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S2.3.1 Comparison of typical machine learning reconstruction methods 

Here we briefly introduce why feed-forward neural network (FFNN) is chosen in this study instead of other machine learning 

approaches.  

(1) Published researches. Stamell et al. (2020) compared the advantages and disadvantages of three different machine learning 

methods in reconstructing the global ocean surface pCO2 from sparse observation data, and found that the extreme gradient 5 

boosting (XGBoost) produces the best pCO2 reconstruction overall, but the neural network (NN) method can be best 

generalized in poorly sampled regions and time periods. Wang et al. (2021) compared the performance of four machine 

learning algorithms XGBoost, the multi-linear regression (MLR), random forest (RF) and NN in estimating the subsurface 

temperature in the western Pacific, and proved that the neural network model outperformed the other three machine learning 

models. Lu et al. (2019) estimated subsurface temperature using cluster-neural network method, and showed that this method 10 

was superior to clustering linear regression and random forest method. The above-mentioned research shows that the NN 

method has superior generalization ability and is more robust for ocean data reconstruction.  

(2) Our experiments. We have used “synthetic data” approach to test the performance of different machine-learning (ML). 

CNRM-CM6-1 high-resolution model simulation (Voldoire, 2019) is used (historical simulation that includes all climate 

forcings and is part of CMIP6). Because model results are with global coverage, dynamically consistent, thus can be used as 15 

“true” of salinity. We resample the model data according to the location of in situ observation to construct the “synthetic 

observations”. The synthetic observations are prepared in two counterparts. The first is after further perturbation by 

observational errors/noises (denoted as “perturbed” data to account for the impact of observational errors). The observational 

errors are specificed in section 2.3.3. and Fig.2. The second is no perturbation (so the only error source of reconstruction is 

data sampling, this data is denoted as “non-perturbed”). Based on these synthetic data, we test different reconstruction schemes 20 

and compare the applicability of FFNN and light gradient boosting machine (LightGBM) (an improved method of XGBoost) 

to reconstruct globally ocean salinity data from sparse data. Fig. S1 and Fig.S2 show that the FFNN exhibits the lower RMSE 

(~0.035 psu) and the higher correlation coefficient (CC) (~0.866) compared with LightGBM for non-perturbed synthetic data. 

The perturbed data shows consistent results, although the addition of noises led to slightly higher RMSE and lower CC for 

both methods. In particular, perturbation of data induced a CC degradation of 3.5% and 6.4% for FFNN and LightGBM, 25 

respectively (Fig.S2d). Thus, the addition of observational noises leads to larger performance degradation for LightGBM than 

FFNN, suggesting that FFNN is more robust. 

Finally, we also compare the performance of FFNN and LightGBM in reconstructing salinity using remote sensing and in situ 

observation data. The results show that the salinity field reconstructed by LightGBM had many non-continuous stripe-like 

structures (Fig.S3), which is apparently non-physical. This is associated with the intrinsic property of the LightGBM approach: 30 

1) LightGBM discretize continuous variable into small bins by splitting the tree nodes; 2) Tree based models give stripe-like 

predictions as the model was trained using spatially sparse data. 
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With those tests and considerations, we found FFNN be an optimal choice to reconstruct subsurface salinity data in this study. 

 
Fig.S1: Distribution of 1–2000 m averaged RMSE and correlation coefficient for different ML approaches. Blue markers represent 35 
the perturbed data; Red markers represent the non-perturbed data. 
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Fig.S2: Statistical metrics for FFNN and LightGBM methods. (a) 1–2000 m averaged RMSE. (b) Increase of RMSE from the non-
perturbed data to the perturbed data; (c) 1–2000 m averaged correlation coefficient (CC). (d) Degradation of CC from the non-
perturbed data to the perturbed data. 40 

 
Fig.S3: The geographical distribution of salinity anomalies in the Kuroshio and Gulf Stream region from data reconstructed by 
FFNN (left) and LightGBM (right) method in January 2016: (a–b) Northwest Pacific region; (e–f) Northwest Atlantic region. 
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