coastal Surveillance Through Observation of Ocean Color (COASTℓOOC) dataset
HIPPO environmental monitoring: impact of phytoplankton dynamics on water column chemistry and the sclerochronology of the king scallop (Pecten maximus) as a biogenic archive for past primary production reconstructions
How to learn more about hydrological conditions and phytoplankton dynamics and diversity in the eastern English Channel and the Southern Bight of the North Sea: the Suivi Régional des Nutriments data set (1992–2021)
Deepwater red shrimp fishery in the eastern–central Mediterranean Sea: AIS-observed monthly fishing effort and frequency over 4 years
Global dataset on seagrass meadow structure, biomass and production
The Green Edge cruise: investigating the marginal ice zone processes during late spring and early summer to understand the fate of the Arctic phytoplankton bloom
A global marine particle size distribution dataset obtained with the Underwater Vision Profiler 5
The COSMUS expedition: seafloor images and acoustic bathymetric data from the PS124 expedition to the southern Weddell Sea, Antarctica
Yuan Zhang, Fang Shen, Renhu Li, Mengyu Li, Zhaoxin Li, Songyu Chen, and Xuerong Sun
Earth Syst. Sci. Data, 16, 4793–4816, https://doi.org/10.5194/essd-16-4793-2024, https://doi.org/10.5194/essd-16-4793-2024, 2024
Short summary
Short summary
This work describes AIGD-PFT, the first AI-driven global daily gap-free 4 km phytoplankton functional type (PFT) product from 1998 to 2023. AIGD-PFT enhances the accuracy and spatiotemporal coverage quantification of eight major PFTs (i.e. diatoms, dinoflagellates, haptophytes, pelagophytes, cryptophytes, green algae, prokaryotes, and Prochlorococcus).
Marine Di Stefano, David Nerini, Itziar Alvarez, Giandomenico Ardizzone, Patrick Astruch, Gotzon Basterretxea, Aurélie Blanfuné, Denis Bonhomme, Antonio Calò, Ignacio Catalan, Carlo Cattano, Adrien Cheminée, Romain Crec'hriou, Amalia Cuadros, Antonio Di Franco, Carlos Diaz-Gil, Tristan Estaque, Robin Faillettaz, Fabiana C. Félix-Hackradt, José Antonio Garcia-Charton, Paolo Guidetti, Loïc Guilloux, Jean-Georges Harmelin, Mireille Harmelin-Vivien, Manuel Hidalgo, Hilmar Hinz, Jean-Olivier Irisson, Gabriele La Mesa, Laurence Le Diréach, Philippe Lenfant, Enrique Macpherson, Sanja Matić-Skoko, Manon Mercader, Marco Milazzo, Tiffany Monfort, Joan Moranta, Manuel Muntoni, Matteo Murenu, Lucie Nunez, M. Pilar Olivar, Jérémy Pastor, Ángel Pérez-Ruzafa, Serge Planes, Nuria Raventos, Justine Richaume, Elodie Rouanet, Erwan Roussel, Sandrine Ruitton, Ana Sabatés, Thierry Thibaut, Daniele Ventura, Laurent Vigliola, Dario Vrdoljak, and Vincent Rossi
Earth Syst. Sci. Data, 16, 3851–3871, https://doi.org/10.5194/essd-16-3851-2024, https://doi.org/10.5194/essd-16-3851-2024, 2024
Short summary
Short summary
We build a compilation of early-life dispersal traits for coastal fish species. The database contains over 110 000 entries collected from 1993 to 2021 in the western Mediterranean. All observations are harmonized to provide information on dates and locations of spawning and settlement, along with pelagic larval durations. When applicable, missing data are reconstructed from dynamic energy budget theory. Statistical analyses reveal sampling biases across taxa, space and time.
Yan Yang, Patrick Brockmann, Carolina Galdino, Uwe Schindler, and Frédéric Gazeau
Earth Syst. Sci. Data, 16, 3771–3780, https://doi.org/10.5194/essd-16-3771-2024, https://doi.org/10.5194/essd-16-3771-2024, 2024
Short summary
Short summary
Studies investigating the effects of ocean acidification on marine organisms and communities have been steadily increasing. To facilitate data comparison, a data compilation hosted by the PANGAEA Data Publisher was initiated in 2008 and is updated on a regular basis. By November 2023, a total of 1501 datasets (~25 million data points) from 1554 papers have been archived. To filter and access relevant biological response data from this compilation, a user-friendly portal was launched in 2018.
Mathilde Dugenne, Marco Corrales-Ugalde, Jessica Y. Luo, Rainer Kiko, Todd D. O'Brien, Jean-Olivier Irisson, Fabien Lombard, Lars Stemmann, Charles Stock, Clarissa R. Anderson, Marcel Babin, Nagib Bhairy, Sophie Bonnet, Francois Carlotti, Astrid Cornils, E. Taylor Crockford, Patrick Daniel, Corinne Desnos, Laetitia Drago, Amanda Elineau, Alexis Fischer, Nina Grandrémy, Pierre-Luc Grondin, Lionel Guidi, Cecile Guieu, Helena Hauss, Kendra Hayashi, Jenny A. Huggett, Laetitia Jalabert, Lee Karp-Boss, Kasia M. Kenitz, Raphael M. Kudela, Magali Lescot, Claudie Marec, Andrew McDonnell, Zoe Mériguet, Barbara Niehoff, Margaux Noyon, Thelma Panaïotis, Emily Peacock, Marc Picheral, Emilie Riquier, Collin Roesler, Jean-Baptiste Romagnan, Heidi M. Sosik, Gretchen Spencer, Jan Taucher, Chloé Tilliette, and Marion Vilain
Earth Syst. Sci. Data, 16, 2971–2999, https://doi.org/10.5194/essd-16-2971-2024, https://doi.org/10.5194/essd-16-2971-2024, 2024
Short summary
Short summary
Plankton and particles influence carbon cycling and energy flow in marine ecosystems. We used three types of novel plankton imaging systems to obtain size measurements from a range of plankton and particle sizes and across all major oceans. Data were compiled and cross-calibrated from many thousands of images, showing seasonal and spatial changes in particle size structure in different ocean basins. These datasets form the first release of the Pelagic Size Structure database (PSSdb).
