Articles | Volume 14, issue 2
https://doi.org/10.5194/essd-14-885-2022
https://doi.org/10.5194/essd-14-885-2022
Data description paper
 | 
24 Feb 2022
Data description paper |  | 24 Feb 2022

The Large eddy Observatory, Voitsumra Experiment 2019 (LOVE19) with high-resolution, spatially distributed observations of air temperature, wind speed, and wind direction from fiber-optic distributed sensing, towers, and ground-based remote sensing

Karl Lapo, Anita Freundorfer, Antonia Fritz, Johann Schneider, Johannes Olesch, Wolfgang Babel, and Christoph K. Thomas

Related authors

Toward quantifying turbulent vertical airflow and sensible heat flux in tall forest canopies using fiber-optic distributed temperature sensing
Mohammad Abdoli, Karl Lapo, Johann Schneider, Johannes Olesch, and Christoph K. Thomas
Atmos. Meas. Tech., 16, 809–824, https://doi.org/10.5194/amt-16-809-2023,https://doi.org/10.5194/amt-16-809-2023, 2023
Short summary
The NY-Ålesund TurbulencE Fiber Optic eXperiment (NYTEFOX): investigating the Arctic boundary layer, Svalbard
Marie-Louise Zeller, Jannis-Michael Huss, Lena Pfister, Karl E. Lapo, Daniela Littmann, Johann Schneider, Alexander Schulz, and Christoph K. Thomas
Earth Syst. Sci. Data, 13, 3439–3452, https://doi.org/10.5194/essd-13-3439-2021,https://doi.org/10.5194/essd-13-3439-2021, 2021
Short summary
Suitability of fibre-optic distributed temperature sensing for revealing mixing processes and higher-order moments at the forest–air interface
Olli Peltola, Karl Lapo, Ilkka Martinkauppi, Ewan O'Connor, Christoph K. Thomas, and Timo Vesala
Atmos. Meas. Tech., 14, 2409–2427, https://doi.org/10.5194/amt-14-2409-2021,https://doi.org/10.5194/amt-14-2409-2021, 2021
Short summary
Distributed observations of wind direction using microstructures attached to actively heated fiber-optic cables
Karl Lapo, Anita Freundorfer, Lena Pfister, Johann Schneider, John Selker, and Christoph Thomas
Atmos. Meas. Tech., 13, 1563–1573, https://doi.org/10.5194/amt-13-1563-2020,https://doi.org/10.5194/amt-13-1563-2020, 2020
Short summary

Related subject area

Meteorology
SARAH-3 – satellite-based climate data records of surface solar radiation
Uwe Pfeifroth, Jaqueline Drücke, Steffen Kothe, Jörg Trentmann, Marc Schröder, and Rainer Hollmann
Earth Syst. Sci. Data, 16, 5243–5265, https://doi.org/10.5194/essd-16-5243-2024,https://doi.org/10.5194/essd-16-5243-2024, 2024
Short summary
A database of deep convective systems derived from the intercalibrated meteorological geostationary satellite fleet and the TOOCAN algorithm (2012–2020)
Thomas Fiolleau and Rémy Roca
Earth Syst. Sci. Data, 16, 4021–4050, https://doi.org/10.5194/essd-16-4021-2024,https://doi.org/10.5194/essd-16-4021-2024, 2024
Short summary
Generation of global 1 km all-weather instantaneous and daily mean land surface temperatures from MODIS data
Bing Li, Shunlin Liang, Han Ma, Guanpeng Dong, Xiaobang Liu, Tao He, and Yufang Zhang
Earth Syst. Sci. Data, 16, 3795–3819, https://doi.org/10.5194/essd-16-3795-2024,https://doi.org/10.5194/essd-16-3795-2024, 2024
Short summary
Global tropical cyclone size and intensity reconstruction dataset for 1959–2022 based on IBTrACS and ERA5 data
Zhiqi Xu, Jianping Guo, Guwei Zhang, Yuchen Ye, Haikun Zhao, and Haishan Chen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-329,https://doi.org/10.5194/essd-2024-329, 2024
Revised manuscript accepted for ESSD
Short summary
Special Observing Period (SOP) data for the Year of Polar Prediction site Model Intercomparison Project (YOPPsiteMIP)
Zen Mariani, Sara M. Morris, Taneil Uttal, Elena Akish, Robert Crawford, Laura Huang, Jonathan Day, Johanna Tjernström, Øystein Godøy, Lara Ferrighi, Leslie M. Hartten, Jareth Holt, Christopher J. Cox, Ewan O'Connor, Roberta Pirazzini, Marion Maturilli, Giri Prakash, James Mather, Kimberly Strong, Pierre Fogal, Vasily Kustov, Gunilla Svensson, Michael Gallagher, and Brian Vasel
Earth Syst. Sci. Data, 16, 3083–3124, https://doi.org/10.5194/essd-16-3083-2024,https://doi.org/10.5194/essd-16-3083-2024, 2024
Short summary

Cited articles

Abraham, C. and Monahan, A. H.: Spatial Dependence of Stably Stratified Nocturnal Boundary-Layer Regimes in Complex Terrain, Bound.-Lay. Meteorol., 177, 19–47, https://doi.org/10.1007/s10546-020-00532-x, 2020. a, b, c, d
Acevedo, O. C., Costa, F. D., Oliveira, P. E., Puhales, F. S., Degrazia, G. A., and Roberti, D. R.: The influence of submeso processes on stable boundary layer similarity relationships, J. Atmos. Sci., 71, 207–225, https://doi.org/10.1175/JAS-D-13-0131.1, 2014. a, b
Brantley, S. L., Goldhaber, M. B., and Ragnarsdottir, K. V.: Crossing disciplines and scales to understand the critical zone, Elements, 3, 307–314, https://doi.org/10.2113/gselements.3.5.307, 2007. a
Browning, K. A. and Wexler, R.: The Determination of Kinematic Properties of a Wind Field Using Doppler Radar, J. Appl. Meteorol., 7, 105–113, https://doi.org/10.1175/1520-0450(1968)007<0105:TDOKPO>2.0.CO;2, 1968. a
Cava, D., Mortarini, L., Giostra, U., Richiardone, R., and Anfossi, D.: A wavelet analysis of low-wind-speed submeso motions in a nocturnal boundary layer, Q. J. Roy. Meteorol. Soc., 143, 661–669, https://doi.org/10.1002/qj.2954, 2017. a, b
Download
Short summary
The layer of air near the surface is poorly understood during conditions with weak winds. Further, it is even difficult to observe. In this experiment we used distributed temperature sensing to observe air temperature and wind speed at thousands of points simultaneously every couple of seconds. This incredibly rich data set can be used to examine and understand what drives the mixing between the atmosphere and surface during these weak-wind periods.
Altmetrics
Final-revised paper
Preprint