Articles | Volume 14, issue 11
https://doi.org/10.5194/essd-14-5037-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-5037-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reconstructing ocean subsurface salinity at high resolution using a machine learning approach
Tian Tian
College of Meteorology and Oceanography, National University of
Defense Technology, Changsha, 410073, China
Institute of Atmospheric Physics, Chinese Academy of Sciences,
Beijing, 100029, China
Institute of Atmospheric Physics, Chinese Academy of Sciences,
Beijing, 100029, China
Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao,
266071, China
Gongjie Wang
National Climate Center, Chinese Meteorological Administration,
Beijing, 100081, China
John Abraham
School of Engineering, University of St. Thomas, St. Paul,
MN 55105, USA
Wangxu Wei
Institute of Atmospheric Physics, Chinese Academy of Sciences,
Beijing, 100029, China
Shihe Ren
Key Laboratory of Research on Marine Hazards Forecasting, National
Marine Environmental Forecasting Center, Ministry of Natural Resources,
Beijing, 100081, China
Jiang Zhu
Institute of Atmospheric Physics, Chinese Academy of Sciences,
Beijing, 100029, China
Junqiang Song
College of Meteorology and Oceanography, National University of
Defense Technology, Changsha, 410073, China
Hongze Leng
College of Meteorology and Oceanography, National University of
Defense Technology, Changsha, 410073, China
Related authors
No articles found.
Kai Cao, Qizhong Wu, Xiao Tang, Jinxi Li, Xueshun Chen, Huansheng Chen, Wending Wang, Huangjian Wu, Lei Kong, Jie Li, Jiang Zhu, and Zifa Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2918, https://doi.org/10.5194/egusphere-2025-2918, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This study achieves significant acceleration by developing an optimized advection module for Emission and atmospheric Processes Integrated and Coupled Community Model on GPU-like accelerators. Through implementing thread-block coordinated indexing, minimizing CPU-GPU communication, and an hybrid parallelization framework, we demonstrate prominent speedups: 556.5× faster offline performance for the Heterogeneous Interface PPM solver and 20.5× acceleration in coupled simulations.
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Christophe Cassou, Mathias Hauser, Zeke Hausfather, June-Yi Lee, Matthew D. Palmer, Karina von Schuckmann, Aimée B. A. Slangen, Sophie Szopa, Blair Trewin, Jeongeun Yun, Nathan P. Gillett, Stuart Jenkins, H. Damon Matthews, Krishnan Raghavan, Aurélien Ribes, Joeri Rogelj, Debbie Rosen, Xuebin Zhang, Myles Allen, Lara Aleluia Reis, Robbie M. Andrew, Richard A. Betts, Alex Borger, Jiddu A. Broersma, Samantha N. Burgess, Lijing Cheng, Pierre Friedlingstein, Catia M. Domingues, Marco Gambarini, Thomas Gasser, Johannes Gütschow, Masayoshi Ishii, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Aurélien Liné, Didier P. Monselesan, Colin Morice, Jens Mühle, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Jan C. Minx, Matthew Rigby, Robert Rohde, Abhishek Savita, Sonia I. Seneviratne, Peter Thorne, Christopher Wells, Luke M. Western, Guido R. van der Werf, Susan E. Wijffels, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 17, 2641–2680, https://doi.org/10.5194/essd-17-2641-2025, https://doi.org/10.5194/essd-17-2641-2025, 2025
Short summary
Short summary
In a rapidly changing climate, evidence-based decision-making benefits from up-to-date and timely information. Here we compile monitoring datasets to track real-world changes over time. To make our work relevant to policymakers, we follow methods from the Intergovernmental Panel on Climate Change (IPCC). Human activities are increasing the Earth's energy imbalance and driving faster sea-level rise compared to the IPCC assessment.
Guorong Zhong, Xuegang Li, Jinming Song, Baoxiao Qu, Fan Wang, Yanjun Wang, Bin Zhang, Lijing Cheng, Jun Ma, Huamao Yuan, Liqin Duan, Ning Li, Qidong Wang, Jianwei Xing, and Jiajia Dai
Earth Syst. Sci. Data, 17, 719–740, https://doi.org/10.5194/essd-17-719-2025, https://doi.org/10.5194/essd-17-719-2025, 2025
Short summary
Short summary
The continuous uptake of atmospheric CO2 by the ocean leads to decreasing seawater pH, which is an ongoing threat to the marine ecosystem. This pH change has been globally documented in the surface ocean, but information is limited below the surface. Here, we present a monthly 1° gridded product of global seawater pH based on a machine learning method and real pH observations. The pH product covers the years from 1992 to 2020 and depths from 0 to 2000 m.
Simona Simoncelli, Franco Reseghetti, Claudia Fratianni, Lijing Cheng, and Giancarlo Raiteri
Earth Syst. Sci. Data, 16, 5531–5561, https://doi.org/10.5194/essd-16-5531-2024, https://doi.org/10.5194/essd-16-5531-2024, 2024
Short summary
Short summary
This data review is about the reprocessing of historical eXpendable BathyThermograp (XBT) profiles from the Ligurian and Tyrrhenian seas over the time period 1999–2019. A new automated quality control analysis has been performed starting from the original raw data and operational log sheets. The data have been formatted and standardized according to the latest community best practices, and all available metadata have been inserted, including calibration information and uncertainty specification.