Michael Morando, Jonathan Magasin, Shunyan Cheung, Matthew M. Mills, Jonathan P. Zehr, and Kendra A. Turk-Kubo
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-163, https://doi.org/10.5194/essd-2024-163, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Nitrogen is crucial in ocean food webs, but only some microbes can fix N2 gas into a bioavailable form. Most are known only by their nifH gene sequence. We created a software workflow for nifH data and ran it on 865 ocean samples, producing a database that captures the global diversity of N2-fixing marine microbes and the environmental factors that influence them. The workflow and DB can standardize analyses on past and future nifH datasets to enable insights into marine microbial communities.
Nina Grandremy, Paul Bourriau, Edwin Daché, Marie-Madeleine Danielou, Mathieu Doray, Christine Dupuy, Bertrand Forest, Laetitia Jalabert, Martin Huret, Sophie Le Mestre, Antoine Nowaczyk, Pierre Petitgas, Philippe Pineau, Justin Rouxel, Morgan Tardivel, and Jean-Baptiste Romagnan
Earth Syst. Sci. Data, 16, 1265–1282, https://doi.org/10.5194/essd-16-1265-2024, https://doi.org/10.5194/essd-16-1265-2024, 2024
Short summary
Short summary
We present two space- and time-resolved zooplankton datasets originating from samples collected in the Bay of Biscay in spring over the 2004–2019 period and imaged with the interoperable imaging systems ZooScan and ZooCAM. These datasets are suited for long-term size-based or combined size- and taxonomy-based ecological studies of zooplankton. The set of sorted images are provided along with a set of morphological descriptors that are useful when machine learning is applied to plankton studies.
Dieter Piepenburg, Thomas Brey, Katharina Teschke, Jennifer Dannheim, Paul Kloss, Marianne Rehage, Miriam L. S. Hansen, and Casper Kraan
Earth Syst. Sci. Data, 16, 1177–1184, https://doi.org/10.5194/essd-16-1177-2024, https://doi.org/10.5194/essd-16-1177-2024, 2024
Short summary
Short summary
Research on ecological footprints of climate change and human impacts in Arctic seas is still hampered by problems in accessing sound data, which is unevenly distributed among regions and faunal groups. To address this issue, we present the PAN-Arctic data collection of benthic BIOtas (PANABIO). It provides open access to valuable biodiversity information by integrating data from various sources and of various formats and offers versatile exploration tools for data filtering and mapping.
Nicolas Schiffrine, Fatma Dhifallah, Kaven Dionne, Michel Poulin, Sylvie Lessard, André Rochon, and Michel Gosselin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-19, https://doi.org/10.5194/essd-2024-19, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Growing concern arises in the Arctic Ocean as toxic/harmful phytoplankton emerges due to climate change. The potential surge in these occurrences threatens both human health and the Arctic ecosystem. Our ongoing research yields insights into spatial patterns and biodiversity, challenging the belief that the Arctic is unsuitable for toxic/harmful algal events. This work underscores the need to comprehend and address the ecological impact of these emerging species in the Arctic environment.
Andrea J. McEvoy, Angus Atkinson, Ruth L. Airs, Rachel Brittain, Ian Brown, Elaine S. Fileman, Helen S. Findlay, Caroline L. McNeill, Clare Ostle, Tim J. Smyth, Paul J. Somerfield, Karen Tait, Glen A. Tarran, Simon Thomas, Claire E. Widdicombe, E. Malcolm S. Woodward, Amanda Beesley, David V. P. Conway, James Fishwick, Hannah Haines, Carolyn Harris, Roger Harris, Pierre Hélaouët, David Johns, Penelope K. Lindeque, Thomas Mesher, Abigail McQuatters-Gollop, Joana Nunes, Frances Perry, Ana M. Queiros, Andrew Rees, Saskia Rühl, David Sims, Ricardo Torres, and Stephen Widdicombe
Earth Syst. Sci. Data, 15, 5701–5737, https://doi.org/10.5194/essd-15-5701-2023, https://doi.org/10.5194/essd-15-5701-2023, 2023
Short summary
Short summary
Western Channel Observatory is an oceanographic time series and biodiversity reference site within 40 km of Plymouth (UK), sampled since 1903. Differing levels of reporting and formatting hamper the use of the valuable individual datasets. We provide the first summary database as monthly averages where comparisons can be made of the physical, chemical and biological data. We describe the database, illustrate its utility to examine seasonality and longer-term trends, and summarize previous work.
Zhongkun Hong, Di Long, Xingdong Li, Yiming Wang, Jianmin Zhang, Mohamed A. Hamouda, and Mohamed M. Mohamed
Earth Syst. Sci. Data, 15, 5281–5300, https://doi.org/10.5194/essd-15-5281-2023, https://doi.org/10.5194/essd-15-5281-2023, 2023
Short summary
Short summary
Changes in ocean chlorophyll-a (Chl-a) concentration are related to ecosystem balance. Here, we present high-quality gap-filled Chl-a data in open oceans, reflecting the distribution and changes in global Chl-a concentration. Our findings highlight the efficacy of reconstructing missing satellite observations using convolutional neural networks. This dataset and model are valuable for research in ocean color remote sensing, offering data support and methodological references for related studies.
Thomas J. Ryan-Keogh, Sandy J. Thomalla, Nicolette Chang, and Tumelo Moalusi
Earth Syst. Sci. Data, 15, 4829–4848, https://doi.org/10.5194/essd-15-4829-2023, https://doi.org/10.5194/essd-15-4829-2023, 2023
Short summary
Short summary
Oceanic productivity has been highlighted as an important environmental indicator of climate change in comparison to other existing metrics. However, the availability of these data to assess trends and trajectories is plagued with issues, such as application to only a single satellite reducing the time period for assessment. We have applied multiple algorithms to the longest ocean colour record to provide a record for assessing climate-change-driven trends.
