Articles | Volume 14, issue 8
https://doi.org/10.5194/essd-14-3835-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-3835-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A global map of local climate zones to support earth system modelling and urban-scale environmental science
Matthias Demuzere
CORRESPONDING AUTHOR
Urban Climatology Group, Department of Geography, Ruhr-University Bochum, Bochum, Germany
Jonas Kittner
Urban Climatology Group, Department of Geography, Ruhr-University Bochum, Bochum, Germany
Alberto Martilli
Environmental Department, CIEMAT, Madrid, Spain
Gerald Mills
School of Geography, University College Dublin, Dublin, Ireland
Christian Moede
Urban Climatology Group, Department of Geography, Ruhr-University Bochum, Bochum, Germany
Iain D. Stewart
Global Cities Institute, University of Toronto, Toronto, Ontario, Canada
Jasper van Vliet
Institute for Environmental Studies, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
Benjamin Bechtel
Urban Climatology Group, Department of Geography, Ruhr-University Bochum, Bochum, Germany
Related authors
Kazeem Abiodun Ishola, Gerald Mills, Ankur Prabhat Sati, Benjamin Obe, Matthias Demuzere, Deepak Upreti, Gourav Misra, Paul Lewis, Daire Walsh, Tim McCarthy, and Rowan Fealy
Hydrol. Earth Syst. Sci., 29, 2551–2582, https://doi.org/10.5194/hess-29-2551-2025, https://doi.org/10.5194/hess-29-2551-2025, 2025
Short summary
Short summary
Global soil information introduces uncertainty into models that simulate soil hydrothermal changes. Using the Noah with Multiparameterization (Noah-MP) model with two different global soil datasets, we find under-represented soil properties in wet loam, causing a dry bias in soil moisture. This bias is more pronounced and drought categories are more severe in the SoilGrids dataset. We conclude that models should incorporate detailed, region-specific soil information to minimize model uncertainties.
Yifan Cheng, Lei Zhao, TC Chakraborty, Keith Oleson, Matthias Demuzere, Xiaoping Liu, Yangzi Che, Weilin Liao, Yuyu Zhou, and Xinchang “Cathy” Li
Earth Syst. Sci. Data, 17, 2147–2174, https://doi.org/10.5194/essd-17-2147-2025, https://doi.org/10.5194/essd-17-2147-2025, 2025
Short summary
Short summary
The absence of globally consistent and spatially continuous urban surface input has long hindered large-scale high-resolution urban climate modeling. Using remote sensing, cloud computing, and machine learning, we developed U-Surf, a 1 km dataset providing key urban surface properties worldwide. U-Surf enhances urban representation across scales and supports kilometer-scale urban-resolving Earth system modeling unprecedentedly, with broader applications in urban studies and beyond.
Jorn Van de Velde, Matthias Demuzere, Bernard De Baets, and Niko E. C. Verhoest
Hydrol. Earth Syst. Sci., 26, 2319–2344, https://doi.org/10.5194/hess-26-2319-2022, https://doi.org/10.5194/hess-26-2319-2022, 2022
Short summary
Short summary
An important step in projecting future climate is the bias adjustment of the climatological and hydrological variables. In this paper, we illustrate how bias adjustment can be impaired by bias nonstationarity. Two univariate and four multivariate methods are compared, and for both types bias nonstationarity can be linked with less robust adjustment.
Kazeem Abiodun Ishola, Gerald Mills, Ankur Prabhat Sati, Benjamin Obe, Matthias Demuzere, Deepak Upreti, Gourav Misra, Paul Lewis, Daire Walsh, Tim McCarthy, and Rowan Fealy
Hydrol. Earth Syst. Sci., 29, 2551–2582, https://doi.org/10.5194/hess-29-2551-2025, https://doi.org/10.5194/hess-29-2551-2025, 2025
Short summary
Short summary
Global soil information introduces uncertainty into models that simulate soil hydrothermal changes. Using the Noah with Multiparameterization (Noah-MP) model with two different global soil datasets, we find under-represented soil properties in wet loam, causing a dry bias in soil moisture. This bias is more pronounced and drought categories are more severe in the SoilGrids dataset. We conclude that models should incorporate detailed, region-specific soil information to minimize model uncertainties.
Yifan Cheng, Lei Zhao, TC Chakraborty, Keith Oleson, Matthias Demuzere, Xiaoping Liu, Yangzi Che, Weilin Liao, Yuyu Zhou, and Xinchang “Cathy” Li
Earth Syst. Sci. Data, 17, 2147–2174, https://doi.org/10.5194/essd-17-2147-2025, https://doi.org/10.5194/essd-17-2147-2025, 2025
Short summary
Short summary
The absence of globally consistent and spatially continuous urban surface input has long hindered large-scale high-resolution urban climate modeling. Using remote sensing, cloud computing, and machine learning, we developed U-Surf, a 1 km dataset providing key urban surface properties worldwide. U-Surf enhances urban representation across scales and supports kilometer-scale urban-resolving Earth system modeling unprecedentedly, with broader applications in urban studies and beyond.
Gianluca Pappaccogli, Andrea Zonato, Alberto Martilli, Riccardo Buccolieri, and Piero Lionello
EGUsphere, https://doi.org/10.5194/egusphere-2025-219, https://doi.org/10.5194/egusphere-2025-219, 2025
Short summary
Short summary
We present the MLUCM BEP+BEM model that bridges mesoscale and microscale phenomena within the urban canopy, capturing scale interactions and feedback. The accuracy and low computational cost of this one-dimensional model makes it ideal for offline climate projections to assess urban climate impacts under different emission scenarios. The model's features allow analyzing urban overheating, energy demands, and evaluating the efficiency of strategies like green/cool roofs, and photovoltaic panels.
Alberto Martilli, Negin Nazarian, E. Scott Krayenhoff, Jacob Lachapelle, Jiachen Lu, Esther Rivas, Alejandro Rodriguez-Sanchez, Beatriz Sanchez, and José Luis Santiago
Geosci. Model Dev., 17, 5023–5039, https://doi.org/10.5194/gmd-17-5023-2024, https://doi.org/10.5194/gmd-17-5023-2024, 2024
Short summary
Short summary
Here, we present a model that quantifies the thermal stress and its microscale variability at a city scale with a mesoscale model. This tool can have multiple applications, from early warnings of extreme heat to the vulnerable population to the evaluation of the effectiveness of heat mitigation strategies. It is the first model that includes information on microscale variability in a mesoscale model, something that is essential for fully evaluating heat stress.
Jiachen Lu, Negin Nazarian, Melissa Anne Hart, E. Scott Krayenhoff, and Alberto Martilli
Geosci. Model Dev., 17, 2525–2545, https://doi.org/10.5194/gmd-17-2525-2024, https://doi.org/10.5194/gmd-17-2525-2024, 2024
Short summary
Short summary
This study enhances urban canopy models by refining key assumptions. Simulations for various urban scenarios indicate discrepancies in turbulent transport efficiency for flow properties. We propose two modifications that involve characterizing diffusion coefficients for momentum and turbulent kinetic energy separately and introducing a physics-based
mass-fluxterm. These adjustments enhance the model's performance, offering more reliable temperature and surface flux estimates.
Peter Hoffmann, Vanessa Reinhart, Diana Rechid, Nathalie de Noblet-Ducoudré, Edouard L. Davin, Christina Asmus, Benjamin Bechtel, Jürgen Böhner, Eleni Katragkou, and Sebastiaan Luyssaert
Earth Syst. Sci. Data, 15, 3819–3852, https://doi.org/10.5194/essd-15-3819-2023, https://doi.org/10.5194/essd-15-3819-2023, 2023
Short summary
Short summary
This paper introduces the new high-resolution land use and land cover change dataset LUCAS LUC for Europe (version 1.1), tailored for use in regional climate models. Historical and projected future land use change information from the Land-Use Harmonization 2 (LUH2) dataset is translated into annual plant functional type changes from 1950 to 2015 and 2016 to 2100, respectively, by employing a newly developed land use translator.
Jorn Van de Velde, Matthias Demuzere, Bernard De Baets, and Niko E. C. Verhoest
Hydrol. Earth Syst. Sci., 26, 2319–2344, https://doi.org/10.5194/hess-26-2319-2022, https://doi.org/10.5194/hess-26-2319-2022, 2022
Short summary
Short summary
An important step in projecting future climate is the bias adjustment of the climatological and hydrological variables. In this paper, we illustrate how bias adjustment can be impaired by bias nonstationarity. Two univariate and four multivariate methods are compared, and for both types bias nonstationarity can be linked with less robust adjustment.
Vanessa Reinhart, Peter Hoffmann, Diana Rechid, Jürgen Böhner, and Benjamin Bechtel
Earth Syst. Sci. Data, 14, 1735–1794, https://doi.org/10.5194/essd-14-1735-2022, https://doi.org/10.5194/essd-14-1735-2022, 2022
Short summary
Short summary
The LANDMATE plant functional type (PFT) land cover dataset for Europe 2015 (Version 1.0) is a gridded, high-resolution dataset for use in regional climate models. LANDMATE PFT is prepared using the expertise of regional climate modellers all over Europe and is easily adjustable to fit into different climate model families. We provide comprehensive spatial quality information for LANDMATE PFT, which can be used to reduce uncertainty in regional climate model simulations.
