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Abstract. A gridded ocean subsurface salinity dataset with global coverage is useful for research on climate
change and its variability. Here, we explore the feed-forward neural network (FFNN) approach to reconstruct a
high-resolution (0.25◦× 0.25◦) ocean subsurface (1–2000 m) salinity dataset for the period 1993–2018 by merg-
ing in situ salinity profile observations with high-resolution (0.25◦× 0.25◦) satellite remote-sensing altimetry
absolute dynamic topography (ADT), sea surface temperature (SST), sea surface wind (SSW) field data, and a
coarse-resolution (1◦× 1◦) gridded salinity product. We show that the FFNN can effectively transfer small-scale
spatial variations in ADT, SST, and SSW fields into the 0.25◦× 0.25◦ salinity field. The root-mean-square error
(RMSE) can be reduced by ∼ 11 % on a global-average basis compared with the 1◦× 1◦ salinity gridded field.
The reduction in RMSE is much larger in the upper ocean than the deep ocean because of stronger mesoscale
variations in the upper layers. In addition, the new 0.25◦× 0.25◦ reconstruction shows more realistic spatial
signals in the regions with strong mesoscale variations, e.g., the Gulf Stream, Kuroshio, and Antarctic Circum-
polar Current regions, than the 1◦× 1◦ resolution product, indicating the efficiency of the machine learning
approach in bringing satellite observations together with in situ observations. The large-scale salinity patterns
from 0.25◦× 0.25◦ data are consistent with the 1◦× 1◦ gridded salinity field, suggesting the persistence of the
large-scale signals in the high-resolution reconstruction. The successful application of machine learning in this
study provides an alternative approach for ocean and climate data reconstruction that can complement the exist-
ing data assimilation and objective analysis methods. The reconstructed IAP0.25◦ dataset is freely available at
https://doi.org/10.57760/sciencedb.o00122.00001 (Tian et al., 2022).

Published by Copernicus Publications.

https://doi.org/10.57760/sciencedb.o00122.00001


5038 T. Tian et al.: Reconstructing ocean subsurface salinity at high resolution

1 Introduction

Gridded ocean datasets with complete global ocean cover-
age are of great importance to marine and climate research
(Lyman and Johnson, 2014; Durack et al., 2014; Ciais et al.,
2013; Domingues et al., 2008; Bagnell and DeVries, 2021).
For example, most climate monitoring applications depend
on gridded products (Abram et al., 2019; Ishii et al., 2017;
Liang et al., 2021). However, in situ salinity observation
data are sparse, owing to the limitations of observation tech-
niques, which brings difficulties to the generation of ocean
salinity data products (Roemmich et al., 2019, 2009).

Currently, the estimation of salinity fields mainly relies
on two approaches: (1) objective analysis methods based on
in situ observations, resulting in so-called objective analy-
sis data products (Gaillard et al., 2016; Hosoda et al., 2008;
Roemmich and Gilson, 2009; Cheng and Zhu, 2016; Lu et
al., 2020); and (2) data assimilation methods, which combine
numerical simulations and observations to result in what is
referred to as a reanalysis product (Carton et al., 2018; For-
get et al., 2015; Jean-Michel et al., 2021; Balmaseda et al.,
2013). The accuracy of the more traditional objective analy-
sis approach is critically dependent on the data coverage and
the reliability of spatial covariance, which defines how the in-
formation is propagated from data-rich to data-sparse regions
(Von Schuckmann et al., 2014; Zhou et al., 2004). Previously
available objective analysis products mostly have a horizon-
tal resolution of 1◦× 1◦. The reanalysis approach relies on
model simulations which use data assimilation schemes to
constrain models with various types of observations, such
as in situ and satellite remote-sensing data (Storto et al.,
2019; Jean-Michel et al., 2021). Reanalysis products can
be strongly impacted by model biases, especially below the
ocean surface (Storto et al., 2019; Balmaseda et al., 2015).
However, Palmer et al. (2017) and Cheng et al. (2020) indi-
cated that such reanalysis products have much larger spread
than observational products for ocean heat content (temper-
ature) and ocean salinity, suggesting caution when adopting
the data assimilation approach in some applications such as
long-term climate change.

As higher-resolution observational data are crucial for
evaluating models/reanalysis and understanding ocean pro-
cesses at multiple scales, such as the mesoscale and sub-
mesoscale (McWilliams, 2016), high-quality observational
datasets with resolutions higher than 1◦× 1◦ could be use-
ful for ocean and climate research, e.g., resolving the ver-
tical structure of warm and cold eddies. To reconstruct an
observational dataset with resolution higher than 1◦× 1◦,
remote-sensing observations are essential, as they can be
used to incorporate smaller-scale signals that are insuffi-
ciently sampled by in situ salinity profile observations. Two
types of approaches have been used previously to propa-
gate surface information to the subsurface: dynamical and
statistical. The dynamical approach adopts physical relation-
ships between surface and subsurface variables. For exam-

ple, Wang et al. (2013) proposed an isQG (interior+ surface
quasi-geostrophy) method, using information such as sea sur-
face height (SSH), sea surface temperature (SST), and sea
surface salinity (SSS) to invert the density and velocity fields
of the ocean interior. The statistical approach utilizes histori-
cal data to establish a statistical relationship between remote-
sensing observations and subsurface observations (e.g., lin-
ear regression between surface height and subsurface tem-
perature/salinity). Some of the available statistical relation-
ships have been derived by multiple linear regression mod-
els (Warin, 2019), empirical orthogonal functions (Hannachi
et al., 2007), and the gravest empirical mode method (Liu
et al., 2021). However, both dynamical and statistical ap-
proaches have obvious limitations. The dynamical approach
is overly dependent on physical assumptions, which are al-
ways simplified, such as relying on surface quasi-geostrophic
dynamics to derive subsurface signals from surface changes.
Caveats of the statistical approach is the lack of physical
constraints and the simplified assumptions. For example,
some approaches have simplified the nonlinear relationship
between surface dynamic height and subsurface tempera-
ture/salinity to a linear relationship.

Compared with traditional reconstruction methods, ma-
chine learning approaches do not rely on any simplified as-
sumptions in the process of data reconstruction and are able
to learn and fit parameters automatically. There have been
some attempts recently; for example, Wang et al. (2021) used
remote-sensing data and neural network methods to estimate
the subsurface temperature in the western Pacific. Combining
satellite data and Argo gridded products, Su et al. (2020) used
neural networks to estimate ocean heat content anomalies
over four different depths down to 2000 m. Lu et al. (2019)
estimated the subsurface temperature through a clustering
neural network method based on SST, SSH, and wind field
measurement data. Although these studies provide some
hints that machine learning approaches can be useful in data
reconstruction applications, there are still some limitations.
First, some studies (Lu et al., 2019; Su et al., 2020; Wang et
al., 2021) used Argo gridded data as the “truth” to train the
machine learning model; thus the reconstruction error in the
Argo gridded data is embedded in the final reconstruction.
Second, the spatial resolution of the most reconstructed data
is still 1◦× 1◦. The added value of high-resolution remote-
sensing data is not maximized; for example, the resultant
1◦× 1◦ field is still insufficient to resolve mesoscale sig-
nals. Finally, previous reconstructions have tended to focus
mainly on temperature rather than salinity, and a comprehen-
sive assessment of the uncertainty has always been absent.
In addition, due to the lack of interpretability of the machine
learning approach, a thorough comparative evaluation with
traditional methods is clearly a crucial line of study.