Raed Halawi Ghosn, Émilie Poisson-Caillault, Guillaume Charria, Armel Bonnat, Michel Repecaud, Jean-Valery Facq, Loïc Quéméner, Vincent Duquesne, Camille Blondel, and Alain Lefebvre
Earth Syst. Sci. Data, 15, 4205–4218, https://doi.org/10.5194/essd-15-4205-2023, https://doi.org/10.5194/essd-15-4205-2023, 2023
Short summary
Short summary
This article describes a long-term (2004–2022) dataset from an in situ instrumented station located in the eastern English Channel and belonging to the COAST-HF network (ILICO). It provides high temporal resolution (sub-hourly) oceanographic and meteorological measurements. The MAREL Carnot dataset can be used to conduct research in marine ecology, oceanography, and data science. It was utilized to characterize recurrent, rare, and extreme events in the coastal area.
Shungudzemwoyo P. Garaba, Michelle Albinus, Guido Bonthond, Sabine Flöder, Mario L. M. Miranda, Sven Rohde, Joanne Y. L. Yong, and Jochen Wollschläger
Earth Syst. Sci. Data, 15, 4163–4179, https://doi.org/10.5194/essd-15-4163-2023, https://doi.org/10.5194/essd-15-4163-2023, 2023
Short summary
Short summary
These high-quality data document a harmful algal bloom dominated by Nodularia spumigena, a cyanobacterium that has been recurring in waters around the world, using advanced water observation technologies. We also showcase the benefits of experiments of opportunity and the issues with obtaining synoptic spatio-temporal data for monitoring water quality. The dataset can be leveraged to gain more knowledge on related blooms, develop detection algorithms and optimize future monitoring efforts.
Fabrice Stephenson, Tom Brough, Drew Lohrer, Daniel Leduc, Shane Geange, Owen Anderson, David Bowden, Malcolm R. Clark, Niki Davey, Enrique Pardo, Dennis P. Gordon, Brittany Finucci, Michelle Kelly, Diana Macpherson, Lisa McCartain, Sadie Mills, Kate Neill, Wendy Nelson, Rachael Peart, Matthew H. Pinkerton, Geoffrey B. Read, Jodie Robertson, Ashley Rowden, Kareen Schnabel, Andrew Stewart, Carl Struthers, Leigh Tait, Di Tracey, Shaun Weston, and Carolyn Lundquist
Earth Syst. Sci. Data, 15, 3931–3939, https://doi.org/10.5194/essd-15-3931-2023, https://doi.org/10.5194/essd-15-3931-2023, 2023
Short summary
Short summary
Understanding the distribution of species that live at the seafloor is critical to the management of the marine environment but is lacking in many areas. Here, we showcase an atlas of seafloor biodiversity that describes the distribution of approximately 600 organisms throughout New Zealand’s vast marine realm. Each layer in the open-access atlas has been evaluated by leading experts and provides a key resource for the sustainable use of New Zealand's marine environment.
Hubert Loisel, Daniel Schaffer Ferreira Jorge, Rick A. Reynolds, and Dariusz Stramski
Earth Syst. Sci. Data, 15, 3711–3731, https://doi.org/10.5194/essd-15-3711-2023, https://doi.org/10.5194/essd-15-3711-2023, 2023
Short summary
Short summary
Studies of light fields in aquatic environments require data from radiative transfer simulations that are free of measurement errors. In contrast to previously published synthetic optical databases, the present database was created by simulations covering a broad range of seawater optical properties that exhibit probability distributions consistent with a global ocean dominated by open-ocean pelagic environments. This database is intended to support ocean color science and applications.
Philippe Massicotte, Marcel Babin, Frank Fell, Vincent Fournier-Sicre, and David Doxaran
Earth Syst. Sci. Data, 15, 3529–3545, https://doi.org/10.5194/essd-15-3529-2023, https://doi.org/10.5194/essd-15-3529-2023, 2023
Short summary
Short summary
The COASTlOOC oceanographic expeditions in 1997 and 1998 studied the relationship between seawater properties and biology and chemistry across the European coasts. The team collected data from 379 stations using ships and helicopters to support the development of ocean color remote-sensing algorithms. This unique and consistent dataset is still used today by researchers.
Valentin Siebert, Brivaëla Moriceau, Lukas Fröhlich, Bernd R. Schöne, Erwan Amice, Beatriz Beker, Kevin Bihannic, Isabelle Bihannic, Gaspard Delebecq, Jérémy Devesa, Morgane Gallinari, Yoan Germain, Émilie Grossteffan, Klaus Peter Jochum, Thierry Le Bec, Manon Le Goff, Céline Liorzou, Aude Leynaert, Claudie Marec, Marc Picheral, Peggy Rimmelin-Maury, Marie-Laure Rouget, Matthieu Waeles, and Julien Thébault
Earth Syst. Sci. Data, 15, 3263–3281, https://doi.org/10.5194/essd-15-3263-2023, https://doi.org/10.5194/essd-15-3263-2023, 2023
Short summary
Short summary
This article presents an overview of the results of biological, chemical and physical parameters measured at high temporal resolution (sampling once and twice per week) during environmental monitoring that took place in 2021 in the Bay of Brest. We strongly believe that this dataset could be very useful for other scientists performing sclerochronological investigations, studying biogeochemical cycles or conducting various ecological research projects.
Alain Lefebvre and David Devreker
Earth Syst. Sci. Data, 15, 1077–1092, https://doi.org/10.5194/essd-15-1077-2023, https://doi.org/10.5194/essd-15-1077-2023, 2023
Short summary
Short summary
The Suivi Regional des Nutriments (SRN) data set includes long-term time series on marine phytoplankton and physicochemical measures in the eastern English Channel and the Southern Bight of the North Sea. These data sets should be useful for comparing contrasted coastal marine ecosystems to further knowledge about the direct and indirect effects of human pressures and environmental changes on ecosystem structure and function, including eutrophication and harmful algal bloom issues.
Jacopo Pulcinella, Enrico Nicola Armelloni, Carmen Ferrà, Giuseppe Scarcella, and Anna Nora Tassetti
Earth Syst. Sci. Data, 15, 809–820, https://doi.org/10.5194/essd-15-809-2023, https://doi.org/10.5194/essd-15-809-2023, 2023
Short summary
Short summary
Deep-sea fishery in the Mediterranean Sea was historically driven by the commercial profitability of deepwater red shrimps. Understanding spatiotemporal dynamics of fishing is key to comprehensively evaluate the status of these resources and prevent stock collapse. The observed monthly fishing effort and frequency dataset released by the automatic identification system (AIS) may help researchers as well as those involved in fishery management and in the update of existing management plans.