Peter Hoffmann, Vanessa Reinhart, Diana Rechid, Nathalie de Noblet-Ducoudré, Edouard L. Davin, Christina Asmus, Benjamin Bechtel, Jürgen Böhner, Eleni Katragkou, and Sebastiaan Luyssaert
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-252, https://doi.org/10.5194/essd-2021-252, 2021
Manuscript not accepted for further review
Short summary
Short summary
This paper introduces the new high-resolution land-use land-cover change dataset LUCAS LUC historical and future land use and land cover change dataset (Version 1.0), tailored for use in regional climate models. Historical and projected future land use change information from the Land-Use Harmonization 2 (LUH2) dataset is translated into annual plant functional type changes from 1950 to 2015 and 2016 to 2100, respectively, by employing a newly developed land use translator.
Cited articles
Abascal, A., Rothwell, N., Shonowo, A., Thomson, D. R., Elias, P., Elsey, H.,
Yeboah, G., and Kuffer, M.: “Domains of deprivation framework” for
mapping slums, informal settlements, and other deprived areas in LMICs to
improve urban planning and policy: A scoping review, Comput. Enviro.
Urban, 93, 101770, https://doi.org/10.1016/j.compenvurbsys.2022.101770,
2022. a
Alexander, P., Bechtel, B., Chow, W., Fealy, R., and Mills, G.: Linking urban
climate classification with an urban energy and water budget model:
Multi-site and multi-seasonal evaluation, Urban Climate, 17, 196–215,
https://doi.org/10.1016/j.uclim.2016.08.003, 2016. a
Alexander, P. J., Mills, G., and Fealy, R.: Using LCZ data to run an urban
energy balance model, Urban Climate, 13, 14–37,
https://doi.org/10.1016/j.uclim.2015.05.001, 2015. a
Aminipouri, M., Knudby, A. J., Krayenhoff, E. S., Zickfeld, K., and Middel, A.:
Modelling the impact of increased street tree cover on mean radiant
temperature across Vancouver's local climate zones, Urban For. Urban
Gree., 39, 9–17, https://doi.org/10.1016/j.ufug.2019.01.016, 2019. a
Assarkhaniki, Z., Sabri, S., and Rajabifard, A.: Using open data to detect the
structure and pattern of informal settlements: an outset to support inclusive
SDGs' achievement, Big Earth Data, 5, 497–526,
https://doi.org/10.1080/20964471.2021.1948178, 2021. a
Bai, X., Dawson, R. J., Ürge-Vorsatz, D., Delgado, G. C., Barau, A. S.,
Dhakal, S., Dodman, D., Leonardsen, L., Masson-Delmotte, V., Roberts, D., and
Schultz, S.: Six research priorities for cities, Nature, 555, 23–25,
https://doi.org/10.1038/d41586-018-02409-z, 2018. a, b
Baklanov, A., Grimmond, C., Carlson, D., Terblanche, D., Tang, X., Bouchet, V.,
Lee, B., Langendijk, G., Kolli, R., and Hovsepyan, A.: From urban
meteorology, climate and environment research to integrated city services,
Urban Climate, 23, 330–341, https://doi.org/10.1016/j.uclim.2017.05.004, 2018. a
Bande, L., Manandhar, P., Ghazal, R., and Marpu, P.: Characterization of Local
Climate Zones Using ENVI-met and Site Data in the City of Al-Ain, UAE,
International Journal of Sustainable Development and Planning, 15, 751–760,
https://doi.org/10.18280/ijsdp.150517, 2020. a
Barlow, J. F.: Progress in observing and modelling the urban boundary layer,
Urban Climate, 10, 216–240, https://doi.org/10.1016/j.uclim.2014.03.011, 2014. a
Bauer, P., Stevens, B., and Hazeleger, W.: A digital twin of Earth for the
green transition, Nat. Clim. Change, 11,
https://doi.org/10.1038/s41558-021-00986-y, 2021. a
Bechtel, B. and Daneke, C.: Classification of local climate zones based on
multiple earth observation data, IEEE J. Sel. Top. Appl., 5, 1191–1202,
https://doi.org/10.1109/JSTARS.2012.2189873, 2012. a
Bechtel, B., Alexander, P., Böhner, J., Ching, J., Conrad, O., Feddema,
J., Mills, G., See, L., and Stewart, I.: Mapping Local Climate Zones for a
Worldwide Database of the Form and Function of Cities, ISPRS International
Journal of Geo-Information, 4, 199–219, https://doi.org/10.3390/ijgi4010199, 2015. a, b, c, d, e
Bechtel, B., Demuzere, M., Sismanidis, P., Fenner, D., Brousse, O., Beck, C.,
Van Coillie, F., Conrad, O., Keramitsoglou, I., Middel, A., Mills, G.,
Niyogi, D., Otto, M., See, L., and Verdonck, M.-L.: Quality of Crowdsourced
Data on Urban Morphology—The Human Influence Experiment (HUMINEX), Urban
Science, 1, 15, https://doi.org/10.3390/urbansci1020015, 2017. a, b, c, d
Bechtel, B., Alexander, P. J., Beck, C., Böhner, J., Brousse, O., Ching,
J., Demuzere, M., Fonte, C., Gál, T., Hidalgo, J., Hoffmann, P.,
Middel, A., Mills, G., Ren, C., See, L., Sismanidis, P., Verdonck, M.-L., Xu,
G., and Xu, Y.: Generating WUDAPT Level 0 data – Current status of
production and evaluation, Urban Climate, 27, 24–45,
https://doi.org/10.1016/j.uclim.2018.10.001, 2019a. a
Bechtel, B., Demuzere, M., Mills, G., Zhan, W., Sismanidis, P., Small, C., and
Voogt, J.: SUHI analysis using Local Climate Zones – A comparison of 50
cities, Urban Climate, 28, 100451, https://doi.org/10.1016/j.uclim.2019.01.005,
2019b. a
Bechtel, B., Demuzere, M., and Stewart, I. D.: A Weighted Accuracy Measure for
Land Cover Mapping: Comment on Johnson et al. Local Climate Zone (LCZ) Map
Accuracy Assessments Should Account for Land Cover Physical Characteristics
that Affect the Local Thermal Environment,
Remote Sens., 12, 1769, https://doi.org/10.3390/rs12111769, 2020. a, b
Beck, C., Straub, A., Breitner, S., Cyrys, J., Philipp, A., Rathmann, J.,
Schneider, A., Wolf, K., and Jacobeit, J.: Air temperature characteristics
of local climate zones in the Augsburg urban area (Bavaria, southern Germany)
under varying synoptic conditions, Urban Climate, 25, 152–166,
https://doi.org/10.1016/j.uclim.2018.04.007, 2018. a
Benjamin, K., Luo, Z., and Wang, X.: Crowdsourcing Urban Air Temperature Data
for Estimating Urban Heat Island and Building Heating/Cooling Load in
London, Energies, 14, 5208, https://doi.org/10.3390/en14165208, 2021. a
Bettencourt, L. and West, G.: A unified theory of urban living, Nature, 467,
912–913, https://doi.org/10.1038/467912a, 2010. a
Bettencourt, L. M., Lobo, J., Helbing, D., Kühnert, C., and West, G. B.:
Growth, innovation, scaling, and the pace of life in cities, P. Natl. Acad. Sci. USA, 104,
7301–7306, https://doi.org/10.1073/pnas.0610172104, 2007. a
Bettencourt, L. M., Yang, V. C., Lobo, J., Kempes, C. P., Rybski, D., and
Hamilton, M. J.: The interpretation of urban scaling analysis in time,
J. R. Soc. Interface, 17, 1–9, https://doi.org/10.1098/rsif.2019.0846,
2020. a
Biljecki, F., Chew, L. Z. X., Milojevic-Dupont, N., and Creutzig, F.: Open
government geospatial data on buildings for planning sustainable and
resilient cities, arXiv [preprint], https://doi.org/10.48550/arXiv.2107.04023, 2021. a
Bokwa, A., Geletič, J., Lehnert, M., Žuvela-Aloise, M.,
Hollósi, B., Gál, T., Skarbit, N., Dobrovolný, P., Hajto,
M. J., Kielar, R., Walawender, J. P., Štastný, P., Holec, J.,
Ostapowicz, K., Burianová, J., and Garaj, M.: Heat load assessment in
Central European cities using an urban climate model and observational
monitoring data, Energ. Buildings, 201, 53–69,
https://doi.org/10.1016/j.enbuild.2019.07.023, 2019. a
Breiman, L.: Random forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001. a, b
Brousse, O., Martilli, A., Foley, M., Mills, G., and Bechtel, B.: WUDAPT, an
efficient land use producing data tool for mesoscale models? Integration of
urban LCZ in WRF over Madrid, Urban Climate, 17, 116–134,
https://doi.org/10.1016/j.uclim.2016.04.001, 2016. a
Brousse, O., Georganos, S., Demuzere, M., Vanhuysse, S., Wouters, H., Wolff,
E., Linard, C., and Lipzig, N. P. V.: Urban Climate Using Local Climate
Zones in Sub-Saharan Africa to tackle urban health issues, Urban Climate,
27, 227–242, https://doi.org/10.1016/j.uclim.2018.12.004, 2019. a, b, c
Brousse, O., Georganos, S., Demuzere, M., Dujardin, S., Lennert, M., Linard,
C., Snow, R. W., Thiery, W., and van Lipzig, N. P. M.: Can we use local
climate zones for predicting malaria prevalence across sub-Saharan African
cities?, Environ. Res. Lett., 15, 124051,
https://doi.org/10.1088/1748-9326/abc996, 2020a. a, b, c, d, e
Brousse, O., Wouters, H., Demuzere, M., Thiery, W., Van de Walle, J., and
Lipzig, N. P. M.: The local climate impact of an African city during
clear‐sky conditions – Implications of the recent urbanization in Kampala
(Uganda), Int. J. Climatol., 40, 4586–4608,
https://doi.org/10.1002/joc.6477, 2020b. a, b
Brousse, O., Simpson, C., Walker, N., Fenner, D., Meier, F., Taylor, J., and
Heaviside, C.: Evidence of horizontal urban heat advection in London using
six years of data from a citizen weather station network, Environ.