This paper explores the feed-forward neural net-
work (FFNN) approach to reconstruct a high-resolution
(0.25◦× 0.25◦) ocean subsurface (1–2000 m) salinity dataset
for the period 1993–2018 by merging in situ profile ob-
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servations (processed to a gridded 0.25◦× 0.25◦ arithmetic
mean field in this study, detailed in the following text) with
high-resolution satellite remote-sensing altimetry absolute
dynamic topography (ADT), SST, sea surface wind (SSW)
data, which included zonal (USSW) and meridional (VSSW)
components, and a coarse-resolution IAP1◦ gridded salin-
ity product from the Institute of Atmospheric Physics (IAP).
The first objective is to understand how well the FFNN ap-
proach works for data reconstruction using the ocean salinity
field as an example. Second, the new machine-learning-based
high-resolution (0.25◦× 0.25◦) salinity dataset will be com-
prehensively evaluated in this study, which facilitate its fur-
ther applications. The added value of remote-sensing data in
a high-resolution salinity reconstruction is demonstrated and
discussed.

The rest of the paper is organized as follows: the data and
methods employed in our study are presented in Sect. 2. The
performance of the dataset in terms of geographical pattern,
regional analysis, and overall reconstruction performance is
assessed in Sect. 3. The uncertainty of the FFNN approach is
examined in Sect. 4. An analysis of the major climatic pat-
terns is conducted in Sect. 5. Importance of each feature for
the reconstruction is described in Sect. 6. Data availability is
described in Sect. 7. The results of the study are summarized
and discussed in Sect. 8.

2 Data and methods

2.1 Input data

2.1.1 Remote-sensing and IAP1◦ observational data

The ADT data extracted from the European Copernicus Ma-
rine Environment Monitoring Service (CMEMS) were com-
puted based on altimeter data from several satellites includ-
ing Jason-3, Sentinel-3A, HY-2A, Saral/AltiKa, Cryosat-
2, Jason-2, Jason-1, T/P, ENVISAT, GFO, and ERS1/2
(Mertz et al., 2016). The dataset has a spatial resolution of
0.25◦× 0.25◦ and a daily temporal resolution covering the
period from January 1993 to December 2020.

The SST data were extracted from the daily Optimum In-
terpolation Sea Surface Temperature (OISST) v2.1 data, pro-
vided by the National Oceanic and Atmospheric Adminis-
tration (NOAA). OISST is produced by interpolating SST
observations from different sources, resulting in a smoothed
field with complete global ocean coverage. The sources of
data are satellite (Advanced Very High Resolution Radiome-
ter) and in situ platforms (i.e., ships and buoys) (Banzon et
al., 2016; Reynolds et al., 2007; Huang et al., 2021). Data
are currently available from 1 September 1981 to the present
day, with a spatial resolution of 0.25◦× 0.25◦ and a daily
temporal resolution.

The SSW data were extracted from the Cross-Calibrated
Multi-Platform (CCMP) V2 monthly dataset (Wentz et al.,
2016), provided by the National Center for Atmospheric Re-

search (NCAR). The processing of CCMP V2 now combines
Version-7 Remote Sensing Systems radiometer wind speeds,
QuikSCAT and ASCAT scatterometer wind vectors, moored
buoy wind data, and ERA-Interim model wind fields using
a variational analysis method to produce 0.25◦× 0.25◦ grid-
ded vector winds (Atlas et al., 2011). The dataset covers the
period from July 1987 to April 2019.

The IAP1◦ salinity data give a global coverage of the
oceans at a horizontal resolution of 1◦× 1◦ in 41 vertical
levels from 1 to 2000 m and a monthly temporal resolution
from 1940 to the present day (Cheng and Zhu, 2016; Cheng
et al., 2017). This product combines in situ salinity profiles
with coupled model simulations (from phase 5 of the Cou-
pled Model Intercomparison Project) to derive an objective
analysis with the ensemble optimal interpolation approach
(Cheng et al., 2020). The product is designed to minimize
the sampling error in representing large-scale and long-term
climate changes and variabilities.

All of the above-mentioned products were processed into
monthly averages, and IAP1◦ data were linearly interpolated
to unified 0.25◦× 0.25◦ resolution fields, which were used as
inputs for the FFNN approach.

2.1.2 In situ salinity observations

In situ ocean salinity observations were sourced from the
World Ocean Database (WOD) (Boyer et al., 2018). Data
from all available instruments (e.g., Argo; Nansen bottle;
conductivity–temperature–depth, CTD) were used in this
study. Quality flags from WOD were applied (only “good
data” with a flag equal to zero were used). All of the pro-
files were first interpolated to a standard 41 vertical lev-
els between 1 and 2000 m, as in the IAP1◦ data. Then, 12-
monthly climatologies were constructed using all data from
1990 to 2010 (centered around 2000), and anomaly profiles
are derived by subtracting monthly climatologies from salin-
ity profiles. Finally, the salinity anomalies were averaged
into 0.25◦× 0.25◦, 1-month, and 41-level grid boxes via sim-
ple arithmetic averaging, without spatial interpolation and
smoothing. The reconstructions are applied to the anomaly
fields, similar to previous objective analyses because of the
larger spatial decorrelation length scale of the anomaly fields
than the absolute fields (i.e., Levitus et al., 2009; Cheng et
al., 2017). The gridded averaged salinity anomalies were re-
garded as the “truth” to train the FFNN approach during the
reconstruction. The gridded averages were used instead of
the raw profiles because they were able to minimize the im-
pact of spatial heterogeneity of the raw profiles, reduce the
subgrid (< 0.25◦) variability and observational noise, and
improve the computational efficiency (Cheng et al., 2017,
2020; Gaillard et al., 2016; Good et al., 2013; Ishii et al.,
2003, 2017; Levitus et al., 2012; Lyman and Johnson, 2014;
Roemmich et al., 2009).

https://doi.org/10.5194/essd-14-5037-2022 Earth Syst. Sci. Data, 14, 5037–5060, 2022



5040 T. Tian et al.: Reconstructing ocean subsurface salinity at high resolution

2.2 Independent ocean products for evaluation and
comparison

Three independent ocean products were used to assess the
quality of the newly reconstructed high-resolution salinity
data in this study (hereafter denoted as IAP0.25◦), AR-
MOR3D data, SMAP satellite data, and EN4 gridded data.

The ARMOR3D V4 dataset was extracted from CMEMS,
which is a global three-dimensional temperature and salinity
dataset with high horizonal (0.25◦× 0.25◦) spatial resolution
from 0–5500 m (Guinehut et al., 2012; Mulet et al., 2012).
The spatial coverage ranges from 82.125◦ S to 89.875◦ N and
0.125 to 359.875◦ E. The ARMOR3D combines satellite ob-
servation data (ADT, geostrophic surface currents, SST) and
in situ temperature and salinity profile data through a multi-
variate/simple linear regression and an optimal interpolation
method. This product offers four versions with different tem-
poral resolutions: near-real-time weekly data, near-real-time
monthly data, multi-year reprocessed weekly data, and multi-
year reprocessed monthly data. The multi-year reprocessed
monthly data were used in this study.

The SMAP V4 dataset is provided by NOAA and com-
prises monthly 0.25◦× 0.25◦ resolution SSS data. The
SMAP data are based on satellite observations and have
the capability to monitor the global SSS field in near real
time, with mesoscale information resolved for salinity (Vino-
gradova et al., 2019).

The EN4 gridded data were obtained from the UK Met Of-
fice. The EN4 dataset uses an optimal interpolation method
to construct the ocean subsurface gridded salinity field based
on in situ salinity profile data. We chose the EN4-GR10 ver-
sion (Gouretski and Reseghetti, 2010), which has a spatial
resolution of 1◦× 1◦ and 42 vertical levels from 5 to 5500 m
and temporal coverage from 1940 to 2018 (Li et al., 2019).