Viktor Gouretski, Lijing Cheng, Juan Du, Xiaogang Xing, Fei Chai, and Zhetao Tan
Earth Syst. Sci. Data, 16, 5503–5530, https://doi.org/10.5194/essd-16-5503-2024, https://doi.org/10.5194/essd-16-5503-2024, 2024
Short summary
Short summary
High-quality observations are crucial to understanding ocean oxygen changes and their impact on marine biota. We developed a quality control procedure to ensure the high quality of the heterogeneous ocean oxygen data archive and to prove data consistency. Oxygen data obtained by means of oxygen sensors on autonomous Argo floats were compared with reference data based on the chemical analysis, and estimates of the residual offsets were obtained.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Jonathan Baker, Clément Bricaud, Romain Bourdalle-Badie, Lluis Castrillo, Lijing Cheng, Frederic Chevallier, Daniele Ciani, Alvaro de Pascual-Collar, Vincenzo De Toma, Marie Drevillon, Claudia Fanelli, Gilles Garric, Marion Gehlen, Rianne Giesen, Kevin Hodges, Doroteaciro Iovino, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Thomas Lavergne, Simona Masina, Ronan McAdam, Audrey Minière, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Ad Stoffelen, Sulian Thual, Simon Van Gennip, Pierre Veillard, Chunxue Yang, and Hao Zuo
State Planet, 4-osr8, 1, https://doi.org/10.5194/sp-4-osr8-1-2024, https://doi.org/10.5194/sp-4-osr8-1-2024, 2024
Lei Kong, Xiao Tang, Zifa Wang, Jiang Zhu, Jianjun Li, Huangjian Wu, Qizhong Wu, Huansheng Chen, Lili Zhu, Wei Wang, Bing Liu, Qian Wang, Duohong Chen, Yuepeng Pan, Jie Li, Lin Wu, and Gregory R. Carmichael
Earth Syst. Sci. Data, 16, 4351–4387, https://doi.org/10.5194/essd-16-4351-2024, https://doi.org/10.5194/essd-16-4351-2024, 2024
Short summary
Short summary
A new long-term inversed emission inventory for Chinese air quality (CAQIEI) is developed in this study, which contains constrained monthly emissions of NOx, SO2, CO, PM2.5, PM10, and NMVOCs in China from 2013 to 2020 with a horizontal resolution of 15 km. Emissions of different air pollutants and their changes during 2013–2020 were investigated and compared with previous emission inventories, which sheds new light on the complex variations of air pollutant emissions in China.
Lijing Cheng, Yuying Pan, Zhetao Tan, Huayi Zheng, Yujing Zhu, Wangxu Wei, Juan Du, Huifeng Yuan, Guancheng Li, Hanlin Ye, Viktor Gouretski, Yuanlong Li, Kevin E. Trenberth, John Abraham, Yuchun Jin, Franco Reseghetti, Xiaopei Lin, Bin Zhang, Gengxin Chen, Michael E. Mann, and Jiang Zhu
Earth Syst. Sci. Data, 16, 3517–3546, https://doi.org/10.5194/essd-16-3517-2024, https://doi.org/10.5194/essd-16-3517-2024, 2024
Short summary
Short summary
Observational gridded products are essential for understanding the ocean, the atmosphere, and climate change; they support policy decisions and socioeconomic developments. This study provides an update of an ocean subsurface temperature and ocean heat content gridded product, named the IAPv4 data product, which is available for the upper 6000 m (119 levels) since 1940 (more reliable after ~1955) for monthly and 1° × 1° temporal and spatial resolutions.
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Bradley Hall, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan P. Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Blair Trewin, Myles Allen, Robbie Andrew, Richard A. Betts, Alex Borger, Tim Boyer, Jiddu A. Broersma, Carlo Buontempo, Samantha Burgess, Chiara Cagnazzo, Lijing Cheng, Pierre Friedlingstein, Andrew Gettelman, Johannes Gütschow, Masayoshi Ishii, Stuart Jenkins, Xin Lan, Colin Morice, Jens Mühle, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Jan C. Minx, Gunnar Myhre, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, Sophie Szopa, Peter Thorne, Mahesh V. M. Kovilakam, Elisa Majamäki, Jukka-Pekka Jalkanen, Margreet van Marle, Rachel M. Hoesly, Robert Rohde, Dominik Schumacher, Guido van der Werf, Russell Vose, Kirsten Zickfeld, Xuebin Zhang, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 16, 2625–2658, https://doi.org/10.5194/essd-16-2625-2024, https://doi.org/10.5194/essd-16-2625-2024, 2024
Short summary
Short summary
This paper tracks some key indicators of global warming through time, from 1850 through to the end of 2023. It is designed to give an authoritative estimate of global warming to date and its causes. We find that in 2023, global warming reached 1.3 °C and is increasing at over 0.2 °C per decade. This is caused by all-time-high greenhouse gas emissions.
Piers M. Forster, Christopher J. Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Sonia I. Seneviratne, Blair Trewin, Xuebin Zhang, Myles Allen, Robbie Andrew, Arlene Birt, Alex Borger, Tim Boyer, Jiddu A. Broersma, Lijing Cheng, Frank Dentener, Pierre Friedlingstein, José M. Gutiérrez, Johannes Gütschow, Bradley Hall, Masayoshi Ishii, Stuart Jenkins, Xin Lan, June-Yi Lee, Colin Morice, Christopher Kadow, John Kennedy, Rachel Killick, Jan C. Minx, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sophie Szopa, Peter Thorne, Robert Rohde, Maisa Rojas Corradi, Dominik Schumacher, Russell Vose, Kirsten Zickfeld, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 15, 2295–2327, https://doi.org/10.5194/essd-15-2295-2023, https://doi.org/10.5194/essd-15-2295-2023, 2023
Short summary
Short summary
This is a critical decade for climate action, but there is no annual tracking of the level of human-induced warming. We build on the Intergovernmental Panel on Climate Change assessment reports that are authoritative but published infrequently to create a set of key global climate indicators that can be tracked through time. Our hope is that this becomes an important annual publication that policymakers, media, scientists and the public can refer to.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Xueming Zhu, Ziqing Zu, Shihe Ren, Miaoyin Zhang, Yunfei Zhang, Hui Wang, and Ang Li
Geosci. Model Dev., 15, 995–1015, https://doi.org/10.5194/gmd-15-995-2022, https://doi.org/10.5194/gmd-15-995-2022, 2022
Short summary
Short summary
SCSOFS has provided daily updated marine forecasting in the South China Sea for the next 5 d since 2013. Comprehensive updates have been conducted to the configurations of SCSOFS's physical model and data assimilation scheme in order to improve its forecasting skill. The three most sensitive updates are highlighted. Scientific comparison and accuracy assessment results indicate that remarkable improvements have been achieved in SCSOFSv2 with respect to the original version SCSOFSv1.
Zhaohui Chen, Parvadha Suntharalingam, Andrew J. Watson, Ute Schuster, Jiang Zhu, and Ning Zeng
Biogeosciences, 18, 4549–4570, https://doi.org/10.5194/bg-18-4549-2021, https://doi.org/10.5194/bg-18-4549-2021, 2021
Short summary
Short summary
As the global temperature continues to increase, carbon dioxide (CO2) is a major driver of this global warming. The increased CO2 is mainly caused by emissions from fossil fuel use and land use. At the same time, the ocean is a significant sink in the carbon cycle. The North Atlantic is a critical ocean region in reducing CO2 concentration. We estimate the CO2 uptake in this region based on a carbon inverse system and atmospheric CO2 observations.