Res. Lett., 17, 044041, https://doi.org/10.1088/1748-9326/ac5c0f, 2022. a
Buchhorn, M., Lesiv, M., Tsendbazar, N. E., Herold, M., Bertels, L., and Smets,
B.: Copernicus global land cover layers-collection 2, Remote Sens., 12,
1–14, https://doi.org/10.3390/rs12061044, 2020a. a, b
Buchhorn, M., Smets, B., Bertels, L., Roo, B. D., Lesiv, M., Tsendbazar, N.-E.,
Herold, M., and Fritz, S.: Copernicus Global Land Service: Land Cover 100m:
collection 3: epoch 2018: Globe, Zenodo [data set], https://doi.org/10.5281/zenodo.3518038,
2020b. a, b
Chen, C., Bagan, H., Xie, X., La, Y., and Yamagata, Y.: Combination of
sentinel-2 and palsar-2 for local climate zone classification: A case study
of nanchang, China, Remote Sens., 13, 1–21, https://doi.org/10.3390/rs13101902,
2021a. a, b
Chen, G., Xie, J., Li, W., Li, X., Hay Chung, L. C., Ren, C., and Liu, X.:
Future “local climate zon” spatial change simulation in Greater Bay
Area under the shared socioeconomic pathways and ecological control line,
Build. Environ., 203, 108077,
https://doi.org/10.1016/j.buildenv.2021.108077, 2021b. a
Chieppa, J., Bush, A., and Mitra, C.: Using `Local Climate Zones” to
detect urban heat island on two small cities in Alabama, Earth Interact.,
22, 1–22, https://doi.org/10.1175/EI-D-17-0020.1, 2018. a
Chinchor, N.: MUC-4 evaluation metrics, in: Proceedings of the 4th conference
on Message understanding – MUC4 '92, Association for Computational
Linguistics, Morristown, NJ, USA, p. 22, https://doi.org/10.3115/1072064.1072067, 1992. a, b
Ching, J., Mills, G., Bechtel, B., See, L., Feddema, J., Wang, X., Ren, C.,
Brousse, O., Martilli, A., Neophytou, M., Mouzourides, P., Stewart, I.,
Hanna, A., Ng, E., Foley, M., Alexander, P., Aliaga, D., Niyogi, D.,
Shreevastava, A., Bhalachandran, P., Masson, V., Hidalgo, J., Fung, J.,
Andrade, M., Baklanov, A., Dai, W., Milcinski, G., Demuzere, M., Brunsell,
N., Pesaresi, M., Miao, S., Mu, Q., Chen, F., and Theeuwes, N.: WUDAPT: An
Urban Weather, Climate, and Environmental Modeling Infrastructure for the
Anthropocene, B. Am. Meteorol. Soc., 99,
1907–1924, https://doi.org/10.1175/BAMS-D-16-0236.1, 2018. a, b, c, d, e, f, g, h
Ching, J., Aliaga, D., Mills, G., Masson, V., See, L., Neophytou, M., Middel,
A., Baklanov, A., Ren, C., Ng, E., Fung, J., Wong, M., Huang, Y., Martilli,
A., Brousse, O., Stewart, I., Zhang, X., Shehata, A., Miao, S., Wang, X.,
Wang, W., Yamagata, Y., Duarte, D., Li, Y., Feddema, J., Bechtel, B.,
Hidalgo, J., Roustan, Y., Kim, Y., Simon, H., Kropp, T., Bruse, M., Lindberg,
F., Grimmond, S., Demuzure, M., Chen, F., Li, C., Gonzales-Cruz, J.,
Bornstein, B., He, Q., Tzu-Ping, Hanna, A., Erell, E., Tapper, N., Mall, R.,
and Niyogi, D.: Pathway using WUDAPT's Digital Synthetic City tool towards
generating urban canopy parameters for multi-scale urban atmospheric
modeling, Urban Climate, 28, 100459, https://doi.org/10.1016/j.uclim.2019.100459,
2019. a, b, c, d
Conners, R. W., Trivedi, M. M., and Harlow, C. A.: Segmentation of a
high-resolution urban scene using texture operators (Sunnyvale,
California), Comput. Vision Graph., 25, 273–310,
https://doi.org/10.1016/0734-189X(84)90197-X, 1984. a
Coops, N. C. and Wulder, M. A.: Breaking the Habit(at), Trend. Ecol.
Evol., 34, 585–587, https://doi.org/10.1016/j.tree.2019.04.013, 2019. a
Corbane, C., Pesaresi, M., Politis, P., Syrris, V., Florczyk, A. J., Soille,
P., Maffenini, L., Burger, A., Vasilev, V., Rodriguez, D., Sabo, F.,
Dijkstra, L., and Kemper, T.: Big earth data analytics on Sentinel-1 and
Landsat imagery in support to global human settlements mapping, Big Earth
Data, 1, 118–144, https://doi.org/10.1080/20964471.2017.1397899, 2017. a
Corbane, C., Pesaresi, M., Kemper, T., Politis, P., Florczyk, A. J., Syrris,
V., Melchiorri, M., Sabo, F., and Soille, P.: Automated global delineation
of human settlements from 40 years of Landsat satellite data archives, Big
Earth Data, 3, 140–169, https://doi.org/10.1080/20964471.2019.1625528, 2019. a
Corbane, C., Politis, P., Kempeneers, P., Simonetti, D., Soille, P., Burger,
A., Pesaresi, M., Sabo, F., Syrris, V., and Kemper, T.: A global cloud free
pixel- based image composite from Sentinel-2 data, Data in Brief, 31,
105737, https://doi.org/10.1016/j.dib.2020.105737, 2020. a
Corbane, C., Syrris, V., Sabo, F., Politis, P., Melchiorri, M., Pesaresi, M.,
Soille, P., and Kemper, T.: Convolutional neural networks for global human
settlements mapping from Sentinel-2 satellite imagery, Neural Comput.
Appl., 33, 6697–6720, https://doi.org/10.1007/s00521-020-05449-7, 2021. a, b, c, d, e, f, g
Costello, A., Abbas, M., Allen, A., Ball, S., Bell, S., Bellamy, R., Friel, S.,
Groce, N., Johnson, A., Kett, M., Lee, M., Levy, C., Maslin, M., McCoy, D.,
McGuire, B., Montgomery, H., Napier, D., Pagel, C., Patel, J., de Oliveira,
J. A. P., Redclift, N., Rees, H., Rogger, D., Scott, J., Stephenson, J.,
Twigg, J., Wolff, J., and Patterson, C.: Managing the health effects of
climate change, Lancet, 373, 1693–1733, https://doi.org/10.1016/s0140-6736(09)60935-1, 2009. a
Creutzig, F., Baiocchi, G., Bierkandt, R., Pichler, P.-P., and Seto, K. C.:
Global typology of urban energy use and potentials for an urbanization
mitigation wedge, P. Natl. Acad. Sci. USA, 112, 6283–6288,
201315545, https://doi.org/10.1073/pnas.1315545112, 2015. a
Creutzig, F., Agoston, P., Minx, J. C., Canadell, J. G., Andrew, R. M.,
Quéré, C. L., Peters, G. P., Sharifi, A., Yamagata, Y., and
Dhakal, S.: Urban infrastructure choices structure climate solutions,
Nat. Clim. Change, 6, 1054, https://doi.org/10.1038/nclimate3169, 2016. a
Creutzig, F., Lohrey, S., Bai, X., Baklanov, A., Dawson, R., Dhakal, S., Lamb,
W. F., McPhearson, T., Minx, J., Munoz, E., and Walsh, B.: Upscaling urban
data science for global climate solutions, Global Sustain., 2, 1–25,
https://doi.org/10.1017/sus.2018.16, 2019. a
D'Amour, C. B., Reitsma, F., Baiocchi, G., Barthel, S., Güneralp, B.,
Erb, K. H., Haberl, H., Creutzig, F., and Seto, K. C.: Future urban land
expansion and implications for global croplands, P. Natl. Acad. Sci. USA, 114, 8939–8944,
https://doi.org/10.1073/pnas.1606036114, 2017. a
Demuzere, M., Orru, K., Heidrich, O., Olazabal, E., Geneletti, D., Orru, H.,
Bhave, A. G., Mittal, N., Feliu, E., and Faehnle, M.: Mitigating and
adapting to climate change: Multi-functional and multi-scale assessment of
green urban infrastructure, J. Environ. Manage., 146,
107–115, https://doi.org/10.1016/j.jenvman.2014.07.025, 2014. a
Demuzere, M., Hankey, S., Mills, G., Zhang, W., Lu, T., and Bechtel, B.:
Combining expert and crowd-sourced training data to map urban form and
functions for the continental US, Nature Scientific Data, 7, 1–13,
https://doi.org/10.1038/s41597-020-00605-z, 2020a. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Demuzere, M., Mihara, T., Redivo, C. P., Feddema, J., and Setton, E.:
Multi-temporal LCZ maps for Canadian functional urban areas, OSF Preprints,
https://doi.org/10.31219/osf.io/h5tm6, 2020b. a
Demuzere, M., Kittner, J., Martilli, A., Mills, G., Moede, C., Stewart, I. D.,
van Vliet, J., and Bechtel, B.: Global map of Local Climate Zones, Zenodo [data set],
https://doi.org/10.5281/zenodo.6364594, 2022a. a, b
Demuzere, M., Kittner, J., Martilli, A., Mills, G., Moede, C., Stewart, I. D.,
van Vliet, J., and Bechtel, B.: Teaser Local Climate Zone maps extracted
from the global map of Local Climate Zones, Zenodo [data set], https://doi.org/10.5281/zenodo.6364705,
2022b. a
Demuzere, M., Argüeso, D., Zonato, A., and Kittner, J.: W2W: A Python package that injects WUDAPT's Local Climate Zone information in WRF (v0.4.1), Zenodo [code], https://doi.org/10.5281/zenodo.7016607, 2022c. a
Di Gregorio, A. and Leonardi, U.: Land cover classification system – user manual software version 3, https://www.fao.org/3/i5428e/i5428e.pdf (last access: 23 August 2022), 2016. a
Dunne, J. P., Horowitz, L. W., Adcroft, A. J., Ginoux, P., Held, I. M., John,
J. G., Krasting, J. P., Malyshev, S., Naik, V., Paulot, F., Shevliakova, E.,
Stock, C. A., Zadeh, N., Balaji, V., Blanton, C., Dunne, K. A., Dupuis, C.,
Durachta, J., Dussin, R., Gauthier, P. P., Griffies, S. M., Guo, H.,
Hallberg, R. W., Harrison, M., He, J., Hurlin, W., McHugh, C., Menzel, R.,
Milly, P. C., Nikonov, S., Paynter, D. J., Ploshay, J., Radhakrishnan, A.,
Rand, K., Reichl, B. G., Robinson, T., Schwarzkopf, D. M., Sentman, L. T.,
Underwood, S., Vahlenkamp, H., Winton, M., Wittenberg, A. T., Wyman, B.,
Zeng, Y., and Zhao, M.: The GFDL Earth System Model Version 4.1 (GFDL-ESM
4.1): Overall Coupled Model Description and Simulation Characteristics,
J. Adv. Model. Earth Sy., 12, 1–56,
https://doi.org/10.1029/2019MS002015, 2020. a
Eldesoky, A. H., Gil, J., and Pont, M. B.: The suitability of the urban local
climate zone classification scheme for surface temperature studies in
distinct macroclimate regions, Urban Climate, 37, 100823,
https://doi.org/10.1016/j.uclim.2021.100823, 2021. a
ESA: Land Cover CCI Product User Guide Version 2.0, Tech. rep., European
Space Agency, http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (last access: 23 August 2022), 2017. a
Esch, T., Heldens, W., Hirne, A., Keil, M., Marconcini, M., Roth, A., Zeidler,
J., Dech, S., and Strano, E.: Breaking new ground in mapping human
settlements from space – The Global Urban Footprint, ISPRS J.
