
Earth Syst. Sci. Data, 14, 3835–3873, 2022
https://doi.org/10.5194/essd-14-3835-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

A global map of local climate zones to support earth
system modelling and urban-scale

environmental science

Matthias Demuzere1, Jonas Kittner1, Alberto Martilli2, Gerald Mills3, Christian Moede1,
Iain D. Stewart4, Jasper van Vliet5, and Benjamin Bechtel1

1Urban Climatology Group, Department of Geography, Ruhr-University Bochum, Bochum, Germany
2Environmental Department, CIEMAT, Madrid, Spain

3School of Geography, University College Dublin, Dublin, Ireland
4Global Cities Institute, University of Toronto, Toronto, Ontario, Canada

5Institute for Environmental Studies, Vrije Universiteit Amsterdam, De Boelelaan 1085,
1081, HV, Amsterdam, the Netherlands

Correspondence: Matthias Demuzere (matthias.demuzere@rub.de)

Received: 11 March 2022 – Discussion started: 7 April 202
Revised: 11 July 2022 – Accepted: 19 July 2022 – Published: 29 August 2022

Abstract. There is a scientific consensus on the need for spatially detailed information on urban landscapes
at a global scale. These data can support a range of environmental services, since cities are places of intense
resource consumption and waste generation and of concentrated infrastructure and human settlement exposed to
multiple hazards of natural and anthropogenic origin. In the face of climate change, urban data are also required
to explore future urbanization pathways and urban design strategies in order to lock in long-term resilience and
sustainability, protecting cities from future decisions that could undermine their adaptability and mitigation role.
To serve this purpose, we present a 100 m-resolution global map of local climate zones (LCZs), a universal
urban typology that can distinguish urban areas on a holistic basis, accounting for the typical combination of
micro-scale land covers and associated physical properties. The global LCZ map, composed of 10 built and
7 natural land cover types, is generated by feeding an unprecedented number of labelled training areas and
earth observation images into lightweight random forest models. Its quality is assessed using a bootstrap cross-
validation alongside a thematic benchmark for 150 selected functional urban areas using independent global
and open-source data on surface cover, surface imperviousness, building height, and anthropogenic heat. As
each LCZ type is associated with generic numerical descriptions of key urban canopy parameters that regulate
atmospheric responses to urbanization, the availability of this globally consistent and climate-relevant urban
description is an important prerequisite for supporting model development and creating evidence-based climate-
sensitive urban planning policies. This dataset can be downloaded from https://doi.org/10.5281/zenodo.6364594
(Demuzere et al., 2022a).

1 Introduction

Cities are at the forefront of global climate change science
owing to their emissions of greenhouse gases and their ex-
posure to projected hazards, such as sea-level rise and cli-
mate warming (IPCC, 2022). As a result, they are the fo-
cus of mitigation and adaptation policies and, as they have

governance structures in place, are an ideal scale to affect
change. The crucial role that cities can play in this arena is
recognized at the international level: the new United Nations
Agenda and the 11th Sustainable Development Goal focus on
urban resilience, climate, and environment sustainability of
cities, two of the four challenges identified by the World Me-
teorological Organisation (WMO) World Weather Research
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Program are urban-related: high-impact weather, including
impacts in cities, and urbanization, the Intergovernmental
Panel on Climate Change Cities and Climate Change Scien-
tific Committee identified six research priorities for science
to have a stronger role in urban policy and practice, and ad-
vocacy groups like C40 (https://www.c40.org/cop26/, last ac-
cess: 22 August 2022) play an increasingly important role in
achieving national emission targets and enhancing resilience
(Creutzig et al., 2016; Bai et al., 2018; Masson et al., 2020).