2.3 Methods

2.3.1 Feed-forward neural network

The FFNN was used to reconstruct the subsurface salinity
anomalies in this study. We chose FFNN because it has been
shown to be superior to the other three widely used machine
learning approaches in reconstructing ocean parameters (Lu
et al., 2019; Stamell et al., 2020; Wang et al., 2021). Our own
evaluation based on synthetic data and salinity observations
(see Supplement) also reveals that FFNN is a robust approach
and leads to the smallest error compared with other ap-
proaches (e.g., light gradient boosting machine, LightGBM)
(Gan et al., 2021). An FFNN is a one-way, multi-layer struc-
ture network that includes an input layer, hidden layers, and
an output layer (Abdar et al., 2021; Contractor and Roughan,
2021; Gabella, 2021). The zero layer is called the input layer,
the last layer is called the output layer, and the other inter-
mediate layers are called the hidden layers. The neurons in
the FFNN are arranged in layers, with each neuron belong-
ing to a different layer. The neurons of each layer are fully

Table
1.A

listofthe
inputdatasets

and
validation

products
used

in
this

study.

D
ata

type
V

ariable
D

ataset
D

ata
source

H
orizontal

res-
olution

V
ertical

cover-
age

and
resolu-

tion

Tim
e

period
R

eference
D

O
I/U

R
L

Input
A

D
T

C
M

E
M

S
C

M
E

M
S

0.25
◦
×

0.25
◦

Sea
surface

1993–2020
M

ertz
etal.(2016)

https://doi.org/10.48670/m
oi-00148

Input
SST

O
ISST

N
O

A
A

0.25
◦
×

0.25
◦

Sea
surface

1981–2022
H

uang
etal.(2021)

https://w
w

w
.ncei.noaa.gov/products/

optim
um

-interpolation-sst
(last

access:
10

June
2022)

Input
SSW

C
C

M
P

N
C

A
R

0.25
◦
×

0.25
◦

Sea
surface

1987–2019
W

entz
etal.(2016)

https://doi.org/10.5065/4T
SY

-K
140

Input
Salinity

IA
P1
◦

IA
P

1
◦
×

1
◦

41
levels

(1–2000
m

)
1960–2021

C
heng

and
Z

hu
(2016)

http://w
w

w
.ocean.iap.ac.cn/

(last
ac-

cess:8
June

2022)
Input

Salinity
observations

In
situ

observations
W

O
D

A
veraged

into
0.25
◦
×

0.25
◦

Interpolated
to

41
levels

(1–2000
m

)

1960–2021
B

oyeretal.(2018)
https://w

w
w

.ncei.noaa.gov/products/
w

orld-ocean-database
(last

access:
22

A
pril2022)

V
alidation

Salinity
A

R
M

O
R

3D
C

M
E

M
S

0.25
◦
×

0.25
◦

50
levels

(1–5000
m

)
1993–2020

M
ertz

etal.(2016)
https://doi.org/10.48670/m

oi-00052

V
alidation

SSS
SM

A
P

N
O

A
A

0.25
◦
×

0.25
◦

Sea
surface

2015–2019
V

inogradova
etal.(2019)

https://data.rem
ss.com

/sm
ap/SSS/V

04.
0/(lastaccess:18

M
ay

2022)
V

alidation
Salinity

E
N

4
U

K
M

etO
ffice

1
◦
×

1
◦

42
levels

(1–5500
m

)
1940–2018

G
ouretskiand

R
eseghetti

(2010)
https://w

w
w

.m
etoffice.gov.uk/hadobs/

en4/(lastaccess:9
July

2022)

Earth Syst. Sci. Data, 14, 5037–5060, 2022 https://doi.org/10.5194/essd-14-5037-2022

https://doi.org/10.48670/moi-00148
https://www.ncei.noaa.gov/products/optimum-interpolation-sst
https://www.ncei.noaa.gov/products/optimum-interpolation-sst
https://doi.org/10.5065/4TSY-K140
http://www.ocean.iap.ac.cn/
https://www.ncei.noaa.gov/products/world-ocean-database
https://www.ncei.noaa.gov/products/world-ocean-database
https://doi.org/10.48670/moi-00052
https://data.remss.com/smap/SSS/V04.0/
https://data.remss.com/smap/SSS/V04.0/
https://www.metoffice.gov.uk/hadobs/en4/
https://www.metoffice.gov.uk/hadobs/en4/


T. Tian et al.: Reconstructing ocean subsurface salinity at high resolution 5041

connected; that is, each neuron is connected to the neurons
of the previous layer and the next layer. The information in
the network will only flow from the input layer to the hid-
den layers and then to the output layer; that is, the output of
the previous layer is used as the input of the next layer, and
the information of the next layer has no effect on the previ-
ous layer. Each layer of the FFNN is equivalent to a function,
and the connection of the multi-layer network is equivalent to
a composite function to form a linear or nonlinear mapping
from input variables to output variables. The complexity of
the FFNN depends not only on how many neurons or lay-
ers are chosen, but also on the type of layers and activation
functions.

All the input parameters of the model training were con-
verted to anomalies by subtracting their respective clima-
tologies for 1993–2015. For example, the input data were
the IAP1◦ salinity anomalies (IAP1SA), the absolute dy-
namic topography anomalies (ADTA), sea surface temper-
ature anomalies (SSTA), and sea surface wind anomalies
(SSWA), which included zonal and meridional anomalies
(USSWA/VSSWA). The standardization of data can improve
the convergence speed of the neural network method (Le-
Cun et al., 2012). The method proposed by Denvil-Sommer
et al. (2019) was used to perform sine/cosine transformations
of latitude, longitude, and time. The Z score standardiza-
tion method was used to process the ADTA, SSTA, USSWA,
VSSWA, IAP1SA, and standard layer depth parameters.

The structure of the FFNN used in this study is illustrated
in Fig. 1, in which y is the gridded salinity anomaly, regarded
as a “true value”. The input x includes longitude, latitude,
time, depth, IAP1SA, ADTA, SSTA, USSWA, and VSSWA.

A training/testing approach was adopted to determine the
key parameters and settings for the FFNN. The full salin-
ity dataset was randomly divided into a training set (80 % of
the whole dataset) and a test set (20 % of the whole dataset).
The training set was used to fit the FFNN algorithm, and
the test set was used for performance evaluation. The root-
mean-square error (RMSE) was calculated between the re-
construction and the test dataset as a model evaluation met-
ric. Once the RMSE begins to increase, the training iteration
stops, and the best parameters and settings are stored. A grid
search strategy (Liashchynskyi et al., 2019) was used to opti-
mize the structure of the neural network. The optimized neu-
ral network we used consists of one input layer, one output
layer, and four hidden layers; the number of neurons in each
hidden layer was set to 256, 128, 64, and 32; the activation
function was the rectified linear unit; the optimizer was the
root-mean-square propagation (RMSProp) (Bushaev, 2018);
the learning rate was 0.001; and the cost function was mini-
mized for training as follows:

J (θ0,θ1, . . .θn)=
1

2m

m∑
i=1

(
hθ

(
X(i)

)
− y(i)

)2
, (1)

where X = (longitude, latitude, depth, time, IAP1SA,
ADTA, SSTA, USSWA, VSSWA), y denotes the “truth val-
ues”, m is the number of samples, hθ is the FFNN model
for training, θ is the parameter of the model, and the training
objective is the minimum J .