Photogramm., 134, 30–42,
https://doi.org/10.1016/j.isprsjprs.2017.10.012, 2017. a
Esch, T., Brzoska, E., Dech, S., Leutner, B., Palacios-Lopez, D.,
Metz-Marconcini, A., Marconcini, M., Roth, A., and Zeidler, J.: World
Settlement Footprint 3D – A first three-dimensional survey of the global
building stock, Remote Sens. Environ., 270, 112877,
https://doi.org/10.1016/j.rse.2021.112877, 2022. a
Fenner, D., Meier, F., Bechtel, B., Otto, M., and Scherer, D.: Intra and inter
“local climate zone” variability of air temperature as observed by
crowdsourced citizen weather stations in Berlin, Germany, Meteorol.
Z., 26, 525–547, https://doi.org/10.1127/metz/2017/0861, 2017. a
Fenner, D., Bechtel, B., Demuzere, M., Kittner, J., and Meier, F.:
CrowdQC+ – A Quality-Control for Crowdsourced Air-Temperature Observations
Enabling World-Wide Urban Climate Applications, Front. Environ.
Sci., 9, 1–21, https://doi.org/10.3389/fenvs.2021.720747, 2021. a
Florczyk, A., Melchiorri, M., Corban, C., Schiavina, M., Maffenini, L.,
Pesaresi, M., Politis, P., Sabo, F., Carneiro Freire, S., Ehrlich, D.,
Kemper, T., Tommasi, P., Airaghi, D., and Zanchetta, L.: Description of the
GHS Urban Centre Database 2015, public release 2019, version 1.0, Publications Office, https://doi.org/10.2760/037310, 2019. a, b
Forget, Y., Shimoni, M., and Gilbert, M.: Complementarity Between Sentinel-1
and Landsat 8 Imagery for Built-Up Mapping in Sub-Saharan Africa, Preprints 2018, 2018100695,
https://doi.org/10.20944/preprints201810.0695.v1, 2018. a
Fuhrer, O., Chadha, T., Hoefler, T., Kwasniewski, G., Lapillonne, X., Leutwyler, D., Lüthi, D., Osuna, C., Schär, C., Schulthess, T. C., and Vogt, H.: Near-global climate simulation at 1 km resolution: establishing a performance baseline on 4888 GPUs with COSMO 5.0, Geosci. Model Dev., 11, 1665–1681, https://doi.org/10.5194/gmd-11-1665-2018, 2018. a
Gál, T., Mahó, S. I., Skarbit, N., and Unger, J.: Numerical
modelling for analysis of the effect of different urban green spaces on urban
heat load patterns in the present and in the future, Comput. Environ.
Urban, 87, 101600, https://doi.org/10.1016/j.compenvurbsys.2021.101600, 2021. a
Georgescu, M., Chow, W. T. L., Wang, Z. H., Brazel, A., Trapido-Lurie, B., Roth, M., and Benson-Lira, V.: Prioritizing urban sustainability solutions:
coordinated approaches must incorporate scale-dependent built environment
induced effects, Environ. Res. Lett., 10, 061001,
https://doi.org/10.1088/1748-9326/10/6/061001, 2015. a
Gilabert, J., Deluca, A., Lauwaet, D., Ballester, J., Corbera, J., and Llasat, M. C.: Assessing heat exposure to extreme temperatures in urban areas using the Local Climate Zone classification, Nat. Hazards Earth Syst. Sci., 21, 375–391, https://doi.org/10.5194/nhess-21-375-2021, 2021. a
Gong, P., Li, X., Wang, J., Bai, Y., Chen, B., Hu, T., Liu, X., Xu, B., Yang,
J., Zhang, W., and Zhou, Y.: Annual maps of global artificial impervious
area (GAIA) between 1985 and 2018, Remote Sens. Environ., 236,
111510, https://doi.org/10.1016/j.rse.2019.111510, 2020. a, b
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore,
R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone,
Remote Sens. Environ., 202, 18–27, https://doi.org/10.1016/j.rse.2017.06.031,
2017. a
Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X.,
and Briggs, J. M.: Global change and the ecology of cities, Science, 319, 756–760, https://doi.org/10.1126/science.1150195, 2008. a
Grimmond, S., Bouchet, V., Molina, L. T., Baklanov, A., Tan, J.,
Schlünzen, K. H., Mills, G., Golding, B., Masson, V., Ren, C., Voogt,
J., Miao, S., Lean, H., Heusinkveld, B., Hovespyan, A., Teruggi, G., Parrish,
P., and Joe, P.: Integrated urban hydrometeorological, climate and
environmental services: Concept, methodology and key messages, Urban
Climate, 33, 100623, https://doi.org/10.1016/j.uclim.2020.100623, 2020. a
Güneralp, B., Zhou, Y., Ürge-Vorsatz, D., Gupta, M., Yu, S., Patel,
P. L., Fragkias, M., Li, X., and Seto, K. C.: Global scenarios of urban
density and its impacts on building energy use through 2050, P.
Natl. Acad. Sci. USA, 114,
8945–8950, https://doi.org/10.1073/pnas.1606035114, 2017. a
Gutowski, W. J., Ullrich, P. A., Hall, A., Leung, L. R., O'Brien, T. A.,
Patricola, C. M., Arritt, R. W., Bukovsky, M. S., Calvin, K. V., Feng, Z.,
Jones, A. D., Kooperman, G. J., Monier, E., Pritchard, M. S., Pryor, S. C.,
Qian, Y., Rhoades, A. M., Roberts, A. F., Sakaguchi, K., Urban, N., and
Zarzycki, C.: The Ongoing Need for High-Resolution Regional Climate Models:
Process Understanding and Stakeholder Information, B. Am.