Simone Strydom, Roisin McCallum, Anna Lafratta, Chanelle L. Webster, Caitlyn M. O'Dea, Nicole E. Said, Natasha Dunham, Karina Inostroza, Cristian Salinas, Samuel Billinghurst, Charlie M. Phelps, Connor Campbell, Connor Gorham, Rachele Bernasconi, Anna M. Frouws, Axel Werner, Federico Vitelli, Viena Puigcorbé, Alexandra D'Cruz, Kathryn M. McMahon, Jack Robinson, Megan J. Huggett, Sian McNamara, Glenn A. Hyndes, and Oscar Serrano
Earth Syst. Sci. Data, 15, 511–519, https://doi.org/10.5194/essd-15-511-2023, https://doi.org/10.5194/essd-15-511-2023, 2023
Short summary
Short summary
Seagrasses are important underwater plants that provide valuable ecosystem services to humans, including mitigating climate change. Understanding the natural history of seagrass meadows across different types of environments is crucial to conserving seagrasses in the global ocean. This dataset contains data extracted from peer-reviewed publications and highlights which seagrasses have been studied and in which locations and is useful for pointing out which need further investigation.
Flavienne Bruyant, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Lise Artigue, Lucas Barbedo de Freitas, Guislain Bécu, Simon Bélanger, Pascaline Bourgain, Annick Bricaud, Etienne Brouard, Camille Brunet, Tonya Burgers, Danielle Caleb, Katrine Chalut, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Marine Cusa, Fanny Cusset, Laeticia Dadaglio, Marty Davelaar, Gabrièle Deslongchamps, Céline Dimier, Julie Dinasquet, Dany Dumont, Brent Else, Igor Eulaers, Joannie Ferland, Gabrielle Filteau, Marie-Hélène Forget, Jérome Fort, Louis Fortier, Martí Galí, Morgane Gallinari, Svend-Erik Garbus, Nicole Garcia, Catherine Gérikas Ribeiro, Colline Gombault, Priscilla Gourvil, Clémence Goyens, Cindy Grant, Pierre-Luc Grondin, Pascal Guillot, Sandrine Hillion, Rachel Hussherr, Fabien Joux, Hannah Joy-Warren, Gabriel Joyal, David Kieber, Augustin Lafond, José Lagunas, Patrick Lajeunesse, Catherine Lalande, Jade Larivière, Florence Le Gall, Karine Leblanc, Mathieu Leblanc, Justine Legras, Keith Lévesque, Kate-M. Lewis, Edouard Leymarie, Aude Leynaert, Thomas Linkowski, Martine Lizotte, Adriana Lopes dos Santos, Claudie Marec, Dominique Marie, Guillaume Massé, Philippe Massicotte, Atsushi Matsuoka, Lisa A. Miller, Sharif Mirshak, Nathalie Morata, Brivaela Moriceau, Philippe-Israël Morin, Simon Morisset, Anders Mosbech, Alfonso Mucci, Gabrielle Nadaï, Christian Nozais, Ingrid Obernosterer, Thimoté Paire, Christos Panagiotopoulos, Marie Parenteau, Noémie Pelletier, Marc Picheral, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Llúcia Ribot Lacosta, Jean-François Rontani, Blanche Saint-Béat, Julie Sansoulet, Noé Sardet, Catherine Schmechtig, Antoine Sciandra, Richard Sempéré, Caroline Sévigny, Jordan Toullec, Margot Tragin, Jean-Éric Tremblay, Annie-Pier Trottier, Daniel Vaulot, Anda Vladoiu, Lei Xue, Gustavo Yunda-Guarin, and Marcel Babin
Earth Syst. Sci. Data, 14, 4607–4642, https://doi.org/10.5194/essd-14-4607-2022, https://doi.org/10.5194/essd-14-4607-2022, 2022
Short summary
Short summary
This paper presents a dataset acquired during a research cruise held in Baffin Bay in 2016. We observed that the disappearance of sea ice in the Arctic Ocean increases both the length and spatial extent of the phytoplankton growth season. In the future, this will impact the food webs on which the local populations depend for their food supply and fisheries. This dataset will provide insight into quantifying these impacts and help the decision-making process for policymakers.
Rainer Kiko, Marc Picheral, David Antoine, Marcel Babin, Léo Berline, Tristan Biard, Emmanuel Boss, Peter Brandt, Francois Carlotti, Svenja Christiansen, Laurent Coppola, Leandro de la Cruz, Emilie Diamond-Riquier, Xavier Durrieu de Madron, Amanda Elineau, Gabriel Gorsky, Lionel Guidi, Helena Hauss, Jean-Olivier Irisson, Lee Karp-Boss, Johannes Karstensen, Dong-gyun Kim, Rachel M. Lekanoff, Fabien Lombard, Rubens M. Lopes, Claudie Marec, Andrew M. P. McDonnell, Daniela Niemeyer, Margaux Noyon, Stephanie H. O'Daly, Mark D. Ohman, Jessica L. Pretty, Andreas Rogge, Sarah Searson, Masashi Shibata, Yuji Tanaka, Toste Tanhua, Jan Taucher, Emilia Trudnowska, Jessica S. Turner, Anya Waite, and Lars Stemmann
Earth Syst. Sci. Data, 14, 4315–4337, https://doi.org/10.5194/essd-14-4315-2022, https://doi.org/10.5194/essd-14-4315-2022, 2022
Short summary
Short summary
The term
marine particlescomprises detrital aggregates; fecal pellets; bacterioplankton, phytoplankton and zooplankton; and even fish. Here, we present a global dataset that contains 8805 vertical particle size distribution profiles obtained with Underwater Vision Profiler 5 (UVP5) camera systems. These data are valuable to the scientific community, as they can be used to constrain important biogeochemical processes in the ocean, such as the flux of carbon to the deep sea.