Cities are simultaneously drivers of regional and local cli-
mate changes. The conversion of earth’s land surface into
urban areas is one of the most irreversible human impacts
on the global ecosystem (Grimm et al., 2008; Reba and
Seto, 2020). In addition to the many modifications to the
biosphere, hydrosphere, and lithosphere (Seto et al., 2012;
D’Amour et al., 2017; Liu et al., 2019; van Vliet, 2019;
Zhang et al., 2019; McDonough et al., 2020), urbanization
affects energy demand (Creutzig et al., 2015; Güneralp et al.,
2017), releases anthropogenic heat emissions and pollutants
(Patella et al., 2018; Takane et al., 2019), and alters the ur-
ban climate (Oke et al., 2017). Current and future climate
changes represent significant risks to urban populations and
to the natural and physical infrastructure systems of cities
(Costello et al., 2009; UN, 2019; Wang et al., 2021). In this
context, the WMO has advocated the development of inte-
grated urban services (IUS) – using observations (remote and
on-site) and models – that addresses the panoply of hazards
that cities face and the needs of service providers, including
emergency services, public health bodies, energy produces,
and urban designers and planners (Baklanov et al., 2018;
Grimmond et al., 2020).

Despite their importance as a spatial nexus of climate
drivers and of governance, cities are largely excluded from
global climate science owing to their relatively small extent
and our limited knowledge of their spatial structures. Global-
scale climate models have only recently evolved to accom-
modate urban-scale landscapes, even though the urban pa-
rameters that are used by these models are limited in scope
(Zhao et al., 2021). At regional and urban scales, model de-
velopments use far more detailed parameters that include de-
scriptions of the net impacts of buildings in creating distinct
urban canopy and boundary layers. While some theoretical
challenges remain, it is now possible to simulate urban ef-
fects on climate between and above buildings at sub-urban
scales (Barlow, 2014). Scientific advances will soon allow
variable-resolution modelling that will incorporate the hier-
archy of climate processes and impacts. However, the ab-
sence of suitable and universal global urban landscape data
to inform these models represents a serious impediment to
progress (Zhao et al., 2021; Hertwig et al., 2021). Hence, a
comprehensive database is needed on cities globally that sup-
ports multi-scale modelling, provides a spatial framework for
interpreting on-site and remote measurements, and allows the
meaningful transfer of knowledge among and within cities
(Rosenzweig et al., 2010; Hidalgo et al., 2018).

The critical data needed to support urban climate science
include information on urban form and functions. Measures
of form include e.g. building density, street widths, building
heights, construction materials, and fraction of vegetated ar-
eas. These attributes largely influence the local climate and
the “adaptation” capacity of a city (e.g. to ensure a comfort-
able thermal environment for its inhabitants). Urban func-
tions describe the emissions of waste heat, materials, and
gases into the overlying atmosphere. Appropriate measures
would include the anthropogenic heat flux (AHF) and CO2
emissions. Form and function are correlated. For example,
population density regulates energy consumption and there-
fore the potential to mitigate global warming by reducing
the greenhouse gas emissions; variations in building layout
and heights moderate surface roughness and contribute to
the atmospheric dispersive conditions and thus the air qual-
ity (Martilli, 2014). Models are needed to assess the net
benefits of climate-based interventions that may have unin-
tended outcomes. For example, densely built and occupied
cities (so-called compact 15 min cities) will reduce traffic,
energy demand, and CO2 emissions and in some cases im-
prove air quality (Stone et al., 2007; McDonough et al., 2020;
Williams et al., 2010) but will enhance warming and heat
stress by reducing vegetative cover and the sky view factor
in the street canyons and increase the spatial density of the
anthropogenic heat (Demuzere et al., 2014; Lai et al., 2019).
Understanding how different urban forms interact with the
atmosphere is key to redesigning cities, and, more impor-
tantly, planning future urbanization. It is therefore essential
to have information that differentiates between urban forms
that can be used by atmospheric models to simulate the fu-
ture climatic conditions and different urban form scenarios.
Our objective here is to generate these data to support model
evolution and stimulate research on multi-scale climate pro-
jections to manage urban risks.