Meteorol. Soc., 101, E664–E683, https://doi.org/10.1175/BAMS-D-19-0113.1,
2020. a
Hammerberg, K., Brousse, O., Martilli, A., and Mahdavi, A.: Implications of
employing detailed urban canopy parameters for mesoscale climate modelling: a
comparison between WUDAPT and GIS databases over Vienna, Austria,
Int. J. Climatol., 38, e1241–e1257,
https://doi.org/10.1002/joc.5447, 2018. a
Haralick, R. M., Dinstein, I., and Shanmugam, K.: Textural Features for Image
Classification, IEEE T. Syst. Man Cyb., SMC-3, 610–621,
https://doi.org/10.1109/TSMC.1973.4309314, 1973. a
Hay Chung, L. C., Xie, J., and Ren, C.: Improved machine-learning mapping of
local climate zones in metropolitan areas using composite Earth observation
data in Google Earth Engine, Build. Environ., 199, 107879,
https://doi.org/10.1016/j.buildenv.2021.107879, 2021. a, b, c
Hertwig, D., Ng, M., Grimmond, S., Vidale, P. L., and McGuire, P. C.:
High‐resolution global climate simulations: Representation of cities,
Int. J. Climatol., 41, 3266–3285, https://doi.org/10.1002/joc.7018,
2021. a, b
Hidalgo, J., Lemonsu, A., and Masson, V.: Between progress and obstacles in
urban climate interdisciplinary studies and knowledge transfer to society,
Ann. NY Acad. Sci., 1436, 5–18,
https://doi.org/10.1111/nyas.13986, 2018. a
Hirsch, A. L., Evans, J. P., Thomas, C., Conroy, B., Hart, M. A., Lipson, M.,
and Ertler, W.: Resolving the influence of local flows on urban heat
amplification during heatwaves, Environ. Res. Lett., 16,
064066, https://doi.org/10.1088/1748-9326/ac0377, 2021. a
Hu, J., Ghamisi, P., and Zhu, X.: Feature Extraction and Selection of
Sentinel-1 Dual-Pol Data for Global-Scale Local Climate Zone Classification,
ISPRS Int. Geo-Inf., 7, 379,
https://doi.org/10.3390/ijgi7090379, 2018. a
IPCC: Climate Change 2022: Impacts, Adaptation, and Vulnerability, Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Pörtner, H.-O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., and Rama, B., Cambridge University Press, in Press, 2022. a
Jiang, S., Huang, F., Zhan, W., Bechtel, B., Liu, Z., Demuzere, M., Huang, Y.,
Xu, Y., Xia, W., Quan, J., Hong, F., Jiang, L., Lai, J., Wang, C., Kong, F.,
Du, H., Miao, S., Chen, Y., Zhang, X., Planning, R., and Development, U.:
Mapping Local Climate Zones : A Bibliometric Meta- Analysis and Systematic
Review, OSF preprints, 1–106, https://doi.org/10.31219/osf.io/c2bez, 2021. a, b
Jung, M., Dahal, P. R., Butchart, S. H., Donald, P. F., De Lamo, X., Lesiv,
M., Kapos, V., Rondinini, C., and Visconti, P.: A global map of terrestrial
habitat types, Sci. Data, 7, 1–8, https://doi.org/10.1038/s41597-020-00599-8,
2020. a
Kabano, P., Lindley, S., and Harris, A.: Evidence of urban heat island impacts
on the vegetation growing season length in a tropical city, Landscape
Urban Plan., 206, 103989, https://doi.org/10.1016/j.landurbplan.2020.103989, 2021. a
Kamath, H. G., Singh, M., Magruder, L. A., Yang, Z.-l., and Niyogi, D.:
GLOBUS: GLObal Building heights for Urban Studies, ArXiv [preprint],
https://doi.org/10.48550/arXiv.2205.12224, 2022. a
Karsisto, P., Fortelius, C., Demuzere, M., Grimmond, C. S. B., Oleson, K. W.,
Kouznetsov, R., Masson, V., and Järvi, L.: Seasonal surface urban
energy balance and wintertime stability simulated using three land-surface
models in the high-latitude city Helsinki, Q. J. Roy.
Meteor. Soc., 142, 401–417, https://doi.org/10.1002/qj.2659, 2016. a
Kotharkar, R., Ghosh, A., Kapoor, S., and Reddy, D. G. K.: Approach to local
climate zone based energy consumption assessment in an Indian city, Energ.
Buildings, 259, 111835, https://doi.org/10.1016/j.enbuild.2022.111835, 2022. a
Kuffer, M., Thomson, D. R., Boo, G., Mahabir, R., Grippa, T., Vanhuysse, S.,
Engstrom, R., Ndugwa, R., Makau, J., Darin, E., de Albuquerque, J. P., and
Kabaria, C.: The role of earth observation in an integrated deprived area
mapping “system” for low-to-middle income countries, Remote Sensing, 12, 982,
https://doi.org/10.3390/rs12060982, 2020. a
Lai, D., Liu, W., Gan, T., Liu, K., and Chen, Q.: A review of mitigating
strategies to improve the thermal environment and thermal comfort in urban
outdoor spaces, Sci. Total Environ., 661, 337–353,
https://doi.org/10.1016/j.scitotenv.2019.01.062, 2019. a
Leconte, F., Bouyer, J., and Claverie, R.: Nocturnal cooling in Local Climate
Zone: Statistical approach using mobile measurements, Urban Climate, 33,
100629, https://doi.org/10.1016/j.uclim.2020.100629, 2020. a
Lehnert, M., Savić, S., Milošević, D., Dunjić, J., and
Geletič, J.: Mapping Local Climate Zones and Their Applications in
European Urban Environments: A Systematic Literature Review and Future
Development Trends, ISPRS Int. Geo-Inf., 10, 260,
https://doi.org/10.3390/ijgi10040260, 2021. a
Li, M., Koks, E., Taubenböck, H., and van Vliet, J.: Continental-scale
mapping and analysis of 3D building structure, Remote Sens.
Environ., 245, 111859, https://doi.org/10.1016/j.rse.2020.111859,
2020. a, b
Li, X., Gong, P., Zhou, Y., Wang, J., Bai, Y., Chen, B., Hu, T., Xiao, Y., Xu,
B., Yang, J., Liu, X., Cai, W., Huang, H., Wu, T., Wang, X., Lin, P., Li, X.,
Chen, J., He, C., Li, X., Yu, L., Clinton, N., and Zhu, Z.: Mapping global
urban boundaries from the global artificial impervious area (GAIA) data,
Environ. Res. Lett., 15, 094044, https://doi.org/10.1088/1748-9326/ab9be3,
2020. a
Lindberg, F., Grimmond, C., Gabey, A., Huang, B., Kent, C. W., Sun, T.,
Theeuwes, N. E., Järvi, L., Ward, H. C., Capel-Timms, I., Chang, Y.,
Jonsson, P., Krave, N., Liu, D., Meyer, D., Olofson, K. F. G., Tan, J.,
Wästberg, D., Xue, L., and Zhang, Z.: Urban Multi-scale Environmental
Predictor (UMEP): An integrated tool for city-based climate services,
Environ. Model. Softw., 99, 70–87,
https://doi.org/10.1016/j.envsoft.2017.09.020, 2018. a
Liu, S., Qi, Z., Li, X., and Yeh, A. G.-O.: Integration of Convolutional
Neural Networks and Object-Based Post-Classification Refinement for Land Use
and Land Cover Mapping with Optical and SAR Data, Remote Sensing, 11, 690,
https://doi.org/10.3390/rs11060690, 2019. a
Lu, T., Marshall, J. D., Zhang, W., Hystad, P., Kim, S.-Y., Bechle, M. J.,
Demuzere, M., and Hankey, S.: National Empirical Models of Air Pollution
Using Microscale Measures of the Urban Environment, Environ. Sci.
Technol., 55, 15519–15530, https://doi.org/10.1021/acs.est.1c04047, 2021. a
Lu, Y., Yang, J., and Ma, S.: Dynamic Changes of Local Climate Zones in the
Guangdong–Hong Kong–Macao Greater Bay Area and Their Spatio-Temporal
Impacts on the Surface Urban Heat Island Effect between 2005 and 2015,
Sustainability, 13, 6374, https://doi.org/10.3390/su13116374, 2021. a
Lyu, T., Buccolieri, R., and Gao, Z.: A numerical study on the correlation
between sky view factor and summer microclimate of local climate zones,
Atmosphere, 10, 438, https://doi.org/10.3390/atmos10080438, 2019. a
MacKenzie, A. R., Whyatt, J. D., Barnes, M. J., Davies, G., and Hewitt, C. N.:
Urban form strongly mediates the allometric scaling of airshed pollution
concentrations, Environ. Res. Lett., 14, 124078,
https://doi.org/10.1088/1748-9326/ab50e3, 2019. a
Maharoof, N., Emmanuel, R., and Thomson, C.: Compatibility of local climate
zone parameters for climate sensitive street design: Influence of openness
and surface properties on local climate, Urban Climate, 33, 100642,
https://doi.org/10.1016/j.uclim.2020.100642, 2020. a
Manoli, G., Fatichi, S., Schläpfer, M., Yu, K., Crowther, T. W., Meili,
N., Burlando, P., Katul, G. G., and Bou-Zeid, E.: Magnitude of urban heat
islands largely explained by climate and population, Nature, 573, 55–60,
https://doi.org/10.1038/s41586-019-1512-9, 2019. a, b
Martilli, A.: An idealized study of city structure, urban climate, energy
consumption, and air quality, Urban Climate, 10, 430–446,
https://doi.org/10.1016/j.uclim.2014.03.003, 2014. a
Martilli, A., Roth, M., Winston, T. L., Demuzere, M., Lipson, M., Krayenhoff,
S., Sailor, D., Nazarian, N., Voogt, J., Wouters, H., Middel, A., Stewart,
I. D., Bechtel, B., Christen, A., and Hart, M.: Summer average urban-rural
surface temperature differences do not indicate the need for urban heat
reduction, OSF preprints, https://doi.org/10.31219/osf.io/8gnbf, 2020. a, b
Masson, V., Heldens, W., Bocher, E., Bonhomme, M., Bucher, B., Burmeister, C.,
de Munck, C., Esch, T., Hidalgo, J., Kanani-Sühring, F., Kwok, Y. T.,
Lemonsu, A., Lévy, J. P., Maronga, B., Pavlik, D., Petit, G., See, L.,
Schoetter, R., Tornay, N., Votsis, A., and Zeidler, J.: City-descriptive
input data for urban climate models: Model requirements, data sources and
challenges, Urban Climate, 31, 100536, https://doi.org/10.1016/j.uclim.2019.100536,
2020. a
Matsaba, E. O., Langer, I., Adimo, A. O., Mukundi, J. B., and Wesonga, J. M.:
Spatio-Temporal Variability of Simulated 2 m Air Temperature for Nairobi
City, Kenya, Current Urban Studies, 8, 205–221,
https://doi.org/10.4236/cus.2020.82011, 2020. a
McDonough, L. K., Santos, I. R., Andersen, M. S., O'Carroll, D. M., Rutlidge,
H., Meredith, K., Oudone, P., Bridgeman, J., Gooddy, D. C., Sorensen, J. P.,
Lapworth, D. J., MacDonald, A. M., Ward, J., and Baker, A.: Changes in
global groundwater organic carbon driven by climate change and urbanization,
Nat. Commun., 11, 1–10, https://doi.org/10.1038/s41467-020-14946-1, 2020. a, b
Middel, A., Häb, K., Brazel, A. J., Martin, C. a., and Guhathakurta, S.:
Impact of urban form and design on mid-afternoon microclimate in Phoenix
Local Climate Zones, Landscape Urban Plan., 122, 16–28,
https://doi.org/10.1016/j.landurbplan.2013.11.004, 2014. a
Mills, S., Weiss, S., and Liang, C.: VIIRS day/night band (DNB) stray light
characterization and correction, in: Earth Observing Systems XVIII, edited
by: Butler, J. J., Xiong, X. J., and Gu, X.,
International Society for Optics and Photonics, SPIE, 8866, 549–566,
https://doi.org/10.1117/12.2023107, 2013. a
Milošević, D., Savić, S., Kresoja, M., Lužanin, Z.,
Šećerov, I., Arsenović, D., Dunjić, J., and
Matzarakis, A.: Analysis of air temperature dynamics in the “local climate
zones” of Novi Sad (Serbia) based on long-term database from an urban
meteorological network, Int. J. Biometeorol., 66, 371–384,
https://doi.org/10.1007/s00484-020-02058-w, 2021. a
Molnár, G., Gyöngyösi, A. Z., and Gál, T.: Integration
of an LCZ-based classification into WRF to assess the intra-urban temperature
pattern under a heatwave period in Szeged, Hungary, Theor. Appl.