Weiqi Xu, Chun Chen, Yanmei Qiu, Ying Li, Zhiqiang Zhang, Eleni Karnezi, Spyros N. Pandis, Conghui Xie, Zhijie Li, Jiaxing Sun, Nan Ma, Wanyun Xu, Pingqing Fu, Zifa Wang, Jiang Zhu, Douglas R. Worsnop, Nga Lee Ng, and Yele Sun
Atmos. Chem. Phys., 21, 5463–5476, https://doi.org/10.5194/acp-21-5463-2021, https://doi.org/10.5194/acp-21-5463-2021, 2021
Short summary
Short summary
Here aerosol volatility and viscosity at a rural site (Gucheng) and an urban site (Beijing) in the North China Plain (NCP) were investigated in summer and winter. Our results showed that organic aerosol (OA) in winter in the NCP is more volatile than that in summer due to enhanced primary emissions from coal combustion and biomass burning. We also found that OA existed mainly as a solid in winter in Beijing but as semisolids in Beijing in summer and Gucheng in winter.
Shihe Ren, Xi Liang, Qizhen Sun, Hao Yu, L. Bruno Tremblay, Bo Lin, Xiaoping Mai, Fu Zhao, Ming Li, Na Liu, Zhikun Chen, and Yunfei Zhang
Geosci. Model Dev., 14, 1101–1124, https://doi.org/10.5194/gmd-14-1101-2021, https://doi.org/10.5194/gmd-14-1101-2021, 2021
Short summary
Short summary
Sea ice plays a crucial role in global energy and water budgets. To get a better simulation of sea ice, we coupled a sea ice model with an atmospheric and ocean model to form a fully coupled system. The sea ice simulation results of this coupled system demonstrated that a two-way coupled model has better performance in terms of sea ice, especially in summer. This indicates that sea-ice–ocean–atmosphere interaction plays a crucial role in controlling Arctic summertime sea ice distribution.
Lei Kong, Xiao Tang, Jiang Zhu, Zifa Wang, Jianjun Li, Huangjian Wu, Qizhong Wu, Huansheng Chen, Lili Zhu, Wei Wang, Bing Liu, Qian Wang, Duohong Chen, Yuepeng Pan, Tao Song, Fei Li, Haitao Zheng, Guanglin Jia, Miaomiao Lu, Lin Wu, and Gregory R. Carmichael
Earth Syst. Sci. Data, 13, 529–570, https://doi.org/10.5194/essd-13-529-2021, https://doi.org/10.5194/essd-13-529-2021, 2021
Short summary
Short summary
China's air pollution has changed substantially since 2013. Here we have developed a 6-year-long high-resolution air quality reanalysis dataset over China from 2013 to 2018 to illustrate such changes and to provide a basic dataset for relevant studies. Surface fields of PM2.5, PM10, SO2, NO2, CO, and O3 concentrations are provided, and the evaluation results indicate that the reanalysis dataset has excellent performance in reproducing the magnitude and variation of air pollution in China.
Xueming Zhu, Ziqing Zu, Shihe Ren, Yunfei Zhang, Miaoyin Zhang, and Hui Wang
Ocean Sci. Discuss., https://doi.org/10.5194/os-2020-104, https://doi.org/10.5194/os-2020-104, 2020
Preprint withdrawn
Short summary
Short summary
In order to improve forecasting skills of South China Sea Operational Forecasting System operated in NMEFC of China, comprehensive updates have been conducted to the configurations of physical model and data assimilation scheme. Scientific inter-comparison and accuracy assessment has been performed by employing GODAE IV-TT Class 4 metrics. The results indicate that remarkable improvements have been achieved in the new version of SCSOFS.
Cited articles
Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L.,
Ghavamzadeh, M., Fieguth, P., Cao, X., Khosravi, A., Acharya, U. R.,
Makarenkov, V., and Nahavandi, S.: A review of uncertainty quantification in
deep learning: Techniques, applications and challenges, Inf. Fusion, 76, 243–297,
https://doi.org/10.1016/j.inffus.2021.05.008, 2021.
Abram, N., Gattuso, J.-P., Prakash, A., Cheng, L., Chidichimo, M., Crate,
S., Enomoto, H., Garschagen, M., Gruber, N., Harper, S., Holland, E.,
Kudela, R. M., Rice, J., Steffen, K., and von Schuckmann, K.: Framing and
Context of the Report, in: IPCC Special Report on the Ocean and Cryosphere
in a Changing Climate, IPCC, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 73–129,
https://doi.org/10.1017/9781009157964.003, 2019.
Adler, R. F., Sapiano, M. R. P., Huffman, G. J., Wang, J. J., Gu, G.,
Bolvin, D., Chiu, L., Schneider, U., Becker, A., Nelkin, E., Xie, P.,
Ferraro, R., and Shin, D. B.: The Global Precipitation Climatology Project
(GPCP) monthly analysis (New Version 2.3) and a review of 2017 global
precipitation, Atmosphere (Basel), 9, 138, https://doi.org/10.3390/atmos9040138,
2018.
Atlas, R., Hoffman, R. N., Ardizzone, J., Leidner, S. M., Jusem, J. C.,
Smith, D. K., and Gombos, D.: A cross-calibrated, multiplatform ocean
surface wind velocity product for meteorological and oceanographic
applications, B. Am. Meteorol. Soc., 92, 157–174,
https://doi.org/10.1175/2010BAMS2946.1, 2011.
Auger, M., Morrow, R., Kestenare, E., Sallée, J. B., and Cowley, R.:
Southern Ocean in-situ temperature trends over 25 years emerge from
interannual variability, Nat. Commun., 12, 514,
https://doi.org/10.1038/s41467-020-20781-1, 2021.
Bagnell, A. and DeVries, T.: 20th century cooling of the deep ocean
contributed to delayed acceleration of Earth's energy imbalance, Nat.
Commun., 12, 4604, https://doi.org/10.1038/s41467-021-24472-3, 2021.
Balmaseda, M. A., Trenberth, K. E., and Källén, E.: Distinctive
climate signals in reanalysis of global ocean heat content, Geophys. Res.
Lett., 40, 1754–1759, https://doi.org/10.1002/grl.50382, 2013.