Acquiring urban data at a global scale is not a trivial ex-
ercise owing to the operational definition of “urban”, the
scattered extents of cities globally, and their complex intra-
urban geographies; for example, the Global Human Settle-
ment Layer Urban Centres Database identifies over 13 000
settlements (Florczyk et al., 2019), while X. Li et al. (2020)
generated over 60 000 global urban boundaries. At the global
scale, there are several datasets that identify the extent of
contiguous urban areas based on built-up or impervious sur-
face cover (Zhou et al., 2015; Corbane et al., 2017; Esch
et al., 2017; Marconcini et al., 2020; Gong et al., 2020;
X. Zhang et al., 2020; Zhao et al., 2022) but none that provide
intra-urban morphological details (green cover, built density,
building heights, etc.) that are needed by scientists to gener-
ate the urban canopy parameters (UCPs) to run models and
by urban policy-makers to make informed decisions based on
analyses of risk. For many cities, relevant information may
be gleaned from local sources that maintain municipal geo-
graphic databases (e.g. Biljecki et al., 2021), but these data
vary in terms of their quality, consistency, and accessibility,
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which limits their wider applicability (Zhu et al., 2019). The
100 m-resolution global local climate zone (LCZ) map pre-
sented here addresses this need for more detailed intra-urban
data. This product is the outcome of more than a decade of
research on how best to acquire, evaluate, and deploy urban
data in support of climate science (Stewart and Oke, 2012;
Bechtel and Daneke, 2012; Ching et al., 2018).

The LCZ typology is currently the only universal classifi-
cation that categorizes urban landscapes using a scheme that
identifies readily recognizable neighbourhood types based
on their form and function, which modify the surface en-
ergy and water budgets. Critically, each LCZ type is linked
to meaningful UCP value ranges that can be used for physi-
cally based modelling (Stewart and Oke, 2012; Ching et al.,
2019; Demuzere et al., 2020a). This goes beyond the urban
mask and enables the assessment of the spatial impact of
urban planning decisions that will alter UCPs and their cli-
mate outcomes. The LCZ scheme is distinguished from other
LULC schemes by its focus on urban and rural landscape
types, which can be described by any of the 17 classes in the
scheme (Fig. 1). The scheme was originally designed to en-
courage climate change researchers to step away from their
computers and get acquainted with the field sites that sup-
port their work in order to capture the character of the urban
landscape responsible for the urban heat island (UHI) and to
ensure consistent reporting of metadata about the sites used
to measure the heat island effect (Stewart, 2018; Stewart and
Mills, 2021). The World Urban Database and Access Portal
Tools (WUDAPT) project has adopted the scheme in pursuit
of its goal “to capture consistent information on cities world-
wide that can support urban weather, climate, hydrology and
air quality modelling” (Ching et al., 2018). The global LCZ
product for the first time captures the intra-urban heterogene-
ity across the whole surface of the earth, capturing cities of
all sizes. It complements the LCZ maps for individual cities
created by the WUDAPT community, the LCZ Generator
(https://lcz-generator.rub.de/, last access: 22 August 2022)
(Demuzere et al., 2021), or those available via other sources
(e.g. Taubenböck et al., 2020; Zhu et al., 2022). In addition,
as each LCZ type is associated with generic numerical de-
scriptions of key UCPs, the availability of this globally con-
sistent and climate-relevant urban description is an impor-
tant prerequisite for advancing our capacity to assess climate
risks at urban scales and enabling the development of fit-for-
purpose climate mitigation and adaptation strategies.

2 Methods and data

Whilst many LCZ mapping methodologies are currently
available (see e.g. the review by Jiang et al., 2021),
the methodology for the global LCZ map follows WU-
DAPT’s default protocol that was launched by Bechtel
et al. (2015) and sequentially improved by Demuzere et al.
(2019b, a, 2020a), ultimately leading to the LCZ Genera-

tor (Demuzere et al., 2021), a web application that makes
single-city LCZ mapping fast and easy. The procedure re-
quires labelled training areas, earth observation input data,
and a random forest classifier, discussed in depth in Sect. 2.1,
2.2 and 2.3 respectively. In addition, in line with previous
continental-scale LCZ mapping efforts by Demuzere et al.
(2019b, 2020a), the quality of the resulting LCZ map is as-
sessed in two ways: (1) a traditional quality assessment using
multiple accuracy metrics and (2) a thematic benchmark, by
translating the LCZ map into its corresponding LCZ-based
urban canopy parameters and comparing these against (semi-
)independent global and open-source databases reflecting ur-
ban forms and functions (Sect. 2.4).