Climatol., 138, 1139–1158, https://doi.org/10.1007/s00704-019-02881-1, 2019. a
Moradi, M., Krayenhoff, E. S., and Aliabadi, A. A.: A comprehensive
indoor–outdoor urban climate model with hydrology: The Vertical City
Weather Generator (VCWG v2.0.0), Build. Environ., 207, 108406,
https://doi.org/10.1016/j.buildenv.2021.108406, 2022. a
Mu, Q., Miao, S., Wang, Y., Li, Y., He, X., and Yan, C.: Evaluation of
employing local climate zone classification for mesoscale modelling over
Beijing metropolitan area, Meteorol. Atmos. Phys., 132,
315–326, https://doi.org/10.1007/s00703-019-00692-7, 2020. a
Nagendra, H., Bai, X., Brondizio, E. S., and Lwasa, S.: The urban south and
the predicament of global sustainability, Nature Sustainability, 1,
341–349, https://doi.org/10.1038/s41893-018-0101-5, 2018. a
Oke, T. R., Mills, G., Christen, A., and Voogt, J. A.: Urban Climates,
Cambridge University Press, Cambridge, https://doi.org/10.1017/9781139016476, 2017. a, b, c
Oleson, K. W. and Feddema, J.: Parameterization and Surface Data Improvements
and New Capabilities for the Community Land Model Urban (CLMU), J.
Adv. Model. Earth Sy., 12, 1–30, https://doi.org/10.1029/2018ms001586,
2020. a, b
Owusu, M., Kuffer, M., Belgiu, M., Grippa, T., Lennert, M., Georganos, S., and
Vanhuysse, S.: Towards user-driven earth observation-based slum mapping,
Comput. Environ. Urban, 89, 101681,
https://doi.org/10.1016/j.compenvurbsys.2021.101681, 2021. a
Pan, Z.: WUDAPT Level 0 training data for HUAICHU (China, People's Republic of), LCZ Generator, submitted,
https://lcz-generator.rub.de/factsheets/f81f240993b6ca50180232c878755c18736e308a/f81f240993b6ca50180232c878755c18736e308a_factsheet.html (last access: 22 August 2022), 2021. a
Patel, P., Karmakar, S., Ghosh, S., and Niyogi, D.: Improved simulation of
very heavy rainfall events by incorporating WUDAPT urban land use/land cover
in WRF, Urban Climate, 32, 100616, https://doi.org/10.1016/j.uclim.2020.100616,
2020. a
Patel, P., Jamshidi, S., Nadimpalli, R., Aliaga, D. G., Mills, G., Chen, F.,
Demuzere, M., and Niyogi, D.: Modeling Large‐Scale Heatwave by
Incorporating Enhanced Urban Representation, J. Geophys.
Res.-Atmos., 127, 1–33, https://doi.org/10.1029/2021JD035316, 2022. a, b
Patella, V., Florio, G., Magliacane, D., Giuliano, A., Crivellaro, M. A.,
Bartolomeo, D., Genovese, A., Palmieri, M., Postiglione, A., Ridolo, E.,
Scaletti, C., Ventura, M. T., and Zollo, A.: Urban air pollution and climate
change: “The Decalogue: Allergy Safe Tree” for allergic and respiratory
diseases care, Clinical and Molecular Allergy, 16, 20,
https://doi.org/10.1186/s12948-018-0098-3, 2018. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.:
Scikit-learn: Machine Learning in {P}ython, J. Mach.
Learn. Res., 12, 2825–2830, 2011. a, b
Pellegatti Franco, D. M., Andrade, M. d. F., Ynoue, R. Y., and Ching, J.:
Effect of Local Climate Zone (LCZ) classification on ozone chemical
transport model simulations in Sao Paulo, Brazil, Urban Climate, 27,
293–313, https://doi.org/10.1016/j.uclim.2018.12.007, 2019. a
Perera, N. and Emmanuel, R.: A “Local Climate Zone” based approach to
urban planning in Colombo, Sri Lanka, Urban Climate, 23, 188–203,
https://doi.org/10.1016/j.uclim.2016.11.006, 2018. a
Potapov, P., Li, X., Hernandez-Serna, A., Tyukavina, A., Hansen, M. C.,
Kommareddy, A., Pickens, A., Turubanova, S., Tang, H., Silva, C. E., Armston,
J., Dubayah, R., Blair, J. B., and Hofton, M.: Mapping global forest canopy
height through integration of GEDI and Landsat data, Remote Sens.
Environ., 253, 112165, https://doi.org/10.1016/j.rse.2020.112165, 2021. a
Potgieter, J., Nazarian, N., Lipson, M. J., Hart, M. A., Ulpiani, G., Morrison,
W., and Benjamin, K.: Combining High-Resolution Land Use Data With
Crowdsourced Air Temperature to Investigate Intra-Urban Microclimate,
Front. Environ. Sci., 9, 1–19,
https://doi.org/10.3389/fenvs.2021.720323, 2021. a
Quah, A. K. and Roth, M.: Diurnal and weekly variation of anthropogenic heat
emissions in a tropical city, Singapore, Atmos. Environ., 46,
92–103, https://doi.org/10.1016/j.atmosenv.2011.10.015, 2012. a
Raven, J., Stone, B., Mills, G., Towers, J., Katzschner, L., Leone, M. F.,
Gaborit, P., Georgescu, M., Hariri, M., Lee, J., LeJava, J., Sharifi, A.,
Visconti, C., and Rudd, A.: Urban Planning and Urban Design, in: Climate Change
and Cities, Cambridge University Press, 139–172, https://doi.org/10.1017/9781316563878.012, 2018. a
Reba, M. and Seto, K. C.: A systematic review and assessment of algorithms to
detect, characterize, and monitor urban land change, Remote Sens.
Environ., 242, 111739, https://doi.org/10.1016/j.rse.2020.111739, 2020. a, b, c
Ribeiro, H. V., Rybski, D., and Kropp, J. P.: Effects of changing population
or density on urban carbon dioxide emissions, Nat. Commun., 10,
1–9, https://doi.org/10.1038/s41467-019-11184-y, 2019. a
Rosentreter, J., Hagensieker, R., and Waske, B.: Towards large-scale mapping
of local climate zones using multitemporal Sentinel 2 data and convolutional
neural networks, Remote Sens. Environ., 237, 111472,
https://doi.org/10.1016/j.rse.2019.111472, 2020. a
Rosenzweig, C., Solecki, W., Hammer, S. A., and Mehrotra, S.: Cities lead the
way in climate-change action, Nature, 467, 909–911, https://doi.org/10.1038/467909a,
2010. a
Santos, L. G. R., Singh, V. K., Mughal, M. O., Nevat, I., Norford, L. K., and
Fonseca, J. A.: Estimating building's anthropogenic heat: a joint local
climate zone and land use classification method, eSIM 2021 conference,
12–19, https://doi.org/10.3929/ethz-b-000445814, 2020. a
Sapena, M., Wurm, M., Taubenböck, H., Tuia, D., and Ruiz, L. A.:
Estimating quality of life dimensions from urban spatial pattern metrics,
Comput. Environ. Urban, 85, 101549,
https://doi.org/10.1016/j.compenvurbsys.2020.101549, 2021. a
Schär, C., Fuhrer, O., Arteaga, A., Ban, N., Charpilloz, C., Di
Girolamo, S., Hentgen, L., Hoefler, T., Lapillonne, X., Leutwyler, D.,
Osterried, K., Panosetti, D., Rüdisühli, S., Schlemmer, L.,
Schulthess, T. C., Sprenger, M., Ubbiali, S., and Wernli, H.:
Kilometer-Scale Climate Models: Prospects and Challenges, B.