Autun Purser, Laura Hehemann, Lilian Boehringer, Ellen Werner, Santiago E. A. Pineda-Metz, Lucie Vignes, Axel Nordhausen, Moritz Holtappels, and Frank Wenzhoefer
Earth Syst. Sci. Data, 14, 3635–3648, https://doi.org/10.5194/essd-14-3635-2022, https://doi.org/10.5194/essd-14-3635-2022, 2022
Short summary
Short summary
Within this paper we present the seafloor images, maps and acoustic camera data collected by a towed underwater research platform deployed in 20 locations across the eastern Weddell Sea, Antarctica, during the PS124 COSMUS expedition with the research icebreaker RV Polarstern in 2021. The 20 deployments highlight the great variability in seafloor structure and faunal communities present. Of key interest was the discovery of the largest fish nesting colony discovered globally to date.
Cited articles
Åberg, P.: A demographic study of two populations of the seaweed
Ascophyllum nodosum, Ecology, 73, 1473–1487, https://doi.org/10.2307/1940691, 1992.
Albecker, M. A., Wilkins, L. G., Krueger-Hadfield, S. A., Bashevkin, S. M.,
Hahn, M .W., Hare, M. P., Kindsvater, H. K., Sewell, M. A., Lotterhos, K. E., and
Reitzel, A. M.: Does a complex life cycle affect adaptation to environmental
change? Genome-informed insights for characterizing selection across complex
life cycle, P. R. Soc. B, 288, 20212122, https://doi.org/10.1098/rspb.2021.2122,
2021.
Albouy, C., Delattre, V. L., Mérigot, B., Meynard, C. N., and Leprieur,
F.: Multifaceted biodiversity hotspots of marine mammals for conservation
priorities, Divers. Distrib., 23, 615–626,
https://doi.org/10.1111/ddi.12556, 2017.
AlgaeTraits: A trait database for European seaweeds, AlgaeTraits [data set],
https://doi.org/10.14284/574, 2022.
Appeltans, W., Ahyong, S. T., Anderson, G., Angel, M. V., Artois, T., Bailly,
N., Bamber, R., Barber, A., Bartsch, I., Berta, A., and Błażewicz-Paszkowycz, M.: The magnitude of global marine species
diversity, Curr. Biol., 22, 2189–2202,
https://doi.org/10.1016/j.cub.2012.09.036, 2012.
Arenas, F., Sánchez, I., Hawkins, S. J., and Jenkins, S. R.: The
invasibility of marine algal assemblages: role of functional diversity and
identity, Ecology, 87, 2851–2861,
https://doi.org/10.1890/0012-9658(2006)87[2851:tiomaa]2.0.co;2, 2006.
Araújo, R., Serrão, E.A., Sousa-Pinto, I., and Åberg, P.:
Phenotypic differentiation at southern limit borders: the case study of two
fucoid macroalgal species with different life-history traits, J. Phycol.,
47, 451–462, https://doi.org/10.1111/j.1529-8817.2011.00986.x, 2011.
Balata, D., Piazzi, L., and Cinelli, F.: Increase of sedimentation in a
subtidal system: effects on the structure and diversity of macroalgal
assemblages, J. Exp. Mar. Biol. Ecol., 351, 73–82,
https://doi.org/10.1016/j.jembe.2007.06.019, 2007.
Beauchard, O., Veríssimo, H., Queirós, A. M., and Herman, P. M. J.:
The use of multiple biological traits in marine community ecology and its
potential in ecological indicator development, Ecol. Indic., 76, 81–96,
https://doi.org/10.1016/j.ecolind.2017.01.011, 2017.
Bell, G.: The comparative biology of the alternation of generations, in:
Lectures on mathematics in life sciences: The evolution of haplo-diploid
life cycles, edited by: Kirpatrick M., American Mathematical Society,
Providence, Rhode Island, 1–26, ISBN 0-8218-1176-2, 1994.
Benita, M., Dubinsky, Z., and Iluz, D.: Padina pavonica: morphology and
calcification functions and mechanism, Am. J. Plant Sci., 9, 1156–1168,
https://doi.org/10.4236/ajps.2018.96087, 2018.
Beukeboom, L. W. and Perrin, N.: The evolution of sex determination, Oxford University Press, USA, ISBN 978-0-19-965714-8, 2014.
Bremner, J.: Species' traits and ecological functioning in marine
conservation and management, J. Exp. Mar. Biol. Ecol., 366, 37–47,
https://doi.org/10.1016/j.jembe.2008.07.007, 2008.
Brodie, J., Maggs, C. A., and John, D. M.: Green Seaweeds of Britain and
Ireland, British Phycological Society, The United Kingdom, ISBN 0952711532, 2007.
Cappelatti, L., Mauffrey, A. R., and Griffin, J. N.: Applying continuous
functional traits to large brown macroalgae: variation across tidal emersion
and wave exposure gradients, Mar. Biol., 166, 1–12,
https://doi.org/10.1007/s00227-019-3574-5, 2019.
Cardeccia, A., Marchini, A., Occhipinti-Ambrogu, A., Gali, l. B., Gollasch,
S., Minchin, D., Narščius, A., Olenin, S., and Ojaveer, H.: Assessing
biological invasions in European Seas: Biological traits of the most
widespread non-indigenous species, Estuar. Coast. Shelf S., 201, 17–28,
https://doi.org/10.1016/j.ecss.2016.02.014, 2018.
Chapman, V. J. and Chapman, D. J.: Life forms in the algae, Bot. Mar., 19,
65–74, https://doi.org/10.1515/botm.1976.19.2.65, 1976.
Charlier, R. H., Morand, P., and Finkl, C. W.: How Brittany and Florida coasts
cope with green tides, Int. J. Environ. Sci., 65, 191–208,
https://doi.org/10.1080/00207230701791448, 2008.
Coelho, S. M., Scornet, D., Rousvoal, S., Peters, N. T., Dartevelle, L.,
Peters, A. F., and Cock, J. M.: Ectocarpus: A model organism for the brown
algae, Cold Spring Harb. Protoc., 2, pdb.Emo065821,
https://doi.org/10.1101/pdb.emo065821, 2012.