Balmaseda, M. A., Hernandez, F., Storto, A., Palmer, M. D., Alves, O., Shi,
L., Smith, G. C., Toyoda, T., Valdivieso, M., Barnier, B., Behringer, D.,
Boyer, T., Chang, Y. S., Chepurin, G. A., Ferry, N., Forget, G., Fujii, Y.,
Good, S., Guinehut, S., Haines, K., Ishikawa, Y., Keeley, S., Köhl, A.,
Lee, T., Martin, M. J., Masina, S., Masuda, S., Meyssignac, B., Mogensen,
K., Parent, L., Peterson, K. A., Tang, Y. M., Yin, Y., Vernieres, G., Wang,
X., Waters, J., Wedd, R., Wang, O., Xue, Y., Chevallier, M., Lemieux, J. F.,
Dupont, F., Kuragano, T., Kamachi, M., Awaji, T., Caltabiano, A.,
Wilmer-Becker, K., and Gaillard, F.: The ocean reanalyses intercomparison
project (ORA-IP), J. Oper. Oceanogr., 8, s80–s97,
https://doi.org/10.1080/1755876X.2015.1022329, 2015.
Banzon, V., Smith, T. M., Chin, T. M., Liu, C., and Hankins, W.: A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies, Earth Syst. Sci. Data, 8, 165–176, https://doi.org/10.5194/essd-8-165-2016, 2016.
Berrar, D.: Cross-validation, in: Encyclopedia of Bioinformatics and
Computational Biology: ABC of Bioinformatics, 1–3, 542–545,
https://doi.org/10.1016/B978-0-12-809633-8.20349-X, 2018.
Boyer, T. P., Baranova, O. K., Coleman, C., Garcia, H. E., Grodsky, A.,
Locarnini, R. A., Mishonov, A. V., Paver, C. R., Reagan, J. R., Seidov, D.,
Smolyar, I. V., Weathers, K. W., and Zweng, M. M.: World Ocean Database
2018, edited by: Mishonov, A. V., Tech. Ed. NOAA Atlas NESDIS 87, 1–207, 2018.
Bushaev, V.: Understanding RMSprop – faster neural network learning,
Towar. Data Sci., 36, 1–7, 2018.
Carton, J. A., Chepurin, G. A., and Chen, L.: SODA3: A new ocean climate
reanalysis, J. Climate, 31, 6967–6983,
https://doi.org/10.1175/jcli-d-18-0149.1, 2018.
Chassignet, E. P., Fox-Kemper, B., Yeager, S. G., and Bozec, A.: Sources and
Sinks of Ocean Mesoscale Eddy Energy, CLIVAR Exch. CLIVAR Var., 18, 3–8,
2020.
Chau, S. L., Hu, R., Gonzalez, J., and Sejdinovic, D.: RKHS-SHAP: Shapley Values for Kernel Methods, arXiv [preprint], arXiv:2110.09167, 18 October 2021.
Chen, G., Peng, L., and Ma, C.: Climatology and seasonality of upper ocean
salinity: a three-dimensional view from argo floats, Clim. Dynam., 50,
2169–2182, https://doi.org/10.1007/s00382-017-3742-6, 2018.
Cheng, L. and Zhu, J.: Benefits of CMIP5 multimodel ensemble in
reconstructing historical ocean subsurface temperature variations, J. Climate,
29, 5393–5416, https://doi.org/10.1175/JCLI-D-15-0730.1, 2016.
Cheng, L., Trenberth, K. E., Fasullo, J., Boyer, T., Abraham, J., and Zhu,
J.: Improved estimates of ocean heat content from 1960 to 2015, Sci. Adv.,
3, e1601545, https://doi.org/10.1126/sciadv.1601545, 2017.
Cheng, L., Trenberth, K. E., Gruber, N., Abraham, J. P., Fasullo, J. T., Li,
G., Mann, M. E., Zhao, X., and Zhu, J.: Improved estimates of changes in
upper ocean salinity and the hydrological cycle, J. Climate, 33, 10357–10381,
https://doi.org/10.1175/JCLI-D-20-0366.1, 2020.
Cheng, Y. H., Ho, C. R., Zheng, Q., and Kuo, N. J.: Statistical
characteristics of mesoscale eddies in the north pacific derived from
satellite altimetry, Remote Sens., 6, 5164–5183, https://doi.org/10.3390/rs6065164, 2014.
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J.,
Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C.,
Quéré, C. Le, Myneni, R. B., Piao, S., and Thornton, P.: The
physical science basis. Contribution of working group I to the fifth
assessment report of the intergovernmental panel on climate change, Chang.
IPCC Clim., https://doi.org/10.1017/CBO9781107415324.015, 2013.
Contractor, S. and Roughan, M.: Efficacy of Feedforward and LSTM Neural
Networks at Predicting and Gap Filling Coastal Ocean Timeseries: Oxygen,
Nutrients, and Temperature, Front. Mar. Sci., 8, 637759,
https://doi.org/10.3389/fmars.2021.637759, 2021.
Curry, R., Dickson, B., and Yashayaev, I.: A change in the freshwater
balance of the Atlantic Ocean over the past four decades, Nature, 426,
826–829, https://doi.org/10.1038/nature02206, 2003.
Dan Foresee, F. and Hagan, M. T.: Gauss-Newton approximation to bayesian
learning, in: IEEE International Conference on Neural Networks – Conference
Proceedings, 1930–1935, https://doi.org/10.1109/ICNN.1997.614194, 1997.
Denvil-Sommer, A., Gehlen, M., Vrac, M., and Mejia, C.: LSCE-FFNN-v1: a two-step neural network model for the reconstruction of surface ocean pCO2 over the global ocean, Geosci. Model Dev., 12, 2091–2105, https://doi.org/10.5194/gmd-12-2091-2019, 2019.
Domingues, C. M., Church, J. A., White, N. J., Gleckler, P. J., Wijffels, S.
E., Barker, P. M., and Dunn, J. R.: Improved estimates of upper-ocean
warming and multi-decadal sea-level rise, Nature, 453, 1090–1093,
https://doi.org/10.1038/nature07080, 2008.
Durack, P. J.: Ocean salinity and the global water cycle, Oceanography, 28,
20–31, https://doi.org/10.5670/oceanog.2015.03, 2015.
Durack, P. J., Gleckler, P. J., Landerer, F. W., and Taylor, K. E.:
Quantifying underestimates of long-term upper-ocean warming, Nat. Clim.
Chang., 4, 999–1005, https://doi.org/10.1038/nclimate2389, 2014.