Bayesian regularization (Dan Foresee and Hagan, 1997)
and dropout were used during model training to maintain
generalization and prevent overfitting. Since the Bayesian
regularization algorithm does not require cross-validation to
ensure generalization, no validation set was defined in this
process (Lu et al., 2019; Wang et al., 2021). Adopting these
settings and parameters, the final FFNN model used for re-
construction was trained by the full salinity dataset to ensure
the best performance.

2.3.2 The 5-fold cross validation

To evaluate the reconstruction using independent test data, a
5-fold cross validation approach was used (Gui et al., 2020).
This type of validation is one of the most popular models
in statistics and machine learning (Berrar, 2018; Lei, 2020).
In the 5-fold cross validation, the full observational datasets
were split into training (80 %) and testing (20 %) datasets.
The training set was used to train the machine learning model
and then to derive the reconstruction. The testing dataset was
used as an independent dataset to verify the performance
of the reconstruction. To effectively construct the training
and testing datasets, the full observational data 0.25◦× 0.25◦

gridded average fields, as introduced before, were randomly
split into five subsets. In each run, four subsets were used
for training, and the remaining subset was used for testing.
This process was repeated four times so that each of the five
subsets could be used as the testing dataset. In this way, the
5-fold cross validation needed to be trained five times to en-
sure that all the data participated in both the training and test-
ing. By calculating the difference between the reconstructed
data and the truth value of the independent testing data, the
machine learning method could be evaluated.

2.3.3 Uncertainty quantification

The uncertainty of the final reconstruction will stem from
three sources: instrumental error, representativeness error,
and reconstruction error. The instrumental error is related
to the instrument accuracy of a salinity measurement. For
instance, the accuracy of most Argo salinity data is about
±0.01 psu. However, many Argo floats suffer from sensor
drift, so the error is much larger for some data, which has
yet to be quantified (Wong et al., 2020). For the validated
marine mammal data, the accuracy can be±0.03 psu (Siegel-
man et al., 2019). The CTD data accuracy is about±0.01 psu.
The representativeness error defines the accuracy of the grid-
ded average in representing the true average of salinity in
this grid. This error is associated with the sampling of ocean
changes inside each 0.25◦ and 1-month grid: insufficient
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Figure 1. Schematic diagram of subsurface salinity reconstruction by the FFNN approach.

sampling will lead to errors in the grid average. The mag-
nitude of error depends on the spatiotemporal variability in
each grid box: larger subgrid variability requires more data
to accurately estimate the grid average. The reconstruction
error defines the accuracy of the gap-filling, i.e., the machine
learning approach in this study. This error is related to the er-
rors in the FFNN model’s design and parameter choice, etc.
To quantify the uncertainty in the reconstruction, these three
major error sources had to be properly accounted for.

This study adopted a probabilistic approach to the propa-
gation of errors and to quantify the uncertainty. We perturbed
the interpolated 0.25◦ gridded average fields five times with
prescribed instrumental and representativeness uncertainty
and then obtained five perturbed gridded fields. The FFNN
was then applied to these five perturbed fields, separately, to
result in five reconstructions at each time with a Monte Carlo
dropout approach (Gal and Ghahramani, 2016; Abdar et al.,
2021). This process led to 25 ensemble members in the final
reconstruction, the spread of which was used to quantify the
uncertainty.

The perturbations were performed as follows. For instru-
mental error, we perturbed each individual salinity profile by
its instrumental accuracy, assuming a Gaussian distribution
with zero mean and the instrumental accuracy as the standard
deviation. The perturbed profiles were then used to construct
the gridded average fields (0.25◦ and 1-month grid). On this

basis, the representativeness error was included by perturb-
ing each gridded average by a Gaussian distribution with zero
mean and standard deviation of Var/

√
n, where “Var” is a

measure of subgrid variability (< 0.25◦ and< 1-month), and
n is the number of profiles to calculate the grid mean. The Var
is static (non-time-varying) and calculated by the standard
deviation of the salinity data in each 1◦ grid box when there
were > 10 measurements. Grid boxes of 1◦ were used here
because of the data scarcity, which would overestimate the
subgrid variability of < 0.25◦. However, this overestimation
could compensate for the unresolved/unknown errors, such
as salinity drift. The results are presented in Fig. 2a and c.
The figures reveal incomplete ocean coverage. Thus, we in-
terpolated this field using an objective interpolation method
(Fig. 2b and d) (Cheng et al., 2017). A spatial decorrelation
length scale of 8◦ was used, which is consistent with a previ-
ous gap-filling approach for ocean temperature and salinity
(Levitus et al., 2012). A global estimate of salinity Var in
Fig. 2b and d shows that the coastal regions, boundary cur-
rent systems, and Antarctic Circumpolar Current (ACC) re-
gions have larger Var than other places because of either river
runoff or mesoscale and sub-mesoscale variabilities. The es-
timated Var and the number of data n in each 0.25◦ and 1-
month grid box were combined to perturb the local 0.25◦ and
1-month grid mean, assuming a Gaussian distribution, which
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resulted in five perturbed 0.25◦ and 1-month gridded average
fields and inputs into the FFNN approach.

The Monte Carlo dropout approach was employed to es-
timate the uncertainty due to the FFNN approach. This is
one of the most popular ways to estimate machine learning
method uncertainty, and it does not require any change to
the existing model architecture (Stoean et al., 2020; Milanés-
Hermosilla et al., 2021). Monte Carlo dropout was operated
by randomly dropping some units of the neural network dur-
ing the model training process. In this way, the approach and
parameter uncertainty could be accounted for. In this study,
we applied the FFNN to the five above-derived perturbed
fields separately to create five reconstructions each time with
the Monte Carlo dropout approach. Then, the spread (i.e.,
standard deviation) of the 5× 5= 25 final reconstructions
was used to quantify the total uncertainty. With this ap-
proach, all major error sources were propagated to the final
fields, where the Monte Carlo dropout approach considers
the reconstruction uncertainty of the FFNN, and the five per-
turbed gridded fields represent the instrumental and repre-
sentativeness uncertainty.

2.3.4 Evaluating the relative importance of different
inputs

In this paper, we used an approach named Kernel SHAPley
Additive exPlanations (SHAP) to evaluate the contribution of
different input parameters (Lundberg and Lee, 2017).

SHAP is a method inspired by game theory to explain the
contribution of each feature to the model output. It works
for any model and is especially useful for interpreting black
box models (e.g., FFNN). It approximates the original model
with a sum of linear terms. Like linear regression models,
each term is the contribution of the corresponding feature to
the model output. To compute the linear terms, combinations
of features are examined. A total of p features is assumed.
For a given combination of k features out of the original p,
feature j is dropped and added back to the combination. The
change of model performance is a marginal contribution of
the feature j . Repeat the same process for all combinations
of features from k = 1 to p. The aggregated marginal contri-
bution over all combinations is the contribution of the feature
j to the model output.

With this approach, SHAP can quantify the average im-
pact of an input on the final output (reconstruction in our
case). The change in the output is representative of the impor-
tance of the input for predicting the output, which is called
the SHAP value. By comparing the SHAP value for each in-
put, the relative contribution to the final reconstruction can
be assessed.

To implement SHAP, the Kernel SHAP algorithm was em-
ployed, which makes no additional assumption about the
model type (e.g., linear models, tree models, and deep net-
work models). The disadvantage of the SHAP algorithm is
that it is slower than other model-type-specific algorithms.