Costello, M. J., Claus, S., Dekeyzer, S., Vandepitte, L., Tuama, E. O.,
Lear, D., and Tyler-Walters, H.: Biological and ecological traits of marine
species, PeerJ, 3, e1201, https://doi.org/10.7717/peerj.1201, 2015.
Costello, M. J., Bouchet, P., Boxshall, G., Arvanitidis, C., and Appeltans,
W.: European Register of Marine Species,
http://www.marbef.org/data/erms.php, last access: 29 April 2022.
Degen, R., Aune, M., Bluhm, B. A., Cassidy, C., Kędra, M., Kraan, C.,
Vandepitte, L., Włodarska-Kowalczuk, M., Zhulay, I., and Albano, P. G.:
Trait-based approaches in rapidly changing ecosystems: A roadmap to the
future polar oceans, Ecol. Indic., 91, 722–736,
https://doi.org/10.1016/j.ecolind.2018.04.050, 2018.
Demes, K. W. and Graham, M. H.: Abiotic regulation of investment in sexual
versus vegetative reproduction in the clonal kelp Laminaria Sinclairii
(laminariales, Phaeophyceae), J. Phycol., 47, 463–470,
https://doi.org/10.1111/j.1529-8817.2011.00981.x, 2011.
Destombe, C., Valero, M., Vernet, P., and, Couvet, D.: What controls
haploid-diploid ratio in the red alga, Gracilaria verrucosa?, J. Evol.
Biol., 2, 317–338, https://doi.org/10.1046/j.1420-9101.1989.2050317.x, 1989.
De Wreede, R. E. and Klinger, T.: Reproductive strategies in algae, in:
Plant reproductive ecology: patterns and strategies, edited by: Doust, J.
L. and Doust, J. J., Oxford University Press, New York, 267–284, ISBN 0-19-505175-0, 1988.
Díaz, S., Purvis, A., Cornelissen, J. H., Mace, G. M., Donoghue, M. J.,
Ewers, R. M., Jordano, P., and Pearse, W. D.: Functional traits, the phylogeny
of function, and ecosystem service vulnerability, Ecol. Evol., 3, 2958–2975,
https://doi.org/10.1002/ece3.601, 2013.
Engel, C., Åberg, P., Gaggiotti, O. E., Destombe, C., and Valero, M.:
Population dynamics and stage structure in a haploid-diploid red seaweed,
Gracilaria gracilis, J. Ecol., 436–450,
https://doi.org/10.1046/j.1365-2745.2001.00567.x, 2001.
Esmaeili, Y. S., Corte, G. N., Checon, H. H., Bilatto, C. G., Lefcheck, J. S.,
Zacagnini Amaral, A. C., and Turra, A.: Revealing the drivers of taxonomic
and functional diversity of nearshore fish assemblages: Implications for
conservation priorities, Divers. Distrib., 28, 1597–1609,
https://doi.org/10.1111/ddi.13453, 2022.
Feldmann, J.: Les types biologiques d'algues marines benthiques, B. Soc. Bot. Fr., 113, 45–60,
https://doi.org/10.1080/00378941.1966.10838473, 1966.
Fowler-Walker, M. J., Wernberg, T., and Connell S. D.: Differences in kelp
morphology between wave sheltered and exposed localities: morphologically
plastic or fixed traits?, Mar. Biol., 148, 755–767,
https://doi.org/10.1007/s00227-005-0125-z, 2006.
Garbary, D. J.: Harvesting Ascophyllum nodosum (Phaeophyceae) reduces the abundance of its host-specific epiphyte Vertebrata lanosa (Rhodophyta), Bot. Mar., 60, 297–301, https://doi.org/10.1515/bot-2016-0074, 2017.
Gaspar, R., Pereira, L., and Neto, J.M.: Intertidal zonation and latitudinal
gradients on macroalgal assemblages: Species, functional groups and thallus
morphology approaches, Ecol. Indic., 81, 90–103,
https://doi.org/10.1016/j.ecolind.2017.05.060, 2017.
Gómez, I. and Huovinen, P.: Form and Function in Antarctic Seaweeds:
Photobiological Adaptations, Zonation Patterns, and Ecosystem Feedbacks, in:
Antarctic Seaweeds, edited by: Gómez, I. and Huovinen, P., Springer,
Cham, 217–237, https://doi.org/10.1007/978-3-030-39448-6_11,
2020.
Gómez, I., Navarro, N. P., and Huovinen, P.: Bio-optical and
physiological patterns in Antarctic seaweeds: a functional trait based
approach to characterize vertical zonation, Prog. Oceanogr., 174, 17–27,
https://doi.org/10.1016/j.pocean.2018.03.013, 2019.
Guiry, M. D.: How many species of algae are there?, J. Phycol., 48, 1057–1063,
https://doi.org/10.1111/j.1529-8817.2012.01222.x, 2012.
Guiry, M. D. and Guiry, G. M.: AlgaeBase, https://www.algaebase.org/, last
access: 2 May 2022.
Heesch, S., Serrano-Serrano, M., Barrera-Redondo, J., Luthringer, R.,
Peters, A. F., Destombe, C., Cock, J. M., Valero, M., Roze, D., Salamin, N.,
and Coelho, S. M.: Evolution of life cycles and reproductive traits: insights
from the brown algae, J. Evol. Biol., 34, 992–1009,
https://doi.org/10.1111/jeb.13880, 2021.
Hoshino, M., Hiruta, S. F., Croce, M. E., Kamiya, M., Jomori, T., Wakimoto, T., and Kogame, K.: Geographical parthenogenesis in the brown alga Scytosiphon lomentaria (Scytosiphonaceae): Sexuals in warm waters and parthenogens in cold waters, Mol. Ecol., 30, 5814–5830, https://doi.org/10.1111/mec.16152, 2021.
Kattge, J., Ogle, K., Bönisch, G., Díaz, S., Lavorel, S., Madin,
J., Nadrowski, K., Nöllert, S., Sartor, K., and Wirth, C.: A generic
structure for plant trait databases, Methods Ecol. Evol., 2, 202–213,
https://doi.org/10.1111/j.2041-210X.2010.00067.x, 2011.