2.1 Training areas

Training areas (TAs) are LCZ-labelled polygons that rep-
resent typical examples of built or natural LCZs in a re-
gion of interest (ROI). By design, they are compiled in
a crowd-sourced manner, either by urban experts (Bechtel
et al., 2015) or alternative crowd-sourcing platforms such
as MTurk (https://www.mturk.com, last access: 22 August
2022) (Demuzere et al., 2020a; Xu et al., 2021) using good-
practice guidelines for digitizing TAs (see Appendix A and
Demuzere et al., 2021). While the training area polygons and
corresponding LCZ maps created by individuals are often
of poor to moderate quality, the Human Influence Experi-
ment (HUMINEX) (Bechtel et al., 2017; Verdonck et al.,
2019a) demonstrated large accuracy improvements (up to
20 %) when multiple (poor- to moderate-quality) training
datasets were used together to create a single LCZ map. In
the current study, TAs are compiled from multiple sources.
First, well-trained (inspired by HUMINEX findings) student
assistants from the Ruhr-University Bochum produced TA
sets for more than 100 global ROIs (labelled RUB). Sec-
ond, archived TA (labelled ARC) sets were collected from
previously published research and collaborations, including
the samples hosted on the original WUDAPT portal (https:
//www.wudapt.org/the-wudapt-portal/, last access: 22 Au-
gust 2022). Finally, the RUB and ARC TA sets are supple-
mented with the TA samples available from the LCZ Gener-
ator (Demuzere et al., 2021) (labelled GEN).

Before being used in the classification procedure, all
TA sets are curated. First, all RUB and ARC training
area sets are submitted to the LCZ Generator: in case of
multiple entries for one submission, only the submission
with the highest overall accuracy is retained. Second, only
TA samples mapped to LCZs with an overall accuracy
greater than 50 % are kept. Third, in case of duplicate re-
gions across the different sources, the following priority is
used: RUB>ARC>GEN. Fourth, only the original 17 LCZ
classes are kept, thereby removing non-standardized classes
available in some of the samples, such as LCZ W – “Wet-
lands” (Brousse et al., 2019, 2020b, a) and LCZ H – “Agri-
cultural greenhouses” (Vandamme et al., 2019). Third, in or-
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Figure 1. Definitions of built (1–10) and land cover types (A–G) for the local climate zone scheme (Stewart and Oke, 2012; Demuzere et al.,
2020a).
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der to maintain computational efficiency and to avoid redun-
dancy and mixed spectral characteristics, the surface area
of large polygons (> 1.5 km2) is reduced, and too small or
too complex TA polygons are removed (Demuzere et al.,
2021). Finally, all pixels embedded within the ROIs are as-
signed to urban ecoregions (ERs), which are regional clusters
based on climate, vegetation, and urban topology (Schneider
et al., 2010). This is based on the finding of Demuzere et al.
(2019b) that ERs can provide a basis for intelligent learning
between cities and allow upscaling from individual cities to
regional and global levels.

