Articles | Volume 14, issue 9
https://doi.org/10.5194/essd-14-4287-2022
https://doi.org/10.5194/essd-14-4287-2022
Data description paper
 | 
22 Sep 2022
Data description paper |  | 22 Sep 2022

Calving fronts and where to find them: a benchmark dataset and methodology for automatic glacier calving front extraction from synthetic aperture radar imagery

Nora Gourmelon, Thorsten Seehaus, Matthias Braun, Andreas Maier, and Vincent Christlein

Related authors

Out-of-the-box calving-front detection method using deep learning
Oskar Herrmann, Nora Gourmelon, Thorsten Seehaus, Andreas Maier, Johannes J. Fürst, Matthias H. Braun, and Vincent Christlein
The Cryosphere, 17, 4957–4977, https://doi.org/10.5194/tc-17-4957-2023,https://doi.org/10.5194/tc-17-4957-2023, 2023
Short summary

Related subject area

Domain: ESSD – Ice | Subject: Glaciology
Climate and ablation observations from automatic ablation and weather stations at A. P. Olsen Ice Cap transect, northeast Greenland, for May 2008 through May 2022
Signe Hillerup Larsen, Daniel Binder, Anja Rutishauser, Bernhard Hynek, Robert Schjøtt Fausto, and Michele Citterio
Earth Syst. Sci. Data, 16, 4103–4118, https://doi.org/10.5194/essd-16-4103-2024,https://doi.org/10.5194/essd-16-4103-2024, 2024
Short summary
Glaciological and meteorological monitoring at Long Term Ecological Research (LTER) sites Mullwitzkees and Venedigerkees, Austria, 2006–2022
Lea Hartl, Bernd Seiser, Martin Stocker-Waldhuber, Anna Baldo, Marcela Violeta Lauria, and Andrea Fischer
Earth Syst. Sci. Data, 16, 4077–4101, https://doi.org/10.5194/essd-16-4077-2024,https://doi.org/10.5194/essd-16-4077-2024, 2024
Short summary
A newly digitized ice-penetrating radar data set acquired over the Greenland ice sheet in 1971–1979
Nanna B. Karlsson, Dustin M. Schroeder, Louise Sandberg Sørensen, Winnie Chu, Jørgen Dall, Natalia H. Andersen, Reese Dobson, Emma J. Mackie, Simon J. Köhn, Jillian E. Steinmetz, Angelo S. Tarzona, Thomas O. Teisberg, and Niels Skou
Earth Syst. Sci. Data, 16, 3333–3344, https://doi.org/10.5194/essd-16-3333-2024,https://doi.org/10.5194/essd-16-3333-2024, 2024
Short summary
Multitemporal characterization of a proglacial system: a multidisciplinary approach
Elisabetta Corte, Andrea Ajmar, Carlo Camporeale, Alberto Cina, Velio Coviello, Fabio Giulio Tonolo, Alberto Godio, Myrta Maria Macelloni, Stefania Tamea, and Andrea Vergnano
Earth Syst. Sci. Data, 16, 3283–3306, https://doi.org/10.5194/essd-16-3283-2024,https://doi.org/10.5194/essd-16-3283-2024, 2024
Short summary
Ice thickness and bed topography of Jostedalsbreen ice cap, Norway
Mette Kusk Gillespie, Liss Marie Andreassen, Matthias Huss, Simon de Villiers, Kamilla Hauknes Sjursen, Jostein Aasen, Jostein Bakke, Jan Magne Cederstrøm, Halgeir Elvehøy, Bjarne Kjøllmoen, Even Loe, Marte Meland, Kjetil Melvold, Sigurd Daniel Nerhus, Torgeir Opeland Røthe, Eivind Nagel Wilhelm Støren, Kåre Øst, and Jacob Clement Yde
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-167,https://doi.org/10.5194/essd-2024-167, 2024
Revised manuscript accepted for ESSD
Short summary

Cited articles

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.: Optuna: A Next-generation Hyperparameter Optimization Framework, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, AS, USA, 4–8 August 2019, 2623–2631, https://doi.org/10.1145/3292500.3330701, 2019. a
Amundson, J. M., Fahnestock, M., Truffer, M., Brown, J., Lüthi, M. P., and Motyka, R. J.: Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland, J. Geophys. Res., 115, F01005, https://doi.org/10.1029/2009JF001405, 2010. a
Åström, J. A., Vallot, D., Schäfer, M., Welty, E. Z., O'Neel, S., Bartholomaus, T. C., Liu, Y., Riikilä, T. I., Zwinger, T., Timonen, J., and Moore, J. C.: Termini of calving glaciers as self-organized critical systems, Nat. Geosci., 7, 874–878, https://doi.org/10.1038/ngeo2290, 2014. a
Baumhoer, C., Dietz, A., Dech, S., and Kuenzer, C.: Remote Sensing of Antarctic Glacier and Ice-Shelf Front Dynamics – A Review, Remote Sens., 10, 1445, https://doi.org/10.3390/rs10091445, 2018. a, b
Baumhoer, C. A., Dietz, A. J., Kneisel, C., and Kuenzer, C.: Automated Extraction of Antarctic Glacier and Ice Shelf Fronts from Sentinel-1 Imagery Using Deep Learning, Remote Sens., 11, 2529, https://doi.org/10.3390/rs11212529, 2019. a, b, c, d, e, f, g, h
Download
Short summary
Ice loss of glaciers shows in retreating calving fronts (i.e., the position where icebergs break off the glacier and drift into the ocean). This paper presents a benchmark dataset for calving front delineation in synthetic aperture radar (SAR) images. The dataset can be used to train and test deep learning techniques, which automate the monitoring of the calving front. Provided example models achieve front delineations with an average distance of 887 m to the correct calving front.
Altmetrics
Final-revised paper
Preprint