Kim, S., Choi, S. K., Van, S., Kim, S. T., Kang, Y. H., and Park, S. R.:
Geographic differentiation of morphological characteristics in the brown
seaweed Sargassum thunbergii along the Korean coast: A Response to Local Environmental
Conditions, J. Mar. Sci. Eng., 10, 2–15, https://doi.org/10.3390/jmse10040549, 2022.
Lavaut, E., Guillemin, M.-L., Colin, S., Faure, A., Coudret, J., Destombe,
C., and Valero, M.: Pollinators of the sea: A discovery of animal-mediated
fertilization in seaweed, Science, 377, 528–530, https://doi.org/10.1126/science.abo6661, 2022.
Lawrence, E.: Henderson's dictionary of Biology, 13th edition, Pearson
Education Limited, London, UK, ISBN 9780131273849, 2005.
Lincoln, R. J., Boxshall, G. A., and Clark, P. F.: Dictionary of ecology, evolution
and systematics, 2nd ed, Cambridge, Cambridge University Press, ISBN 9780521438421, 1998.
Littler, M. M. and Littler, D. S.: The evolution of thallus form and
survival strategies in benthic marine macroalgae: field and laboratory tests
of functional form model, Am. Nat., 116, 25–44,
https://doi.org/10.1086/283610, 1980.
Littler, M. M., Littler, D. S., and Taylor P. R.: Evolutionary strategies in
a tropical barrier reef system: functionale from groups of marine
macroalgae, J. Phycol., 19, 229–237,
https://doi.org/10.1111/j.0022-3646.1983.00229.x, 1983.
Lüning, K.: Seaweeds: their environment, biogeography, and
ecophysiology, John Wiley & Sons, https://doi.org/10.1002/aqc.327001020, 1991.
Nyberg, C. and Wallentinus, I.: Can species traits be used to predict
macroalgal introductions?, Biol. Invasions, 7, 265–279,
https://doi.org/10.1007/s10530-004-0738-z, 2005.
Maggs, C. A.: Intraspecific life history variability in the Florideophycidae
(Rhodophyta), Bot. Mar., 31, 465–490,
https://doi.org/10.1515/botm.1988.31.6.465, 1988.
Maggs, C. A. and Hommersand, M. H.: Seaweeds of the British Isles Volume 1
Rhodophyta Part 3A Ceramiales, The Natural History Museum, London,
UK, ISBN 0113100450, 1993.
Marine Species Traits: Marine Species Traits, https://www.marinespecies.org/traits, last access: 25 August 2022.
MarLIN: BIOTIC – Biological Traits Information Catalogue, Marine Life
Information Network, Plymouth, Marine Biological Association of the United
Kingdom, https://www.marlin.ac.uk/biotic, last access: 31 August 2022, 2006.
Martini, S., Larras, F., Boyé, A., Faure, E., Aberle, N., Archambault,
P., Bacouillard, L., Beisner, B.E., Bittner, L., Castella, E., Danger, M.,
Gauthier, O., Karp-Boss, L., Lombard, F., Maps, F., Stemmann, L.,
Thiébaut, E., Usseglio-Polatera, P., Vogt, M., Laviale, M., and Ayata,
S.-D.: Functional trait-based approaches as a common framework for aquatic
ecologists, Limnol. Oceanogr., 66, 965–994, https://doi.org/10.1002/lno.11655,
2021.
Mauffrey, A. R. L., Cappelatti, L., and Griffin, J. N.: Seaweed functional
diversity revisited: confronting traditional groups with quantitative
traits, J. Ecol., 3, 2390–2405, https://doi.org/10.1111/1365-2745.13460,
2020.
McGill, B. J., Enquist, B. J., Weiher, E., and Westoby, M.: Rebuilding
community ecology from functional traits, Trends Ecol. Evol., 21, 178–185,
https://doi.org/10.1016/j.tree.2006.02.002, 2006.
Murúa, P., Müller, D. G., Patiño, D. J., and Westermeier, R.:
Giant kelp vegetative propagation: Adventitious holdfast elements rejuvenate
senescent individuals of the Macrocystis pyrifera “integrifolia” ecomorph, J. Phycol., 53,
230–234, https://doi.org/10.1111/jpy.12493, 2017.
Oppliger, L. V., Von Dassow, P., Bouchemousse, S., Robuchon, M., Valero, M.,
Correa, J. A., Mauger, S., and Destombe, C.: Alteration of sexual
reproduction and genetic diversity in the kelp species Laminaria digitata at the southern
limit of its range, PLoS One, 9, e102518,
https://doi.org/10.1371/journal.pone.0102518, 2014.
Orfanidis, S., Panayotidis, P., and Ugland, K. I.: Ecological Evaluation
Index continuous formula (EEI-c) application: a step forward for functional
groups, the formula and reference condition values, Mediterr. Mar. Sci., 12,
199–231, https://doi.org/10.12681/mms.60, 2011.
Pentecost, A.: Calcification in plants, in: International Review of Cytology,
Academic Press, 62, 1–27,
https://doi.org/10.1016/S0074-7696(08)61897-5, 1980.
Pierucci, A., De La Fuente, G., Cannas, R., and Chiantore, M.: A new record of
the invasive seaweed Caulerpa cylindracea Sonder in the South Adriatic Sea, Heliyon, 5, e02449,
https://doi.org/10.1016/j.heliyon.2019.e02449, 2019.
Quell, F., Schratzberger, M., Beauchard, O., Bruggeman, J., and Webb, T.:
Biological trait profiles discriminate between native and non-indigenous
marine invertebrates, Aquat. Invasions, 16, 571–600,
https://doi.org/10.3391/ai.2021.16.4.01, 2021.
Ruuskanen, A., Bäck, S., and Reitalu, T.: A comparison of two cartographic
exposure methods using Fucus vesiculosus as an indicator, Mar. Biol., 134, 139–145,
https://doi.org/10.1007/s002270050532, 1999.
Ryznar, E. R., Fong, P., and Fong, C. R.: When form does not predict function:
Empirical evidence violates functional form hypotheses for marine
macroalgae, J. Ecol., 109, 833–846,
https://doi.org/10.1111/1365-2745.13509, 2020.