Forget, G., Campin, J.-M., Heimbach, P., Hill, C. N., Ponte, R. M., and Wunsch, C.: ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation, Geosci. Model Dev., 8, 3071–3104, https://doi.org/10.5194/gmd-8-3071-2015, 2015.
Frederikse, T., Jevrejeva, S., Riva, R. E. M., and Dangendorf, S.: A
consistent sea-level reconstruction and its budget on basin and global
scales over 1958–2014, J. Climate, 31, 1267–1280,
https://doi.org/10.1175/JCLI-D-17-0502.1, 2018.
Frenger, I., Münnich, M., Gruber, N., and Knutti, R.: Southern Ocean
eddy phenomenology, J. Geophys. Res.-Ocean., 120, 7413–7449,
https://doi.org/10.1002/2015JC011047, 2015.
Gabella, M.: Topology of Learning in Feedforward Neural Networks, IEEE
Trans. Neural Networks Learn. Syst., 32, 3588–3592,
https://doi.org/10.1109/TNNLS.2020.3015790, 2021.
Gaillard, F., Reynaud, T., Thierry, V., Kolodziejczyk, N., and Von
Schuckmann, K.: In situ-based reanalysis of the global ocean temperature and
salinity with ISAS: Variability of the heat content and steric height, J.
Climate, 29, 1305–1323, https://doi.org/10.1175/JCLI-D-15-0028.1, 2016.
Gal, Y. and Ghahramani, Z.: Dropout as a Bayesian approximation:
Representing model uncertainty in deep learning, in: 33rd International
Conference on Machine Learning, ICML 2016, 1651–1660, 2016.
Gan, M., Pan, S., Chen, Y. ping, Cheng, C., Pan, H., and Zhu, X.:
Application of the Machine Learning LightGBM Model to the Prediction of the
Water Levels of the Lower Columbia River, J. Mar. Sci. Eng., 9, 496,
https://doi.org/10.3390/jmse9050496, 2021.
Good, S. A., Martin, M. J., and Rayner, N. A.: EN4: Quality controlled ocean
temperature and salinity profiles and monthly objective analyses with
uncertainty estimates, J. Geophys. Res.-Ocean., 118, 6704–6716,
https://doi.org/10.1002/2013JC009067, 2013.
Gould, J., Sloyan, B., and Visbeck, M.: In situ ocean observations. A brief
history, present status, and future directions., in: International
Geophysics, vol. 103, edited by: Siedler, G., Griffies, S. M., Gould, J.,
and Church, J. A. B. T.-I. G., Academic Press, 59–81,
https://doi.org/10.1016/B978-0-12-391851-2.00003-9, 2013.
Gouretski, V. and Reseghetti, F.: On depth and temperature biases in
bathythermograph data: Development of a new correction scheme based on
analysis of a global ocean database, Deep-Sea Res. Pt. I,
57, 812–833, https://doi.org/10.1016/j.dsr.2010.03.011, 2010.
Gui, K., Che, H., Zeng, Z., Wang, Y., Zhai, S., Wang, Z., Luo, M., Zhang,
L., Liao, T., Zhao, H., Li, L., Zheng, Y., and Zhang, X.: Construction of a
virtual PM2.5 observation network in China based on high-density surface
meteorological observations using the Extreme Gradient Boosting model,
Environ. Int., 141, 105801, https://doi.org/10.1016/j.envint.2020.105801, 2020.
Guinehut, S., Dhomps, A.-L., Larnicol, G., and Le Traon, P.-Y.: High resolution 3-D temperature and salinity fields derived from in situ and satellite observations, Ocean Sci., 8, 845–857, https://doi.org/10.5194/os-8-845-2012, 2012.
Hannachi, A., Jolliffe, I. T., and Stephenson, D. B.: Empirical orthogonal
functions and related techniques in atmospheric science: A review, Int. J.
Climatol., 27, 1119–1152, https://doi.org/10.1002/joc.1499, 2007.
Hosoda, S., Ohira, T., and Nakamura, T.: A monthly mean dataset of global
oceanic temperature and salinity derived from Argo float observations,
JAMSTEC Rep. Res. Dev., 8, 47–59, https://doi.org/10.5918/jamstecr.8.47, 2008.
Huang, B., Liu, C., Banzon, V., Freeman, E., Graham, G., Hankins, B., Smith,
T., and Zhang, H.-M.: Improvements of the Daily Optimum Interpolation Sea
Surface Temperature (DOISST) Version 2.1, J. Climate, 34, 2923–2939,
https://doi.org/10.1175/JCLI-D-20-0166.1, 2021.
Ishii, M., Kimoto, M., and Kachi, M.: Historical ocean subsurfaces
temperature analysis with error estimates, Mon. Weather Rev., 131,
https://doi.org/10.1175/1520-0493(2003)131<0051:HOSTAW>2.0.CO;2, 2003.
Ishii, M., Fukuda, Y., Hirahara, S., Yasui, S., Suzuki, T., and Sato, K.:
Accuracy of Global Upper Ocean Heat Content Estimation Expected from Present
Observational Data Sets, SOLA, 13, 163–167,
https://doi.org/10.2151/sola.2017-030, 2017.
Jean-Michel, L., Eric, G., Romain, B. B., Gilles, G., Angélique, M.,
Marie, D., Clément, B., Mathieu, H., Olivier, L. G., Charly, R., Tony,
C., Charles-Emmanuel, T., Florent, G., Giovanni, R., Mounir, B., Yann, D.,
and Pierre-Yves, L. T.: The Copernicus Global 1/12∘ Oceanic and
Sea Ice GLORYS12 Reanalysis, Front. Earth Sci., 9, 698876,
https://doi.org/10.3389/feart.2021.698876, 2021.
LeCun, Y. A., Bottou, L., Orr, G. B., and Müller, K. R.: Efficient
backprop, in: Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.
7700 LECTU, edited by: Montavon, G., Orr, G. B., and Müller, K.-R.,
Springer Berlin Heidelberg, Berlin, Heidelberg, 9–48,
https://doi.org/10.1007/978-3-642-35289-8_3, 2012.
Lei, J.: Cross-Validation With Confidence, J. Am. Stat. Assoc., 115,
1978–1997, https://doi.org/10.1080/01621459.2019.1672556, 2020.
Levitus, S., Antonov, J. I., Boyer, T. P., Locarnini, R. A., Garcia, H. E.,
and Mishonov, A. V.: Global ocean heat content 1955–2008 in light of
recently revealed instrumentation problems, Geophys. Res. Lett., 36, L07608,
https://doi.org/10.1029/2008GL037155, 2009.