The SHAP algorithm is too computationally expensive to
apply for the full dataset (Chau et al., 2021). Pauthenet et
al. (2022) indicated that ∼ 0.44 % of the total samples is
sufficient to obtain stable results for ocean temperature and
salinity reconstruction in the Gulf Stream region. Therefore,
we follow their choice and randomly selected 0.5 % of data
to calculate the Shapley value for each input parameter (ex-
panding it to 1 % did not make significant difference based
on our test). The importance of each input is estimated by
the average of absolute Shapley values for each input, which
is then normalized by the sum of the absolute Shapley values
to derive the relative importance of each input.

3 Reconstruction results

This section presents the reconstruction results and discusses
their reliability using multiple examples and thorough statis-
tical analyses.

3.1 Reconstruction of the geographical pattern

We first examine the geographical distribution of the recon-
structions for January 2016 as an example. January 2016 was
chosen arbitrarily for illustration purposes. Using other times
yielded similar results. Figures 3 and 4 show the salinity
anomalies of the new reconstruction, IAP0.25◦, in compar-
ison with the IAP1◦, ARMOR3D, ADTA, SSTA, and in situ
observations of January 2016 at 100 and 300 m, respectively.
It appears that the large-scale pattern of the IAP0.25◦ salinity
field is closely consistent with the distribution of IAP1◦ and
ARMOR3D, as revealed by in situ data. There are signifi-
cant negative salinity anomalies in the tropical Pacific, in-
tertropical convergence zone (ITCZ), and the Pacific north
of the Equator, as well as positive salinity anomalies in the
Southeast Pacific, Northwest Pacific, and the east coast of
Australia. Compared with the very smooth field of IAP1◦,
the IAP0.25◦ salinity field includes more small-scale signals.
Such information must come from in situ data and ADT/SST
and USSW/VSSW fields, as they have finer resolution. The
previous IAP1◦ salinity data mainly reveal large-scale pat-
terns, and there are almost no eddies in the Gulf Stream and
the Kuroshio extension regions. The comparison between
IAP0.25◦ and IAP1◦ reveals a bigger difference in boundary
currents and ACC regions with rich eddies.

To get a closer look at these critical regions, we concen-
trate on the salinity reconstruction in the boundary currents
regions, e.g., the Gulf Stream (Fig. 5) and the Kuroshio Ex-
tension (Fig. 6). Both of these areas are active with mesoscale
eddies (Chassignet et al., 2020; Cheng et al., 2014; Frenger
et al., 2015; Rhines, 2019), and with very strong net energy
growth and net dissipation of mesoscale eddies (Xu et al.,
2013).

In the Gulf Stream region (Fig. 5), at a depth of 100 m,
IAP1◦, IAP0.25◦, and ARMOR3D all reveal large-scale pos-
itive salinity anomalies along the North Atlantic coastal re-
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Figure 2. The estimated Var (a quantification of salinity subgrid variability) of in situ observations in this study. The original (a, c) and
objectively analyzed fields (b, d) are presented for the depths of 20 m (a, b) and 300 m (c, d), respectively, as two examples.

gions, negative anomalies in the middle and east, and positive
anomalies extending from southwest (80◦W, 15◦ N) to the
northeast (20◦W, 30◦ N). The 300 m salinity shows similar
patterns as that at 100 m, except for larger areas of positive
anomalies from southwest to northeast. The similarity among
the large-scale patterns yielded by the datasets suggests the
large-scale reconstruction is reliable. However, there are ob-
vious differences between the four datasets in their ability to
describe the fine-scale structures. For example, at 100 m, the
reconstructed (IAP0.25◦) field and ARMOR3D show more
detail in the salinity structure, especially near the bound-
ary currents and coastal regions, compared to IAP1◦. These
anomalies are more consistent with the in situ salinity obser-
vations (Fig. 5a–c vs. 5d; Fig. 5e–g vs. 5h).

In the Northwest Pacific Ocean (Fig. 6), IAP1◦, IAP0.25◦,
and ARMOR3D indicate a large area of positive salinity
anomalies in the Northwest Pacific south of 40◦ N at a depth
of 100 m and negative anomalies north of 40◦ N. A very
smooth transition zone along ∼ 40◦ N is apparent for IAP1◦

(Fig. 6b), but IAP0.25◦ and ARMOR3D suggest a zone with
rich mesoscale variabilities (Fig. 6a and c). These findings
are more physically plausible because it is the Kuroshio ex-
tension region (Chassignet et al., 2020). Even down to 300 m,
there are still rich mesoscale structures seen in the obser-
vations within 30–40◦ N (Fig. 6h), as represented by both
IAP0.25◦ and ARMOR3D.

A closer look into the two regions suggests that the new
IAP0.25◦ data can resolve the mesoscale signals in the
boundary flow area. However, it also appears that the small-
scale anomalies are stronger in the ARMOR3D data than the

IAP0.25◦ data, which is likely associated with the method-
ological differences. A comparison between in situ observa-
tions and IAP0.25◦ (Figs. 5a vs. 5d; 5e vs. 5h; 6a vs. 6d; 6e
vs. 6h) suggests a closer correspondence of IAP0.25◦ data
with observations than ARMOR3D, and a more thorough
statistical analysis of the errors will be presented in subse-
quent sections.

3.2 Reconstruction of the vertical structure

In addition to the spatial distribution at a given layer, it is
desirable to investigate the vertical structure of the salin-
ity field (i.e., to what extent the vertical structure can be
restored by the new approach). This section seeks to ad-
dress this question with two examples: in the Gulf Stream
region (along 35.375◦ N) and in the Kuroshio extension re-
gion (along 35.375◦ N) (Figs. 7 and 8).

Along the Gulf Stream section, satellite remote-sensing
SSS data (Fig. 7a), independent from our analysis, suggest
a general negative salinity anomaly associated with substan-
tial variability. This reveals the existence of both large-scale
change and mesoscale variability. It can be seen from Fig. 7b
and d that both the IAP0.25◦ and IAP1◦ anomalies are gener-
ally negative near the sea surface, indicating the near-surface
signals can be restored with IAP0.25◦. The smoothness of
the IAP1◦ data is associated with its mapping method (Cheng
and Zhu, 2016), which focuses more on the large-scale pat-
terns and effectively filters out small-scale variations. More-
over, the small-scale, along-section fluctuations revealed by
the in situ profile data (Fig. 7c) are well reflected in the
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Figure 3. Spatial distribution of salinity anomalies of (a) IAP0.25◦, (b) IAP1◦, (c) ARMOR3D, (d) in situ observations, and (e) IAP0.25◦

minus IAP1◦ at 100 m, as well as the spatial distribution of (f) ADTA and (g) SSTA in January 2016.

IAP0.25◦ (Fig. 7d) but not in the IAP1◦ data (Fig. 7b), high-
lighting that IAP0.25◦ is capable of correctly reflecting the
small-scale features. ADT data reflect the integrated effect or
thermosteric (linked to temperature) and halosteric (linked
to salinity) effects over the full volume (Llovel and Lee,
2015; Wang et al., 2017). To the first order, in the thermo-
cline regions, the ADT change should correspond better with
thermocline change (first baroclinic mode); thus the salin-
ity change near the thermocline should resemble the ADT in
many places. This is supported by Fig. 7 (Fig. 7a vs. 7d), for
example, the large positive anomaly near 48, 60, and 68◦W
revealed by both the in situ salinity profile and ADT data.
This indicates a positive contribution of ADT to the recon-
struction.