2.2 Earth observation input data

In addition to the TAs, earth observation (EO) input data are
also required to feed into the LCZ-supervised random for-
est classifier (Breiman, 2001; Bechtel et al., 2015). The 33
global earth observation input features used by default in
the LCZ Generator (see Table 2 in Demuzere et al., 2021)
serve as a baseline. However, some EO input features are up-
dated or added. The original 1 km global forest canopy height
representative for 2005 (Simard et al., 2011) is replaced
by the 30 m global forest canopy height dataset representa-
tive for 2019, developed by Potapov et al. (2021) through
the integration of the Global Ecosystem Dynamics Investi-
gation (GEDI) lidar instrument data (April–October 2019)
and multi-temporal metrics derived from Landsat. Also, the
ALOS digital surface model (DSM) data are updated to
version 3.2, an improved version that reconsiders the for-
mat in the high-latitude area, auxiliary data, and process-
ing method (Tadono et al., 2016). In addition, the Shuttle
Radar Topography Mission (SRTM) digital elevation model
(DEM) information is replaced by the MERIT DEM (Multi-
Error-Removed Improved-Terrain Digital Elevation Model,
Yamazaki et al., 2017), from which the slope and aspect are
also added. Because of the changes in the DSM and DEM,
the Canopy Height Model (CHM) (DSM–DEM) data are
also updated. Building further upon the findings of Brousse
et al. (2020a), Hay Chung et al. (2021), and Chen et al.
(2021a), two more sets of input features are added, including
(1) Gray Level Co-occurrence Matrix (GLCM) texture fea-
tures (contrast, dissimilarity, inertia, sum average, and clus-
ter shade) derived from the PALSAR (Phased Array type
L-band Synthetic Aperture Radar) for both HH (horizon-
tal) and HV (horizontal–vertical) polarizations with a 4-by-
4 kernel size (matching the LCZ 100 m spatial resolution)
and (2) NANTLI, a Landsat 8 NDVI-adjusted (Normalized
Difference Vegetation Index) Night-Time Light Index based
on VIIRS (Visible Infrared Imaging Radiometer Suite) data,
analogous to EANTLI (Zhuo et al., 2015, 2018; X. Zhang
et al., 2020). See Appendix B for more details on these ad-
ditional input features. Combined, this results in a set of 46
earth observation input features, derived from Landsat 8 (16),
Sentinel-1 (5), Sentinel-2 (8), PALSAR (10), VIIRS (1), and
other sources (6).

2.3 Lightweight global random forest models

To date, the pixel-based LCZ mapping methods have used a
wide variety of machine learning algorithms to classify LCZs
(see e.g. Sect. 3.1.4 in Jiang et al., 2021, for more details).
Here, WUDAPT’s initial and default random forest classi-
fier algorithm is used (Bechtel et al., 2015), building further
upon the classification procedure of the LCZ Generator (De-
muzere et al., 2021) that uses Breiman’s random forest im-
plementation in Google’s Earth Engine (EE) in combination
with an automated cross-validation approach using 25 boot-
straps (Breiman, 2001; Bechtel et al., 2015; Gorelick et al.,
2017; Demuzere et al., 2019a, 2020a, 2021). Yet since the
sheer size of the classification problem (2+ million labels
and 46 input features) leads to the EE’s user memory limit
being exceeded or to computational timeouts, two sequen-
tial pathways (Fig. 2) are developed that lead to lightweight
global random forest models that balance optimal learning
with accuracy and computational feasibility and efficiency
(Corbane et al., 2021).

In a first pathway, earth observation data are extracted
from all input features and for all pixels embedded within the
training area polygons. Then, using Python’s random forest
from the scikit-learn 0.24.2 package (Pedregosa et al., 2011)
and the RF parameters used in previous work by Demuzere
et al. (2019b, a, 2020a, 2021), a feature importance ranking
is performed on all 46 earth observation input features for
the global TA set and 15 distinct TA sets stratified by ur-
ban ecoregion. Simultaneously, the quality of these random
forest classifications is assessed (see Sect. 2.4 for more in-
formation) by bootstrapping the classification 25 times, for
the global TA set and the 15 urban ecoregions, each time us-
ing a stratified (LCZ class) random TA sampling of 70/30 %
for training/testing. In addition, a hyperparameter tuning on
EE’s random forest parameters (e.g. number of trees, max-
imum number of leaf nodes in each tree, minimum leaf
population) was applied using Python’s RandomSearchCV
and GridSearchCV (Pedregosa et al., 2011) packages (not
shown). However, as the effect of different random forest pa-
rameters on the overall accuracy was insignificant, the de-
fault random forest parameters were kept in pathway 2.

The second pathway ingests the results from the first path-
way to develop multiple lightweight global random forest
models within EE. First, the reduced final input feature set
is composed of the input features that belong at least 5 times
(out of 16, reflecting the global and 15 urban ecoregions) to
the top 50 % of the most important features obtained in path-
way 1. Second, TA polygons are sampled in a double cross-
folding manner, using five seeds (random samples) and 10 %
of all selected TA samples (Sect. 2.1). This is repeated 10
times, each time extracting a different 10 % from the corre-
sponding seed, resulting in 50 LCZ labels per pixel. Note
that this random sampling is balanced across LCZ labels
and urban ecoregions, a sampling approach that meets the
three criteria as outlined by Corbane et al. (2021) and Xu
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Figure 2. Schematic representation of the sequential pathways to develop the global LCZ map.

et al. (2021): class balance, diversity, and representativeness.
In a final step, the modal LCZ class is selected as the final
LCZ label, and the resulting global modal LCZ map is post-
processed using the morphological Gaussian filter described
in Demuzere et al. (2020a) and Demuzere et al. (2021). In
addition, a classification probability layer is produced that
identifies how often the modal LCZ was modelled per pixel
(e.g. a classification probability of 60 % means that the modal
LCZ class was mapped 30 times out of 50 LCZ models).

