Articles | Volume 14, issue 9
https://doi.org/10.5194/essd-14-4287-2022
https://doi.org/10.5194/essd-14-4287-2022
Data description paper
 | 
22 Sep 2022
Data description paper |  | 22 Sep 2022

Calving fronts and where to find them: a benchmark dataset and methodology for automatic glacier calving front extraction from synthetic aperture radar imagery

Nora Gourmelon, Thorsten Seehaus, Matthias Braun, Andreas Maier, and Vincent Christlein

Related authors

Ice Anatomy: A Benchmark Dataset and Methodology for Automatic Ice Boundary Extraction from Radio-Echo Sounding Data
Marcel Dreier, Moritz Koch, Nora Gourmelon, Norbert Blindow, Daniel Steinhage, Fei Wu, Thorsten Seehaus, Matthias Braun, Andreas Maier, and Vincent Christlein
EGUsphere, https://doi.org/10.5194/egusphere-2024-3597,https://doi.org/10.5194/egusphere-2024-3597, 2025
Short summary
Out-of-the-box calving-front detection method using deep learning
Oskar Herrmann, Nora Gourmelon, Thorsten Seehaus, Andreas Maier, Johannes J. Fürst, Matthias H. Braun, and Vincent Christlein
The Cryosphere, 17, 4957–4977, https://doi.org/10.5194/tc-17-4957-2023,https://doi.org/10.5194/tc-17-4957-2023, 2023
Short summary

Related subject area

Domain: ESSD – Ice | Subject: Glaciology
Annual mass change of the world's glaciers from 1976 to 2024 by temporal downscaling of satellite data with in situ observations
Inés Dussaillant, Romain Hugonnet, Matthias Huss, Etienne Berthier, Jacqueline Bannwart, Frank Paul, and Michael Zemp
Earth Syst. Sci. Data, 17, 1977–2006, https://doi.org/10.5194/essd-17-1977-2025,https://doi.org/10.5194/essd-17-1977-2025, 2025
Short summary
Glacier-level and gridded mass change in river sources in the eastern Tibetan Plateau region (ETPR) from the 1970s to 2000
Yu Zhu, Shiyin Liu, Junfeng Wei, Kunpeng Wu, Tobias Bolch, Junli Xu, Wanqin Guo, Zongli Jiang, Fuming Xie, Ying Yi, Donghui Shangguan, Xiaojun Yao, and Zhen Zhang
Earth Syst. Sci. Data, 17, 1851–1871, https://doi.org/10.5194/essd-17-1851-2025,https://doi.org/10.5194/essd-17-1851-2025, 2025
Short summary
glenglat: a database of global englacial temperatures
Mylène Jacquemart, Ethan Welty, Marcus Gastaldello, and Guillem Carcanade
Earth Syst. Sci. Data, 17, 1627–1666, https://doi.org/10.5194/essd-17-1627-2025,https://doi.org/10.5194/essd-17-1627-2025, 2025
Short summary
A revised and expanded deep radiostratigraphy of the Greenland Ice Sheet from airborne radar sounding surveys between 1993–2019
Joseph A. MacGregor, Mark A. Fahnestock, John D. Paden, Jilu Li, Jeremy P. Harbeck, and Andy Aschwanden
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-578,https://doi.org/10.5194/essd-2024-578, 2025
Revised manuscript accepted for ESSD
Short summary
Calving front positions for 42 key glaciers of the Antarctic Peninsula Ice Sheet: a sub-seasonal record from 2013 to 2023 based on deep-learning application to Landsat multi-spectral imagery
Erik Loebel, Celia A. Baumhoer, Andreas Dietz, Mirko Scheinert, and Martin Horwath
Earth Syst. Sci. Data, 17, 65–78, https://doi.org/10.5194/essd-17-65-2025,https://doi.org/10.5194/essd-17-65-2025, 2025
Short summary

Cited articles

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.: Optuna: A Next-generation Hyperparameter Optimization Framework, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, AS, USA, 4–8 August 2019, 2623–2631, https://doi.org/10.1145/3292500.3330701, 2019. a
Amundson, J. M., Fahnestock, M., Truffer, M., Brown, J., Lüthi, M. P., and Motyka, R. J.: Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland, J. Geophys. Res., 115, F01005, https://doi.org/10.1029/2009JF001405, 2010. a
Åström, J. A., Vallot, D., Schäfer, M., Welty, E. Z., O'Neel, S., Bartholomaus, T. C., Liu, Y., Riikilä, T. I., Zwinger, T., Timonen, J., and Moore, J. C.: Termini of calving glaciers as self-organized critical systems, Nat. Geosci., 7, 874–878, https://doi.org/10.1038/ngeo2290, 2014. a
Baumhoer, C., Dietz, A., Dech, S., and Kuenzer, C.: Remote Sensing of Antarctic Glacier and Ice-Shelf Front Dynamics – A Review, Remote Sens., 10, 1445, https://doi.org/10.3390/rs10091445, 2018. a, b
Baumhoer, C. A., Dietz, A. J., Kneisel, C., and Kuenzer, C.: Automated Extraction of Antarctic Glacier and Ice Shelf Fronts from Sentinel-1 Imagery Using Deep Learning, Remote Sens., 11, 2529, https://doi.org/10.3390/rs11212529, 2019. a, b, c, d, e, f, g, h
Download
Short summary
Ice loss of glaciers shows in retreating calving fronts (i.e., the position where icebergs break off the glacier and drift into the ocean). This paper presents a benchmark dataset for calving front delineation in synthetic aperture radar (SAR) images. The dataset can be used to train and test deep learning techniques, which automate the monitoring of the calving front. Provided example models achieve front delineations with an average distance of 887 m to the correct calving front.
Share
Altmetrics
Final-revised paper
Preprint