Along the Kuroshio extension section (Fig. 8), the SST
and ADT are more consistent with each other than in the
Gulf Stream (Fig. 7). There is a deep mixed layer (deeper
than 500 m) in this region, so ADT is more influenced by

mixed-layer dynamics. In this case, both ADT and SST could
support the high-resolution salinity reconstruction because
mixed-layer dynamics are associated with strong air–sea heat
and freshwater exchanges. For example, the high ADT, SST,
and salinity anomalies at 155–160◦ E and around 180◦ E and
negative anomalies at 178◦ E and other places in the upper
500 m are all consistent (Fig. 8a, c, d).

In summary, the investigation of these two specific cases
increases the degree of confidence in the reconstruction. It
seems that mesoscale structures can be realistically restored.

3.3 Overall reconstruction performance

In the previous two sections, examples were presented to
illustrate the reconstruction performance. However, a more
thorough statistical examination is still required, which
is provided in this section. To quantify the overall error
compared with observations, we calculated the RMSE be-
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Figure 4. Spatial distribution of salinity anomalies of (a) IAP0.25◦, (b) IAP1◦, (c) ARMOR3D, (d) in situ observations, and (e) IAP0.25◦

minus IAP1◦ at 300 m, as well as the spatial distribution of (f) ADTA and (g) SSTA in January 2016.

tween IAP0.25◦, IAP1◦, ARMOR3D, EN4, and the ob-
servation data, respectively (denoted as IAP0.25_RMSE,
IAP1_RMSE, ARM_RMSE, and EN4_RMSE), and the re-
sults are presented in Fig. 9a–d at different layers from the
surface down to 2000 m over the globe and in three major
basin regions during 1993–2018. Figure 9e–h show the dif-
ferences between IAP1_RMSE, ARM_RMSE, EN4_RMSE,
and IAP0.25_RMSE. First, IAP0.25_RMSE is smaller than
all other data products for both global and basinal aver-
age. At a global scale, the maximum values are 0.37 psu
for IAP0.25_RMSE, 0.50 psu for IAP1_RMSE, 0.55 psu for
ARM_RMSE, and 0.56 psu for EN4_RMSE near the sea sur-
face. Globally, although a reduction in RMSE can be seen
from the surface down to at least 1000 m, the upper 1–200 m
shows a more significant reduction for IAP0.25_RMSE com-
pared with other data, consistent with more mesoscale vari-
ability in the upper ocean. Globally, the 1–2000 m mean
IAP0.25_RMSE is 0.016, 0.019, and 0.021 psu lower than

IAP1_RMSE, ARM_RMSE, and EN4_RMSE, respectively
(Table 2). The smallest RMSE is apparent for IAP0.25◦ at
all 41 vertical levels over the globe and in the three major
basins, suggesting that IAP0.25◦ best represents the in situ
observations.

In addition, the reduction in IAP0.25_RMSE is more re-
markable in the Atlantic Ocean than in the Pacific and Indian
oceans. A previous dataset intercomparison study suggested
that the Atlantic Ocean shows larger spread among differ-
ent data products, even with more observations (Frederikse
et al., 2018). This larger error reduction in the Atlantic basin
for IAP0.25◦ suggests that signals smaller than 1◦ might play
an important role for a reliable reconstruction.

Furthermore, to identify the causes of the most signifi-
cant errors, the spatial distribution of RMSE for IAP0.25◦

and IAP1◦ minus IAP0.25◦ for three representative layers
and 1–2000 m averages is presented in Fig. 10. Compared
with IAP1◦, the reduction in RMSE for the IAP0.25◦ data
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Figure 5. The geographical distribution of salinity anomalies in the Gulf Stream region for IAP0.25◦, IAP1◦, ARMOR3D, and in situ
observations in January 2016: (a–d) 100 m and (e–f) 300 m.

Table 2. RMSE of 1–2000 m mean salinity for the IAP1◦, AR-
MOR3D, EN4, and IAP0.25◦ datasets (unit: psu).

Region IAP1_RMSE− ARM_RMSE− EN4_RMSE−
IAP0.25_RMSE IAP0.25_RMSE IAP0.25_RMSE

Global 0.016 0.019 0.021
Pacific 0.004 0.003 0.006
Atlantic 0.010 0.016 0.019
Indian 0.004 0.005 0.009

is more dramatic in the western boundary currents, ACC re-
gion, and coastal regions (Fig. 10e–h). However, the RMSE
for IAP0.25◦ remains larger in the western boundary cur-
rents, such as the Kuroshio, Gulf Stream, and Brazil Current
regions, as well as the ACC regions, compared to the open
ocean. This finding is consistent with stronger mesoscale
variations in these regions in the upper ocean (Frenger et
al., 2015; Chassignet et al., 2020; Rhines, 2019) (Fig. 10a–
d). In particular, at 5 m, IAP0.25_RMSE is larger in the Bay
of Bengal and Arabian Sea, mainly because, in these areas,
salinity changes are strongly affected by river runoff, surface
fluxes, and ocean currents (Skliris et al., 2014; Adler et al.,
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Figure 6. The geographical distribution of salinity anomalies in the Kuroshio and its extension region for IAP0.25◦, IAP1◦, ARMOR3D,
and in situ observations in January 2016: (a–d) 100 m and (e–f) 300 m.

2018; Liu et al., 2022). Larger errors in the ITCZ regions are
also apparent at 5 and 100 m, corresponding to strong surface
freshwater fluxes (Liu et al., 2022).

The temporal variation of the global 1–2000 m mean
RMSE from 1993 to 2018 is presented in Fig. 11 for both
IAP1◦ and IAP0.25◦, to show the change in reconstruction
performance with time. It appears that the error reduces with
time, especially since the early 2000s, probably in associ-
ation with there being more salinity observations available
from the Argo network (Yan et al., 2021; Chen et al., 2018;
Wong et al., 2020; Roemmich et al., 2019), which helps to
increase the reconstruction accuracy. The RMSE has been

increasing slightly in recent years, probably because of the
inclusion of more real-time Argo data in our analyses. Never-
theless, IAP0.25_RMSE is smaller than IAP1_RMSE for the
global ocean, by ∼ 11 % on average. The reduction is about
0.016 psu. The lowest RMSE reduction is seen in the Indian
Ocean, likely associated with the smaller area of the west-
ern boundary current systems and relatively fewer mesoscale
activities compared with the other two basins. The biggest
reduction in RMSE is seen in the Atlantic Ocean (∼ 17 %),
confirming our results in previous sections. It is interesting
that there is a strong seasonal fluctuation of RMSE: it is
larger in the Northern (Southern) Hemisphere summer (win-
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Figure 7. The distribution of SSTA (left y axis), ADTA, and SSS anomalies (SSSA) observed by SMAP on the sea surface (ADTA and
SSSA share the right y axis), as well as the vertical section along 35.375◦ N of the observational in situ salinity anomalies, subsurface
salinity anomalies from IAP1◦, and IAP0.25◦ gridded data in the Gulf Stream region.

ter), likely because of there being fewer data in the South-
ern Ocean, owing to the sea-ice coverage and severe weather
(Zweng et al., 2019; Gould et al., 2013; Auger et al., 2021;
Durack, 2015).

In summary, statistical analysis reveals a small RMSE be-
tween the reconstruction field of IAP0.25◦ and the in situ
salinity observations, indicating an improved performance of
the high-resolution reconstruction (IAP0.25◦) in this study
compared with the other products considered (IAP1◦, AR-
MOR3D, and EN4). However, it should be noted here that
the observations were processed by our research group and
used to train the FFNN model, meaning the observations are
not independent of the final reconstruction. Thus, besides the
analyses reported so far, an independent validation was war-
ranted, the results of which we report in the next section.