Levitus, S., Antonov, J. I., Boyer, T. P., Baranova, O. K., Garcia, H. E.,
Locarnini, R. A., Mishonov, A. V., Reagan, J. R., Seidov, D., Yarosh, E. S.,
and Zweng, M. M.: World ocean heat content and thermosteric sea level change
(0–2000 m), 1955–2010, Geophys. Res. Lett., 39, L10603,
https://doi.org/10.1029/2012GL051106, 2012.
Li, G., Zhang, Y., Xiao, J., Song, X., Abraham, J., Cheng, L., and Zhu, J.:
Examining the salinity change in the upper Pacific Ocean during the Argo
period, Clim. Dynam., 53, 6055–6074,
https://doi.org/10.1007/s00382-019-04912-z, 2019.
Liang, X., Liu, C., Ponte, R. M., and Chambers, D. P.: A comparison of the
variability and changes in global ocean heat content from multiple objective
analysis products during the Argo period, J. Climate, 34, 7875–7895,
https://doi.org/10.1175/JCLI-D-20-0794.1, 2021.
Liashchynskyi, P. and Liashchynskyi, P.: Grid Search, Random Search, Genetic Algorithm: A Big Comparison for NAS, arXiv [preprint], arXiv:1912.06059, 12 December 2019.
Liu, H., Zhou, H., Yang, W., Liu, X., Li, Y., Yang, Y., Chen, X., and Li,
X.: A three-dimensional gravest empirical mode determined from hydrographic
observations in the western equatorial Pacific Ocean, J. Mar. Syst., 214,
103487, https://doi.org/10.1016/j.jmarsys.2020.103487, 2021.
Liu, Y., Cheng, L., Pan, Y., Abraham, J., Zhang, B., Zhu, J., and Song, J.:
Climatological seasonal variation of the upper ocean salinity, Int. J.
Climatol., 42, 3477–3498, https://doi.org/10.1002/joc.7428, 2022.
Llovel, W. and Lee, T.: Importance and origin of halosteric contribution to
sea level change in the southeast Indian Ocean during 2005–2013, Geophys.
Res. Lett., 42, 1148–1157, https://doi.org/10.1002/2014GL062611, 2015.
Lu, S., Liu, Z., Li, H., Li, Z., and Xu, J.: Manual of Global Ocean Argo
gridded data set (BOA_Argo) (Version 2020), SOED & DESS, Hangzhou, China, 14 pp., 2020.
Lu, W., Su, H., Yang, X., and Yan, X. H.: Subsurface temperature estimation
from remote sensing data using a clustering-neural network method, Remote
Sens. Environ., 229, 213–222, https://doi.org/10.1016/j.rse.2019.04.009,
2019.
Lundberg, S. M. and Lee, S.-I.: A Unified Approach to Interpreting Model Predictions, in: Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, California, USA, December 2017, 4768–4777, 2017.
Lyman, J. M. and Johnson, G. C.: Estimating global ocean heat content
changes in the upper 1800 m since 1950 and the influence of climatology
choice, J. Climate, 27, 1945–1957, https://doi.org/10.1175/JCLI-D-12-00752.1, 2014.
Marvel, K., Biasutti, M., Bonfils, C., Taylor, K. E., Kushnir, Y., and Cook,
B. I.: Observed and projected changes to the precipitation annual cycle, J.
Clim., 30, 4983–4995, https://doi.org/10.1175/JCLI-D-16-0572.1, 2017.
McWilliams, J. C.: Submesoscale currents in the ocean, Proc. R. Soc. A Math.
Phys. Eng. Sci., 472, 20160117, https://doi.org/10.1098/rspa.2016.0117,
2016.
Mertz, F., Rosmorduc, V., Maheu, C., and Faugère, Y.: CMEMS Product User
manual For Sea Level SLA products, Copernicus Mar. Environ. Monit. Serv.,
0–41, 2016.
Milanés-Hermosilla, D., Codorniú, R. T., López-Baracaldo, R.,
Sagaró-Zamora, R., Delisle-Rodriguez, D., Villarejo-Mayor, J. J., and
Núñez-Álvarez, J. R.: Monte carlo dropout for uncertainty
estimation and motor imagery classification, Sensors, 21, 7241,
https://doi.org/10.3390/s21217241, 2021.
Mulet, S., Rio, M. H., Mignot, A., Guinehut, S., and Morrow, R.: A new
estimate of the global 3D geostrophic ocean circulation based on satellite
data and in-situ measurements, Deep-Sea Res. Pt. II,
77–80, 70–81, https://doi.org/10.1016/j.dsr2.2012.04.012, 2012.
Palmer, M. D., Roberts, C. D., Balmaseda, M., Chang, Y. S., Chepurin, G.,
Ferry, N., Fujii, Y., Good, S. A., Guinehut, S., Haines, K., Hernandez, F.,
Köhl, A., Lee, T., Martin, M. J., Masina, S., Masuda, S., Peterson, K.
A., Storto, A., Toyoda, T., Valdivieso, M., Vernieres, G., Wang, O., and
Xue, Y.: Ocean heat content variability and change in an ensemble of ocean
reanalyses, Clim. Dynam., 49, 909–930,
https://doi.org/10.1007/s00382-015-2801-0, 2017.
Pauthenet, E., Bachelot, L., Balem, K., Maze, G., Tréeguier, A.-M., Roquet, F., Fablet, R., and Tandeo, P.: Four-dimensional temperature, salinity and mixed-layer depth in the Gulf Stream, reconstructed from remote-sensing and in situ observations with neural networks, Ocean Sci., 18, 1221–1244, https://doi.org/10.5194/os-18-1221-2022, 2022.
Ponte, R. M., Sun, Q., Liu, C., and Liang, X.: How Salty Is the Global
Ocean: Weighing It All or Tasting It a Sip at a Time?, Geophys. Res. Lett.,
48, e2021GL092935, https://doi.org/10.1029/2021GL092935, 2021.
Reagan, J., Seidov, D., and Boyer, T.: Water Vapor Transfer and Near-Surface
Salinity Contrasts in the North Atlantic Ocean, Sci. Rep.-UK, 8, 8830,
https://doi.org/10.1038/s41598-018-27052-6, 2018.