SeaTraIn: SeaTraIn, https://seaweedtraits.github.io/, last access: 31 August 2022.
Serisawa, Y., Aoki, M., Hirata, T., Bellgrove, A., Kurashima, A., Tsuchiya,
Y., Sato, T., Ueda, H., and Yokohama, Y.: Growth and survival rates of
large-type sporophytes of Ecklonia cava transplanted to a growth environment
with small-type sporophytes, J. Appl. Phycol., 15, 311–318,
https://doi.org/10.1023/A:1025183100958, 2003.
Smetacek, V. and Zingone, A.: Green and golden seaweed tides on the rise,
Nature, 504, 84–88, https://doi.org/10.1038/nature12860, 2013.
Spalding, M. D., Fox, H. E., Allen, G. R., Davidson, N., Ferdaña, Z. A.,
Finlayson, M. A. X., Halpern, B. S., Jorge, M. A., Lombana, A. L., Lourie, S.
A., and Martin, K. D.: Marine ecoregions of the world: a bioregionalization
of coastal and shelf areas, BioScience, 57, 573–583,
https://doi.org/10.1641/B570707, 2007.
Steneck, R. S. and Dethier, M. N.: A functional group approach to the
structure of algal-dominated communities, Oikos, 69, 476–498,
https://doi.org/10.2307/3545860, 1994.
Stevenson, J.: Ecological assessments with algae: a review and synthesis,
J. Phycol., 50, 437–461, https://doi.org/10.1111/jpy.12189, 2014.
Schleuning, M., Neuschulz, E. L., Albrecht, J., Bender, I. M., Bowler, D. E.,
Dehling, D. M., Fritz, S. A., Hof, C., Mueller, T., Nowak, L., and Sorensen,
M. C.: Trait-based assessments of climate-change impacts on interacting
species, Trends Ecol. Evol., 35, 319–328,
https://doi.org/10.1016/j.tree.2019.12.010, 2020.
Vandepitte, L., Vanhoorne, B., Decock, W., Dekeyzer, S., Trias Verbeeck, A.,
Bovit, L., Hernandez, F., and Mees, J.: How Aphia – the platform behind several
online and taxonomically oriented databases – can serve both the taxonomic
community and the field of biodiversity informatics, J. Mar. Sci. Eng., 3,
1448–1473, https://hdl.handle.net/10.3390/jmse3041448, 2015.
Vandepitte, L., Vanhoorne, B., Decock, W., Vranken, S., Lanssens, T.,
Dekeyzer, S., Verfaille, K., Horton, T., Kroh, A., Hernandez, F., and Mees,
J.: A decade of the World Register of Marine Species–General insights and
experiences from the Data Management Team: Where are we, what have we
learned and how can we continue?, PLoS One, 13, e0194599,
https://doi.org/10.1371/journal.pone.0194599, 2018.
Veiga, P., Rubal, M., Vieira, R., Arenas, F., and Sousa-Pinto, I.: Spatial
variability in intertidal macroalgal assemblages on the North Portuguese
coast: consistence between species and functional group approaches,
Helgoland Mar. Res., 67, 191–201, https://doi.org/10.1007/s10152-012-0315-2, 2013.
Vélez-Rubio, G. M., González-Etchebehere, L., Scarabino, F.,
Trinchin, R., Manta, G., Laporta, M., Zabaleta, M., Vidal, V., de
Leon-Mackey, A., and Kruk, C.: Macroalgae morpho-functional groups in
Southern marine ecosystems: rocky intertidal in the Southwestern Atlantic
(33∘–35∘ S), Mar. Biol., 168, 1–21,
https://doi.org/10.1007/s00227-021-03960-6, 2021.
Violle, C., Navas, M. L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I.,
and Garnier, E.: Let the concept of trait be functional!, Oikos, 116,
882–892, https://doi.org/10.1111/j.0030-1299.2007.15559.x, 2007.
Voultsiadou, E., Gerovasileiou, V., Vandepitte, L., Ganias, K., and
Arvanitidis, C.: Aristotle's scientific contributions to the classification,
nomenclature and distribution of marine organisms, Mediterr. Mar. Sci., 18,
468–478, https://doi.org/10.12681/mms.13874, 2017.
Weiss, K. C. and Ray, C. A.: Unifying functional trait approaches to
understand the assemblage of ecological communities: synthesizing taxonomic
divides, Ecography, 42, 2012–2020, https://doi.org/10.1111/ecog.04387, 2019.
Wichard, T., Charrier, B., Mineur, F., Bothwell, J. H., Clerck, O. D., and
Coates, J. C.: The green seaweed Ulva: a model system to study morphogenesis,
Front. Plant Sci., 6, 72, https://doi.org/10.3389/fpls.2015.00072, 2015.
Wieters, E. A., McQuaid, C., Palomo, G., Pappalardo, P., and Navarrete, S.
A.: Biogeographical boundaries, functional group structure and diversity of
rocky shore communities along the Argentinean coast, PLoS One, 7, e49725,
https://doi.org/10.1371/journal.pone.0049725, 2012.
Womersley, H. B. S.: The marine benthic flora of southern Australia. Part I:
Chlorophyta, Woolman, Government Printer, Adelaide, South Australia, ISBN 0724345523, 1984.
Womersley, H. B. S.: The marine benthic flora of southern Australia, Part
II, Australian Government Printing Division, Adelaide, South Australia,
481 pp., ISBN 072436501X, 1987.
WoRMS: World Register of Marine Species: https://www.marinespecies.org, last
access: 25 August 2022.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(5859 KB) - Full-text XML
- Corrigendum
-
Supplement
(578 KB) - BibTeX
- EndNote
Short summary
We present AlgaeTraits, a high-quality seaweed trait database. The data are structured within the framework of WoRMS and are supported by an expert editor community. With 45 175 trait records for 21 prioritised biological and ecological traits, and a taxonomic coverage of 1 745 European species, AlgaeTraits significantly advances previous efforts to provide standardised seaweed trait data. AlgaeTraits will serve as a foundation for future research on diversity and evolution of seaweeds.
We present AlgaeTraits, a high-quality seaweed trait database. The data are structured within...
Altmetrics
Final-revised paper
Preprint