4 The 5-fold cross validation and uncertainty
estimate

In this section, we use the results from a 5-fold cross valida-
tion to further evaluate the new reconstruction with the with-
held independent observations. For this test, we trained the
FFNN model with the training set (80 % of the full set) and
used the withheld 20 % of data to evaluate the performance.
This process was repeated five times, so the full set could be
used for evaluation (i.e., the full set was divided into five sets,
and each time, one set was used as the testing data, and the
other four sets were training sets).

Figure 12 shows the density distribution between the re-
constructed salinity value and the in situ observations for the
training set (a, c) and testing set (b, d) at the depths of 10
and 100 m, separately. The diagonal line denotes a perfect
reconstruction; i.e., the reconstruction perfectly matches the
observations. Any errors in observations and/or reconstruc-
tions can lead to scattering of the distribution. It appears that
the highest-density locations are along the diagonal line, and
most of the reconstruction–observation are within ±0.2 psu
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Figure 8. As in Fig. 7 but for the Kuroshio and its extension region along 35.375◦ N in January 2016.

for both the training and testing set, indicating that the recon-
structions are obviously not biased. The density distribution
for the testing set is not visibly different from the training set,
suggesting that our FFNN model does not overfit the data in
the training set, meaning the reconstruction method is robust
in the independent data.

Additionally, we calculated the RMSE and its degradation
between the reconstructed salinity fields and in situ obser-
vations of the training and testing sets at each depth layer.
The degradation rate is defined as (RMSE of the testing
set−RMSE of the training set) / (RMSE of the training set),
to quantify the generalization of the model. Figure 12a shows
that RMSE of the testing set is consistent (only marginally
higher than) with that of the training set. The degradation
rate decreases rapidly with depth, about 5.49 % at the sur-
face and 0.10 % at 100 m. Specifically, at 10 m, the RMSE
is 0.261 psu for the training set and 0.269 psu for the testing
set, and the degradation rate is 3 % (Fig. 12b and c); and at
100 m, the RMSE decreases from 0.1403 psu (training set)
to 0.1401 psu (testing set) (Fig. 12d and e). Further, the cor-
relation coefficient is slightly lower for the testing set: for
example, 0.686 at 10 m but 0.707 for the training set at the

same depth; at 100 m, it decreases from 0.625 (training) to
0.623 (testing). As the testing set is independent from the
training set, this test indicates that the FFNN model does not
experience serious overfitting, and the method is valid.

5 Evaluation of the major climatic patterns

It was shown in the previous section that IAP0.25◦ is capa-
ble of reconstructing salinity with more mesoscale signals.
However, it remains to be quantified whether the large-scale
pattern of salinity change associated with climate change can
be well represented in the new reconstruction. Here, we ex-
amine the long-term trends in ocean salinity using the Salin-
ity Contrast (SC) index proposed by Cheng et al. (2020). The
SC is defined as the difference between the salinity averaged
over high-salinity regions (VHigh, where salinity is higher
than a climatological global median, Sclim) and low-salinity
regions (VLow, where salinity is below Sclim). It was calcu-
lated each month over the three-dimensional (x, y, z) ocean
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Figure 9. (a–d) Vertical distribution of RMSE for IAP1◦, ARMOR3D, EN4, and IAP0.25◦ for the globe and three major basin regions
during 1993–2018. (e–h) Vertical distribution of RMSE for IAP1◦, ARMOR3D, and EN4 minus IAP0.25◦, respectively.

Figure 10. Geographical distribution of RMSE: (a–d) IAP0.25_RMSE and (e–h) IAP1_RMSE minus IAP0.25_RMSE.

salinity field:

SC(t)=

∫∫∫
VHigh

S(x,y,z, t)dV∫∫∫
VHigh

dV
−

∫∫∫
VLow

S(x,y,z, t)dV∫∫∫
VLow

dV
, (2)

where x, y, and z are the three dimensions of latitude, longi-
tude, and depth, respectively. The terms VHigh and VLow were
both determined based on the climatological salinity field.

The SC at the sea surface is called SC0; and for the 1–
2000 m volume, the SC is termed SC2000. It can be seen
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Figure 11. The 1–2000 m average RMSE time series for the IAP0.25◦ and IAP1◦ datasets for the globe and three ocean basins from 1993
to 2018.

Figure 12. (a) Vertical distribution of RMSE for the training set and testing set for the global region (bottom x axis) and the RMSE
degradation from the training set to the testing set (top x axis). (b–e) Density distribution diagrams at depths of 10 and 100 m for the training
set and testing set, as well as RMSE and correlation coefficients (r) for the corresponding layers. The color-coded blocks represent the density
of samples.

from Fig. 13 that the IAP0.25◦ and IAP1◦ datasets have con-
sistent long-term changes of SC. The global-scale SC2000
increases significantly from 1993 to 2018, with a linear trend
of 0.045± 0.0058 psu per century (at 90 % confidence level;
the reduction of the degrees of freedom has been accounted
for in this calculation). The increase of this index indicates
that the phenomenon of “fresh gets fresher, salty gets saltier”
is more obvious, which is mainly driven by the changes of
“wet gets wetter, dry gets drier” in the global water cycle
(Cheng et al., 2020; Marvel et al., 2017; Skliris et al., 2014).

Besides the global-scale SC metric, we also present the
time series over the globe and in different ocean basins for
IAP1◦ and IAP0.25◦ from 1993 to 2018 for both the salin-
ity anomalies at the surface (S0) and averaged over the 1–
2000 m volume (S2000) in Figs. 14 and 15. We divided
the oceans into the Pacific Ocean (35◦ S to 60◦ N), Atlantic

Ocean (35◦ S to 75◦ N), Southern Ocean (70 to 35◦ S), North
Indian Ocean (0 to 30◦ N), and South Indian Ocean (35◦ S
to 0◦). The uncertainty was quantified by the approach de-
scribed in Sect. 2.3.3, where the ±2 standard deviation error
range is provided, which corresponds to a 95 % confidence
level. The two datasets continue to show high consistency.

Globally, and in the major ocean basins, IAP0.25◦ and
IAP1◦ are consistent for S0 (Fig. 14). The S0 of both IAP1◦

and IAP0.25◦ shows an upward but statistically insignificant
trend from 1993 to 2018. The S0 increases steadily in the At-
lantic Ocean (35◦ S–75◦ N) and Southern Ocean (70–35◦ S)
(Fig. 14c and d). The S0 in Pacific indicates a strong decadal-
scale fluctuation. In both the North and South Indian Ocean,
the S0 exhibits a weak long-term decreasing trend (Fig. 14e
and f).

Earth Syst. Sci. Data, 14, 5037–5060, 2022 https://doi.org/10.5194/essd-14-5037-2022



T. Tian et al.: Reconstructing ocean subsurface salinity at high resolution 5053

Figure 13. Salinity contrast time series for IAP1◦ and IAP0.25◦

data in global regions from 1993 to 2018: (a) at the surface and
(b) in the upper 2000 m.