Reed, E. V., Thompson, D. M., and Anchukaitis, K. J.: Coral-Based Sea Surface Salinity Reconstructions and the Role of Observational Uncertainties in Inferred Variability and Trends, Paleoceanogr. Paleoclimatol., 37, e2021PA004371, https://doi.org/10.1029/2021PA004371, 2022.
Reverdin, G., Friedman, A. R., Chafik, L., Holliday, N. P., Szekely, T.,
Valdimarsson, H., and Yashayaev, I.: North Atlantic extratropical and
subpolar gyre variability during the last 120 years: a gridded dataset of
surface temperature, salinity, and density. Part 1: dataset validation and
RMS variability, Ocean Dynam., 69, 385–403,
https://doi.org/10.1007/s10236-018-1240-y, 2019.
Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., and
Schlax, M. G.: Daily high-resolution-blended analyses for sea surface
temperature, J. Climate, 20, 5473–5496,
https://doi.org/10.1175/2007JCLI1824.1, 2007.
Rhines, P. B.: Mesoscale eddies, in: Encyclopedia of Ocean Sciences, edited
by: Cochran, J. K., Bokuniewicz, H. J., and Yager, P. L. B. T.-E., 3rd edn., Academic Press, Oxford, 115–127,
https://doi.org/10.1016/B978-0-12-409548-9.11642-2, 2019.
Roemmich, D. and Gilson, J.: The 2004–2008 mean and annual cycle of
temperature, salinity, and steric height in the global ocean from the Argo
Program, Prog. Oceanogr., 82, 81–100, https://doi.org/10.1016/j.pocean.2009.03.004,
2009.
Roemmich, D., Johnson, G. C., Riser, S., Davis, R., Gilson, J., Owens, W.
B., Garzoli, S. L., Schmid, C., and Ignaszewski, M.: The Argo Program:
Observing the global ocean with profiling floats, Oceanography, 22, 34–43,
https://doi.org/10.5670/oceanog.2009.36, 2009.
Roemmich, D., Alford, M. H., Claustre, H., Johnson, K., King, B., Moum, J.,
Oke, P., Owens, W. B., Pouliquen, S., Purkey, S., Scanderbeg, M., Suga, T.,
Wijffels, S., Zilberman, N., Bakker, D., Baringer, M., Belbeoch, M., Bittig,
H. C., Boss, E., Calil, P., Carse, F., Carval, T., Chai, F., Conchubhair, D.
Ó., d'Ortenzio, F., Dall'Olmo, G., Desbruyeres, D., Fennel, K., Fer, I.,
Ferrari, R., Forget, G., Freeland, H., Fujiki, T., Gehlen, M., Greenan, B.,
Hallberg, R., Hibiya, T., Hosoda, S., Jayne, S., Jochum, M., Johnson, G. C.,
Kang, K., Kolodziejczyk, N., Körtzinger, A., Traon, P.-Y. Le, Lenn,
Y.-D., Maze, G., Mork, K. A., Morris, T., Nagai, T., Nash, J., Garabato, A.
N., Olsen, A., Pattabhi, R. R., Prakash, S., Riser, S., Schmechtig, C.,
Schmid, C., Shroyer, E., Sterl, A., Sutton, P., Talley, L., Tanhua, T.,
Thierry, V., Thomalla, S., Toole, J., Troisi, A., Trull, T. W., Turton, J.,
Velez-Belchi, P. J., Walczowski, W., Wang, H., Wanninkhof, R., Waterhouse,
A. F., Waterman, S., Watson, A., Wilson, C., Wong, A. P. S., Xu, J., and
Yasuda, I.: On the Future of Argo: A Global, Full-Depth, Multi-Disciplinary
Array, Front. Mar. Sci., 6, 439, https://doi.org/10.3389/fmars.2019.00439, 2019.
Siegelman, L., Roquet, F., Mensah, V., Rivière, P., Pauthenet, E.,
Picard, B., and Guinet, C.: Correction and accuracy of high- and
low-resolution CTD data from animal-borne instruments, J. Atmos. Ocean.
Technol., 36, 745–760, https://doi.org/10.1175/JTECH-D-18-0170.1, 2019.
Skliris, N., Marsh, R., Josey, S. A., Good, S. A., Liu, C., and Allan, R.
P.: Salinity changes in the World Ocean since 1950 in relation to changing
surface freshwater fluxes, Clim. Dynam., 43, 709–736,
https://doi.org/10.1007/s00382-014-2131-7, 2014.
Skliris, N., Marsh, R., Mecking, J. V., and Zika, J. D.: Changing water
cycle and freshwater transports in the Atlantic Ocean in observations and
CMIP5 models, Clim. Dynam., 54, 4971–4989,
https://doi.org/10.1007/s00382-020-05261-y, 2020.
Sohail, T., Zika, J. D., Irving, D. B., and Church, J. A.: Observed poleward freshwater transport since 1970, Nature, 602, https://doi.org/10.1038/s41586-021-04370-w, 2022.
Stamell, J., Rustagi, R. R., Gloege, L., and McKinley, G. A.: Strengths and weaknesses of three Machine Learning methods for pCO2 interpolation, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2020-311, 2020.
Stoean, C., Stoean, R., Atencia, M., Abdar, M., Velázquez-Pérez, L.,
Khosravi, A., Nahavandi, S., Rajendra Acharya, U., and Joya, G.: Automated
detection of presymptomatic conditions in spinocerebellar ataxia type 2
using monte carlo dropout and deep neural network techniques with
electrooculogram signals, Sensors (Switzerland), 20, 3032,
https://doi.org/10.3390/s20113032, 2020.
Storto, A., Alvera-Azcárate, A., Balmaseda, M. A., Barth, A.,
Chevallier, M., Counillon, F., Domingues, C. M., Drévillon, M., Drillet,
Y., Forget, G., Garric, G., Haines, K., Hernandez, F., Iovino, D., Jackson,
L. C., Lellouche, J. M., Masina, S., Mayer, M., Oke, P. R., Penny, S. G.,
Peterson, A. K., Yang, C., and Zuo, H.: Ocean reanalyses: Recent advances
and unsolved challenges, Front. Mar. Sci., 6, 418, https://doi.org/10.3389/fmars.2019.00418, 2019.
Su, H., Zhang, H., Geng, X., Qin, T., Lu, W., and Yan, X. H.: OPEN: A new
estimation of global ocean heat content for upper 2000 meters from remote
sensing data, Remote Sens., 12, 2294, https://doi.org/10.3390/rs12142294, 2020.