Am. Meteorol. Soc., 101, E567–E587,
https://doi.org/10.1175/bams-d-18-0167.1, 2020. a
Schiavina, M., Moreno-Monroy, A., Maffenini, L., and Veneri, P.: GHSL-OECD
Functional Urban Areas 2019, https://doi.org/10.2760/67415, 2019. a
Schläpfer, M., Lee, J., and Bettencourt, L. M. A.: Urban Skylines:
building heights and shapes as measures of city size, ArXiv [preprint], 1–17,
https://doi.org/10.48550/arXiv.1512.00946, 2015. a, b
Schneider, A., Friedl, M. A., and Potere, D.: Mapping global urban areas using
MODIS 500-m data: New methods and datasets based on “urban ecoregions”,
Remote Sens. Environ., 114, 1733–1746,
https://doi.org/10.1016/j.rse.2010.03.003, 2010. a, b, c
Seto, K. C., Güneralp, B., and Hutyra, L. R.: Global forecasts of urban
expansion to 2030 and direct impacts on biodiversity and carbon pools.,
P. Natl. Acad. Sci. USA, 109, 16 083–8, https://doi.org/10.1073/pnas.1211658109, 2012. a
Sharma, R., Hooyberghs, H., Lauwaet, D., and De Ridder, K.: Urban Heat
Island and Future Climate Change – Implications for Delhi's Heat, J.
Urban Health, 96, 235–251, https://doi.org/10.1007/s11524-018-0322-y, 2019. a
Shimada, M., Itoh, T., Motooka, T., Watanabe, M., Shiraishi, T., Thapa, R., and
Lucas, R.: New global forest/non-forest maps from ALOS PALSAR data
(2007–2010), Remote Sens. Environm., 155, 13–31,
https://doi.org/10.1016/j.rse.2014.04.014, 2014. a
Simard, M., Pinto, N., Fisher, J. B., and Baccini, A.: Mapping forest canopy
height globally with spaceborne lidar, J. Geophys. Res., 116,
G04021, https://doi.org/10.1029/2011JG001708, 2011. a
Skarbit, N., Stewart, I. D., Unger, J., and Gál, T.: Employing an urban
meteorological network to monitor air temperature conditions in the “local
climate zones” of Szeged, Hungary, Int. J. Climatol., 37,
582–596, https://doi.org/10.1002/joc.5023, 2017. a
Steeneveld, G.-J., Klompmaker, J. O., Groen, R. J., and Holtslag, A. A.: An
urban climate assessment and management tool for combined heat and air
quality judgements at neighbourhood scales, Resour. Conserv.
Recy., 132, 204–217, https://doi.org/10.1016/j.resconrec.2016.12.002, 2018. a
Stewart, I. D.: A systematic review and scientific critique of methodology in
modern urban heat island literature, Int. J. Climatol.,
31, 200–217, https://doi.org/10.1002/joc.2141, 2011a. a
Stewart, I. D.: Redefining the Urban Heat Island, Electronic Theses and Dissertations (ETDs),
University of British Columbia, 1–352,
https://circle.ubc.ca/handle/2429/38069, 2011b. a
Stewart, I. D.: Developing a field guide to identify “local climate zones” in
cities, in: 10th International Conference on Urban Climate/14th Symposium
on the Urban Environment, New York City, USA, https://ams.confex.com/ams/ICUC10/meetingapp.cgi/Paper/342085
(last access: 22 August 2022), 2018. a
Stewart, I. D. and Mills, G.: The Urban Heat Island – A Guidebook, Elsevier,
https://doi.org/10.1016/C2017-0-02872-0, 2021. a
Stewart, I. D., Krayenhoff, E. S., Voogt, J. A., Lachapelle, J. A., Allen,
M. A., and Broadbent, A. M.: Time Evolution of the Surface Urban Heat
Island, Earth's Future, 9, e2021EF002178, https://doi.org/10.1029/2021EF002178, 2021. a
Stone, B., Mednick, A. C., Holloway, T., and Spak, S. N.: Is Compact Growth
Good for Air Quality?, J. Am. Plann. Assoc., 73,
404–418, https://doi.org/10.1080/01944360708978521, 2007. a
Tadono, T., Nagai, H., Ishida, H., Oda, F., Naito, S., Minakawa, K., and
Iwamoto, H.: Generation of the 30 M-MESH global digital surface model by
alos prism, in: International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences – ISPRS Archives, 157–162,
https://doi.org/10.5194/isprsarchives-XLI-B4-157-2016, 2016. a
Takane, Y., Kikegawa, Y., Hara, M., and Grimmond, C. S. B.: Urban warming and
future air-conditioning use in an Asian megacity: importance of positive
feedback, npj Clim. Atmos. Sci., 2, 1–11,
https://doi.org/10.1038/s41612-019-0096-2, 2019. a
Taubenböck, H., Debray, H., Qiu, C., Schmitt, M., Wang, Y., and Zhu,
X. X.: Seven city types representing morphologic configurations of cities
across the globe, Cities, 105, 102814, https://doi.org/10.1016/j.cities.2020.102814,
2020. a
UN: World Urbanization Prospects: The 2018 Revision, in: Population Division of
the United Nations Department of Economic and Social Affairs, 123 pp.,
https://doi.org/10.18356/b9e995fe-en, 2019. a
Van de Walle, J., Brousse, O., Arnalsteen, L., Byarugaba, D., Ddumba, D. S.,
Demuzere, M., Lwasa, S., Nsangi, G., Sseviiri, H., Thiery, W., Vanhaeren, R.,
Wouters, H., and P.M. van Lipzig, N.: Can local fieldwork help to
represent intra-urban variability of canopy parameters relevant for tropical
African climate studies?, Theor. Appl. Climatol., 146, 457–474,
https://doi.org/10.1007/s00704-021-03733-7, 2021. a, b
Van de Walle, J., Brousse, O., Arnalsteen, L., Brimicombe, C., Byarugaba, D.,
Demuzere, M., Jjemba, E., Lwasa, S., Misiani, H., Nsangi, G., Soetewey, F.,
Sseviiri, H., Thiery, W., Vanhaeren, R., Zaitchik, B. F., and van Lipzig, N.
P. M.: Lack of vegetation exacerbates exposure to dangerous heat in dense
settlements in a tropical African city, Environ. Res. Lett., 17,
024004, https://doi.org/10.1088/1748-9326/ac47c3, 2022. a, b
van Vliet, J.: Direct and indirect loss of natural area from urban expansion,
Nature Sustainability, 2, 755–763, https://doi.org/10.1038/s41893-019-0340-0, 2019. a
Vandamme, S., Demuzere, M., Verdonck, M.-L., Zhang, Z., and Coillie, F. V.:
Revealing Kunming's (China) Historical Urban Planning Policies Through Local
Climate Zones, Remote Sensing, 11, 1731, https://doi.org/10.3390/rs11141731, 2019. a, b, c
Varentsov, M., Samsonov, T., and Demuzere, M.: Impact of Urban Canopy
Parameters on a Megacity's Modelled Thermal Environment, Atmosphere, 11,
1349, https://doi.org/10.3390/atmos11121349, 2020. a, b, c
Varentsov, M., Fenner, D., Meier, F., Samsonov, T., and Demuzere, M.:
Quantifying Local and Mesoscale Drivers of the Urban Heat Island of Moscow
with Reference and Crowdsourced Observations, Front. Environ.
Sci., 9, 1–21, https://doi.org/10.3389/fenvs.2021.716968, 2021. a, b
Varquez, A. C., Shota, K., Khanh, D. N., and Kanda, M.: Global 1-km present
and future hourly anthropogenic heat flux, Figshare [data set],
https://doi.org/10.6084/m9.figshare.12612458.v6, 2020. a
Varquez, A. C. G., Kiyomoto, S., Khanh, D. N., and Kanda, M.: Global 1-km
present and future hourly anthropogenic heat flux, Sci. Data, 8, 64,
https://doi.org/10.1038/s41597-021-00850-w, 2021. a, b
Verdonck, M.-L., Okujeni, A., van der Linden, S., Demuzere, M., De Wulf, R.,
and Van Coillie, F.: Influence of neighbourhood information on “Local
Climate Zone” mapping in heterogeneous cities, Int. J.
Appl. Earth Obs., 62, 102–113,
https://doi.org/10.1016/j.jag.2017.05.017, 2017. a, b
Verdonck, M.-l., Demuzere, M., Hooyberghs, H., Beck, C., Cyrys, J., Schneider,
A., Dewulf, R., and Van Coillie, F.: The potential of local climate zones
maps as a heat stress assessment tool, supported by simulated air temperature
data, Landscape Urban Plan., 178, 183–197,
https://doi.org/10.1016/j.landurbplan.2018.06.004, 2018. a, b
Verdonck, M.-l., Demuzere, M., Bechtel, B., Beck, C., Brousse, O., Droste, A.,
Fenner, D., Leconte, F., and Van Coillie, F.: The Human Influence
Experiment (Part 2): Guidelines for Improved Mapping of Local Climate Zones
Using a Supervised Classification, Urban Science, 3, 27,
https://doi.org/10.3390/urbansci3010027, 2019a. a
Verdonck, M.-L., Demuzere, M., Hooyberghs, H., Priem, F., and Van Coillie,
F.: Heat risk assessment for the Brussels capital region under different
urban planning and greenhouse gas emission scenarios, J.
Environ. Manage., 249, 109210, https://doi.org/10.1016/j.jenvman.2019.06.111,
2019b. a, b
Wang, J. and Ouyang, W.: Attenuating the surface Urban Heat Island within the
Local Thermal Zones through land surface modification, J.