The global mean S2000 time series (Fig. 15a) shows an
increasing trend between 1993 and 2018, consistent with
previous studies (Ponte et al., 2021). With more freshwater
input into the ocean, the ocean salinity is expected to de-
crease, and thus this increase of S2000 indicates that the im-
pact of terrestrial ice melt is difficult to resolve from salinity
observations. The data drift in salinity observations is most
likely responsible for the observed increase, but this issue
has not been resolved yet (https://argo.ucsd.edu/faq, last ac-
cess: 12 June 2022). S2000 declines steadily in the Pacific
basin but increases sharply in the Atlantic basin from 1990
(Fig. 15b and c). The contrast salinity change between the
Pacific Ocean (decreasing, Fig. 15b) and Atlantic Ocean (in-
creasing, Fig. 15c) is associated with increased inter-basin
transport of water vapor from the Atlantic to the Pacific (Rea-
gan et al., 2018; Curry et al., 2003). The decadal fluctuations
of S2000 in the Atlantic are greater than those in the Pa-
cific, especially in the North Atlantic, and are in phase with
the Atlantic Multidecadal Oscillation (Skliris et al., 2020;
Reverdin et al., 2019). S2000 increases in the North Indian
Ocean (Fig. 15e) but decreases in the South Indian Ocean
(Fig. 15f), showing a “salty gets saltier, fresh gets fresher”
change, mainly because of the amplified global hydrological
cycle.

In summary, through our investigation of the global and
basin salinity time series, we have been able to further con-
firm that IAP0.25◦ can capture the integrated property of

salinity changes compared with IAP1◦. The estimated 95 %
confidence intervals are generally consistent for different
basins, which is about ±0.01 psu for S0 and ±0.002 psu
for S2000. Although the error range of this new estimate is
larger than IAP1◦ because more sources of uncertainty are
accounted for (IAP1◦ mainly accounts for mapping and in-
strumental error), this new estimate could still be an under-
estimate because of the neglect of systematic biases (which
are currently poorly known) in this study.

6 Importance of each feature for the reconstruction

The impact of different inputs on the reconstruction of
IAP0.25◦ using the FFNN model is shown in Fig. 16 using
the SHAP method. At the surface (Fig. 16a and c), the loca-
tion parameters (latitude, longitude, and depth) are the most
important inputs and are probably linked to the strong spa-
tial variability of salinity near sea surface. The IAP1◦ plays
a secondary role near the surface because it provides direct
information of salinity and represents the large-scale salin-
ity changes. Accumulatively, the remote-sensing data con-
tribute to ∼ 20 % of the reconstruction. For the subsurface
(Fig. 16c), IAP1◦ plays a more important role than that near
the surface (∼ 26 % for 1–2000 m average; Fig. 16b), and
this is physically meaningful because there is less mesoscale
variability in the deeper ocean, and large-scale variability be-
comes more important at the sea subsurface. ADTA becomes
more important within 100–700 m than the other layers be-
cause both salinity and ADTA are strongly associated with
thermocline variations. VSSWA, USSWA, and SSTA play
similar roles from the surface to 2000 m (< 5 % for each)
and are smaller than most of the other inputs, probably be-
cause their changes are only weakly coupled with salinity
compared with other parameters. It is interesting that time in-
formation (< 3 %) plays the smallest role in reconstruction,
implying that the FFNN can be applied in other time periods
without losing too much accuracy.

7 Data availability

The code used in this paper includes data process-
ing, optimal model building and the result predic-
tion. The reconstructed IAP0.25◦ dataset is available at
https://doi.org/10.57760/sciencedb.o00122.00001 (Tian et
al., 2022) or http://www.ocean.iap.ac.cn/ftp/cheng/IAP_v0_
Ocean_Salinity_0p25_FFNN_0_2000m/ (last access: 4 Oc-
tober 2022). Here we provide global ocean salinity gridded
product at 0.25◦× 0.25◦ horizontal resolution on 41 vertical
levels from 1–2000 m and at a monthly resolution from 1993
to 2018.
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Figure 14. The global (a) and basinal (b–f) salinity anomalies (SA) time series at the surface from 1993 to 2018 for IAP1◦ and IAP0.25◦

respectively. Both monthly and 12-month running smoothed time series are presented; all data are relative to a 1993–2015 baseline.

Figure 15. The global (a) and basinal (b–f) 1–2000 m averaged salinity anomalies (SA) time series from 1993 to 2018 for IAP1◦ and
IAP0.25◦ respectively. Both monthly and 12-month running smoothed time series are presented; all data are relative to a 1993–2015 baseline.

8 Summary and discussion

This study used an FFNN approach to reconstruct a high-
resolution (0.25◦× 0.25◦) ocean subsurface salinity dataset
(1–2000 m) for the period 1993–2018, in which the spa-

tial and temporal information (time, longitude, latitude, and
depth), previously available the 1◦× 1◦ resolution salinity
dataset, and satellite remote-sensing data (ADT, SST, SSW)
were given as inputs to the FFNN algorithm for recon-
struction. By training the functional relationship between in-
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Figure 16. A quantification of the relative importance of each in-
put in reconstruction of IAP0.25◦: (a) at the surface, (b) 1–2000 m
average, and (c) at each depth from 1 to 2000 m. The input features
are ranked in terms of importance; i.e., the higher the SHAP value
is, the more important the features are.

put variables and truth values (observed gridded averaged
salinity), the reconstruction model was established. For the
IAP0.25◦ salinity data, the global and regional reconstruc-
tion performance was evaluated using several different tests.
In brief, we show that (1) IAP0.25◦ salinity data maintain
the large-scale information from IAP1◦ gridded data. Be-
cause previous evaluations suggest that IAP1◦ provides more
physically tenable large-scale patterns and long-term climate
change and variabilities compared to many available datasets
(Cheng et al., 2020; Reed et al., 2022; Sohail et al., 2022), the
reliability of large-scale signals also becomes an advantage
of the new IAP0.25◦ product. (2) Compared with IAP1◦, the
RMSE of IAP0.25◦ can be reduced by ∼ 11 % on a global
average. In addition, IAP0.25◦ shows more realistic spatial
signals in the Gulf Stream, Kuroshio, and Antarctic Circum-
polar Current regions, with stronger mesoscale variations
than the IAP1◦ product, indicating that FFNN can effectively
transfer small-scale spatial variations in ADT, SST, and SSW
fields into the 0.25◦× 0.25◦ salinity field. It thus serves as
an improvement on the currently available IAP data. (3) We
show that the FFNN approach is effective in merging differ-
ent kinds of Earth observations, and the method is robust and
can be reliably used for ocean state reconstruction; thus it
can complement the existing data assimilation and objective
analysis methods.

Although the validity and advantages of the FFNN ap-
proach have been demonstrated, there are some caveats and
limitations to this approach, related to which we provide

some future guidance. This study used a probabilistic ap-
proach to quantify the uncertainty, which is a practical strat-
egy, and with this approach all major error sources are prop-
agated to the final fields. However, uncertainty assessment
with machine learning is still a challenge for many available
products, and this issue requires future analysis: i.e., how
sensitive the FFNN approach is to parameter choices such
as the number of hidden layers and neurons.

Compared with the ARMOR3D data, it seems that the
small-scale signals are weaker in IAP0.25◦ (for example
Figs. 5 and 6), indicating a difference of efficiency with
which signals of the remote-sensing data are transmitted into
the salinity reconstruction. Therefore, an intriguing scientific
question is the following: what is the key factor determining
the efficiency? Addressing this question requires a dedicated
study that incorporates an intercomparison among other ap-
proaches.

As a coarse-resolution product, IAP1◦ is important in
high-resolution reconstructions and provides a critical large-
scale precondition. The uncertainty (or biases) in this coarse-
resolution field will propagate into the reconstruction, but
how the uncertainty propagates and contributes to the final
estimate is still an open question. One of the aims of this
study was to ensure the continuity from IAP1◦ to IAP0.25◦

data because work has already shown superiority of IAP1◦

in large-scale reconstructions compared with many available
datasets (Cheng et al., 2020). Thus, this study further ad-
vances the prior findings of Cheng et al. (2020). Further ex-
periments are needed to quantify the sensitivity of the results
to this preconditioning.
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