Tian, T., Cheng, L., Wang, G., Abraham, J., Ren, S., Zhu, J., and Song, J.:
Reconstructing ocean subsurface salinity at high resolution using a machine
learning approach, Science Data Bank [data set],
https://doi.org/10.57760/sciencedb.o00122.00001, 2022.
Vinogradova, N., Lee, T., Boutin, J., Drushka, K., Fournier, S., Sabia, R.,
Stammer, D., Bayler, E., Reul, N., Gordon, A., Melnichenko, O., Li, L.,
Hackert, E., Martin, M., Kolodziejczyk, N., Hasson, A., Brown, S., Misra,
S., and Lindstrom, E.: Satellite salinity observing system: Recent
discoveries and the way forward, Front. Mar. Sci., 6, 243, https://doi.org/10.3389/fmars.2019.00243,
2019.
von Schuckmann, K., Salléee, J.-B., Chambers, D., Le Traon, P.-Y., Cabanes, C., Gaillard, F., Speich, S., and Hamon, M.: Consistency of the current global ocean observing systems from an Argo perspective, Ocean Sci., 10, 547–557, https://doi.org/10.5194/os-10-547-2014, 2014.
Wang, G., Cheng, L., Boyer, T., and Li, C.: Halosteric sea level changes
during the Argo era, Water (Switzerland), 9, 484,
https://doi.org/10.3390/w9070484, 2017.
Wang, H., Song, T., Zhu, S., Yang, S., and Feng, L.: Subsurface temperature
estimation from sea surface data using neural network models in the western
pacific ocean, Mathematics, 9, 852, https://doi.org/10.3390/math9080852, 2021.
Wang, J., Flierl, G. R., Lacasce, J. H., Mcclean, J. L., and Mahadevan, A.:
Reconstructing the ocean's interior from surface data, J. Phys. Oceanogr.,
43, 1611–1626, https://doi.org/10.1175/JPO-D-12-0204.1, 2013.
Warin, T.: Multiple Linear Regression, Figshare,
https://doi.org/10.6084/M9.FIGSHARE.8178812.V1, 2019.
Wentz, F. J., Scott, J., Hoffman, R., Leidner, M., Atlas, R., and Ardizzone,
J.: Cross-Calibrated Multi-Platform Ocean Surface Wind Vector Analysis
Product V2, 1987–ongoing, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, https://doi.org/10.5065/4TSY-K140, 2016.
Wong, A. P. S., Wijffels, S. E., Riser, S. C., Pouliquen, S., Hosoda, S.,
Roemmich, D., Gilson, J., Johnson, G. C., Martini, K., Murphy, D. J.,
Scanderbeg, M., Bhaskar, T. V. S. U., Buck, J. J. H., Merceur, F., Carval,
T., Maze, G., Cabanes, C., André, X., Poffa, N., Yashayaev, I., Barker,
P. M., Guinehut, S., Belbéoch, M., Ignaszewski, M., Baringer, M. O. N.,
Schmid, C., Lyman, J. M., McTaggart, K. E., Purkey, S. G., Zilberman, N.,
Alkire, M. B., Swift, D., Owens, W. B., Jayne, S. R., Hersh, C., Robbins,
P., West-Mack, D., Bahr, F., Yoshida, S., Sutton, P. J. H., Cancouët,
R., Coatanoan, C., Dobbler, D., Juan, A. G., Gourrion, J., Kolodziejczyk,
N., Bernard, V., Bourlès, B., Claustre, H., D'Ortenzio, F., Le Reste,
S., Le Traon, P. Y., Rannou, J. P., Saout-Grit, C., Speich, S., Thierry, V.,
Verbrugge, N., Angel-Benavides, I. M., Klein, B., Notarstefano, G., Poulain,
P. M., Vélez-Belchí, P., Suga, T., Ando, K., Iwasaska, N.,
Kobayashi, T., Masuda, S., Oka, E., Sato, K., Nakamura, T., Sato, K.,
Takatsuki, Y., Yoshida, T., Cowley, R., Lovell, J. L., Oke, P. R., van Wijk,
E. M., Carse, F., Donnelly, M., Gould, W. J., Gowers, K., King, B. A., Loch,
S. G., Mowat, M., Turton, J., Rama Rao, E. P., Ravichandran, M., Freeland,
H. J., Gaboury, I., Gilbert, D., Greenan, B. J. W., Ouellet, M., Ross, T.,
Tran, A., Dong, M., Liu, Z., Xu, J., Kang, K. R., Jo, H. J., Kim, S. D., and Park, H. M.: Argo
Data 1999–2019: Two Million Temperature-Salinity Profiles and Subsurface
Velocity Observations From a Global Array of Profiling Floats, Front. Mar. Sci., 7, 700,
https://doi.org/10.3389/fmars.2020.00700, 2020.
Xu, C., Chen, G., Shang, X.-D., and Huang, R. X.: The spatial distribution
of sources and sinks of ocean mesoscale eddies, J. Trop. Oceanogr., 32,
37–46, 2013.
Yan, H., Wang, H., Zhang, R., Bao, S., Chen, J., and Wang, G.: The
Inconsistent Pairs Between In Situ Observations of Near Surface Salinity and
Multiple Remotely Sensed Salinity Data, Earth Space Sci., 8, e2020EA001355,
https://doi.org/10.1029/2020EA001355, 2021.
Zhou, G., Fu, W., Zhu, J., and Wang, H.: The impact of location-dependent
correlation scales in ocean data assimilation, Geophys. Res. Lett., 31, L21306,
https://doi.org/10.1029/2004GL020579, 2004.
Zweng, M., Reagan, J. R., Seidov, D., Boyer, T. P., Locarnini, R. A., and
Garcia, H. E.: World Ocean Atlas 2018, Volume 2: Salinity, edited by: Mishonov A., NOAA Atlas NESDIS 82, 50
pp., http://www.nodc.noaa.gov/OC5/indprod.html (last access: 12 September 2022), 2019.
Short summary
A high-resolution gridded dataset is crucial for understanding ocean processes at various spatiotemporal scales. Here we used a machine learning approach and successfully reconstructed a high-resolution (0.25° × 0.25°) ocean subsurface (1–2000 m) salinity dataset for the period 1993–2018 (monthly) by merging in situ salinity profile observations with high-resolution satellite remote-sensing data. This new product could be useful in various applications in ocean and climate fields.
A high-resolution gridded dataset is crucial for understanding ocean processes at various...
Altmetrics
Final-revised paper
Preprint