Environ. Manage., 187, 239–252, https://doi.org/10.1016/j.jenvman.2016.11.059,
2017. a
Wang, J., Chen, Y., Liao, W., He, G., Tett, S. F. B., Yan, Z., Zhai, P., Feng,
J., Ma, W., Huang, C., and Hu, Y.: Anthropogenic emissions and urbanization
increase risk of compound hot extremes in cities, Nat. Clim. Change, 11,
1084–1089, https://doi.org/10.1038/s41558-021-01196-2, 2021. a
Wang, R., Cai, M., Ren, C., Bechtel, B., Xu, Y., and Ng, E.: Detecting
multi-temporal land cover change and land surface temperature in Pearl River
Delta by adopting local climate zone, Urban Climate, 28, 100455,
https://doi.org/10.1016/j.uclim.2019.100455, 2019. a
Williams, K., Joynt, J. L., and Hopkins, D.: Adapting to Climate Change in the
Compact City: The Suburban Challenge, Built Environ., 36, 105–115,
https://doi.org/10.2148/benv.36.1.105, 2010. a
Wong, M. M. F., Fung, J. C. H., Ching, J., Yeung, P. P. S., Tse, J. W. P., Ren,
C., Wang, R., and Cai, M.: Evaluation of uWRF performance and modeling
guidance based on WUDAPT and NUDAPT UCP datasets for Hong Kong, Urban
Climate, 28, 100460, https://doi.org/10.1016/j.uclim.2019.100460, 2019. a
Wouters, H., Demuzere, M., Blahak, U., Fortuniak, K., Maiheu, B., Camps, J., Tielemans, D., and van Lipzig, N. P. M.: The efficient urban canopy dependency parametrization (SURY) v1.0 for atmospheric modelling: description and application with the COSMO-CLM model for a Belgian summer, Geosci. Model Dev., 9, 3027–3054, https://doi.org/10.5194/gmd-9-3027-2016, 2016. a
Wu, Y., Sharifi, A., Yang, P., Borjigin, H., Murakami, D., and Yamagata, Y.:
Mapping building carbon emissions within local climate zones in Shanghai,
Enrgy. Proced., 152, 815–822, https://doi.org/10.1016/j.egypro.2018.09.195, 2018. a
Xu, C., Hystad, P., Chen, R., Van Den Hoek, J., Hutchinson, R. A., Hankey,
S., and Kennedy, R.: Application of training data affects success in
broad-scale local climate zone mapping, Int. J. Appl.
Earth Obs., 103, 102482,
https://doi.org/10.1016/j.jag.2021.102482, 2021. a, b, c, d
Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O'Loughlin, F., Neal,
J. C., Sampson, C. C., Kanae, S., and Bates, P. D.: A high-accuracy map of
global terrain elevations, Geophysical Research Letters, 44, 5844–5853,
https://doi.org/10.1002/2017GL072874, 2017. a
Yang, X., Yao, L., Jin, T., Peng, L. L., Jiang, Z., Hu, Z., and Ye, Y.:
Assessing the thermal behavior of different local climate zones in the
Nanjing metropolis, China, Build. Environ., 137, 171–184,
https://doi.org/10.1016/j.buildenv.2018.04.009, 2018. a
Yang, X., Peng, L. L., Jiang, Z., Chen, Y., Yao, L., He, Y., and Xu, T.:
Impact of urban heat island on energy demand in buildings: Local climate
zones in Nanjing, Appl. Energ., 260, 114279,
https://doi.org/10.1016/j.apenergy.2019.114279, 2020. a
Yokoya, N., Ghamisi, P., Xia, J., Sukhanov, S., Heremans, R., Tankoyeu, I.,
Bechtel, B., Le Saux, B., Moser, G., and Tuia, D.: Open Data for Global
Multimodal Land Use Classification: Outcome of the 2017 IEEE GRSS Data Fusion
Contest, IEEE J. Sel. Top. Appl., 11, 1363–1377, https://doi.org/10.1109/JSTARS.2018.2799698, 2018. a
Yoo, C., Lee, Y., Cho, D., Im, J., and Han, D.: Improving local climate zone
classification using incomplete building data and sentinel 2 images based on
convolutional neural networks, Remote Sensing, 12, 1–22,
https://doi.org/10.3390/rs12213552, 2020. a
Zhang, X., Liu, L., Wu, C., Chen, X., Gao, Y., Xie, S., and Zhang, B.: Development of a global 30 m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform, Earth Syst. Sci. Data, 12, 1625–1648, https://doi.org/10.5194/essd-12-1625-2020, 2020. a, b, c, d
Zhang, Y., Kong, D., Gan, R., Chiew, F. H., Mcvicar, T. R., Zhang, Q., and
Yang, Y.: Coupled estimation of 500 m and 8-day resolution global
evapotranspiration and gross primary production in 2002–2017, Remote
Sens. Environ., 222, 165–182, https://doi.org/S003442571830590X, 2019. a
Zhang, Y., Zhang, J., Zhang, X., Zhou, D., and Gu, Z.: Analyzing the
Characteristics of UHI (Urban Heat Island) in Summer Daytime Based on
Observations on 50 Sites in 11 LCZ (Local Climate Zone) Types in Xi'an,
China, Sustainability, 13, 83, https://doi.org/10.3390/su13010083, 2020. a
Zhao, C., Weng, Q., and Hersperger, A. M.: Characterizing the 3-D urban
morphology transformation to understand urban-form dynamics: A case study of
Austin, Texas, USA, Landscape Urban Plan., 203, 103881,
https://doi.org/10.1016/j.landurbplan.2020.103881, 2020. a
Zhao, C., Weng, Q., Wang, Y., Hu, Z., and Wu, C.: Use of local climate zones
to assess the spatiotemporal variations of urban vegetation phenology in
Austin, Texas, USA, GIScience Remote Sens., 59, 393–409,
https://doi.org/10.1080/15481603.2022.2033485, 2022. a, b
Zhao, L., Oleson, K., Bou-Zeid, E., Krayenhoff, E. S., Bray, A., Zhu, Q.,
Zheng, Z., Chen, C., and Oppenheimer, M.: Global multi-model projections of
local urban climates, Nat. Clim. Change, 11, 152–157,
https://doi.org/10.1038/s41558-020-00958-8, 2021. a, b, c, d
Zhao, Z., Shen, L., Li, L., Wang, H., and He, B.-J.: Local Climate Zone
Classification Scheme Can Also Indicate Local-Scale Urban Ventilation
Performance: An Evidence-Based Study, Atmosphere, 11, 776,
https://doi.org/10.3390/atmos11080776, 2020.
a
Zhi, C., Tang, Y., Chang, L., and Demuzere, M.: The evolution of
three-dimensional urban spatial form and its planning response to the surface
heat island effect: Taking Beijing as an example, International Urban
Planning, 36, 61–68, https://doi.org/10.19830/j.upi.2021.407, 2021. a, b
Zhou, Y., Smith, S. J., Zhao, K., Imhoff, M., Thomson, A., Bond-Lamberty, B.,
Asrar, G. R., Zhang, X., He, C., and Elvidge, C. D.: A global map of urban
extent from nightlights, Environ. Res. Lett., 10, 054011,
https://doi.org/10.1088/1748-9326/10/5/054011, 2015. a
Zhu, X. X., Qiu, C., Hu, J., Shi, Y., Wang, Y., Schmitt, M., and
Taubenböck, H.: The urban morphology on our planet – Global
perspectives from space, Remote Sens. Environ., 269, 112794,
https://doi.org/10.1016/j.rse.2021.112794, 2022. a
Zhu, Z., Zhou, Y., Seto, K. C., Stokes, E. C., Deng, C., Pickett, S. T., and
Taubenböck, H.: Understanding an urbanizing planet: Strategic
directions for remote sensing, Remote Sens. Environ., 228, 164–182,
https://doi.org/10.1016/j.rse.2019.04.020, 2019. a
Zhuo, L., Zheng, J., Zhang, X., Li, J., and Liu, L.: An improved method of
night-time light saturation reduction based on EVI, Int. J.
Remote Sens., 36, 4114–4130, https://doi.org/10.1080/01431161.2015.1073861, 2015. a, b
Zhuo, L., Shi, Q., Tao, H., Zheng, J., and Li, Q.: An improved temporal
mixture analysis unmixing method for estimating impervious surface area based
on MODIS and DMSP-OLS data, ISPRS J. Photogramm., 142, 64–77, https://doi.org/10.1016/j.isprsjprs.2018.05.016, 2018. a, b
Zonato, A., Martilli, A., Di Sabatino, S., Zardi, D., and Giovannini, L.:
Evaluating the performance of a novel WUDAPT averaging technique to define
urban morphology with mesoscale models, Urban Climate, 31, 100584,
https://doi.org/10.1016/j.uclim.2020.100584, 2020. a
Zong, L., Liu, S., Yang, Y., Ren, G., Yu, M., Zhang, Y., and Li, Y.:
Synergistic Influence of Local Climate Zones and Wind Speeds on the Urban
Heat Island and Heat Waves in the Megacity of Beijing, China, Front.
Earth Sci., 9, 673786, https://doi.org/10.3389/feart.2021.673786, 2021. a
Short summary
Because urban areas are key contributors to climate change but are also susceptible to multiple hazards, one needs spatially detailed information on urban landscapes to support environmental services. This global local climate zone map describes this much-needed intra-urban heterogeneity across the whole surface of the earth in a universal language and can serve as a basic infrastructure to study e.g. environmental hazards, energy demand, and climate adaptation and mitigation solutions.
Because urban areas are key contributors to climate change but are also susceptible to multiple...
Altmetrics
Final-revised paper
Preprint