2.4 Quality assessment and benchmarking

2.4.1 Traditional quality assessment

In order to assess the quality of the global LCZ map, the ac-
curacy assessment from pathway 1 is repeated in pathway
2 using the final selected earth observation features only.
Also here, the pixel-based random forest classification is re-
peated 50 times (5 seeds× 10 distinct TA samples), and for
each iteration, the TA sample is randomly split in a balanced
manner (by urban ecoregion and LCZ class) using 70/30 %
for training/testing. In order to avoid spatial autocorrelation
that can lead to inflated accuracies, the “splitting the polygon
pool” approach is used (Xu et al., 2021), in which the poly-
gons (rather than the individual pixels) are randomly sampled
into 70/30 training/testing groups. The quality assessment is
done using a range of well-accepted LCZ accuracy metrics,

including overall accuracy (OA), overall accuracy for the ur-
ban LCZ classes only (OAu), overall accuracy of the built
versus natural LCZ classes only (OAbu), a weighted accu-
racy (OAw), and the class-wise metric F1 (Chinchor, 1992;
Bechtel et al., 2017; Verdonck et al., 2017; Demuzere et al.,
2019b, a; Bechtel et al., 2020). The overall accuracy denotes
the percentage of independent test pixels that were assigned
the same class as the test label. OAu reflects this percentage
for the urban LCZ classes only, and OAbu is the overall ac-
curacy for the built versus natural LCZ classes only, ignoring
their internal differentiation. The weighted accuracy (OAw)
is obtained by applying weights to the confusion matrix and
accounts for the (dis)similarity between LCZ types (Bechtel
et al., 2017, 2020). As such, confusion between dissimilar
types (e.g. LCZ 1 A) is penalized more than confusion be-
tween similar classes (e.g. LCZs 1 and 2). The class-wise ac-
curacy is evaluated using the F1 metric, which is a harmonic
mean of the user’s and producer’s accuracy (Chinchor, 1992;
Verdonck et al., 2017). It is important to note that these accu-
racy metrics reflect the consistency of the TA samples but do
not guarantee that the TA polygons are semantically correct.
However, since a huge TA database from various sources and
cities was used, this gives much more confidence than using
a TA set for a single city.
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Table 1. A selection of urban canopy parameter data associated
with built LCZ types, sourced from Stewart and Oke (2012).
Columns represent the urban canopy parameters included in the the-
matic benchmark: the percentage of built (λB (%), ratio of building
plan area to total plan area), impervious (λI (%), ratio of impervious
plan area (paved, rock) to total plan area), and total impervious (λT
(%), defined as the ratio of the sum of the building and impervious
plan areas to the total plan area) surface areas, the mean height of
roughness elements H (m) (geometric average of building heights),
and the mean annual anthropogenic heat flux AHF (W m−2). Max-
imum values for H (LCZs 1 and 4a) and AHF (LCZ 10b) are not
available and are arbitrarily set to 200 m and 1000 W m−2 respec-
tively.

LCZ λB λI λT H AHF

(1) Compact high-rise 40–60 40–60 > 80 > 25a 50–300
(2) Compact mid-rise 40–70 30–50 > 70 10–25 < 75
(3) Compact low-rise 40–70 20–50 > 60 3–10 < 75
(4) Open high-rise 20–40 30–40 50–80 > 25a < 50
(5) Open mid-rise 20–40 30–50 50–90 10–25 < 25
(6) Open low-rise 20–40 20–50 40–90 3–10 < 25
(7) Lightweight low-rise 60–90 < 20 > 60 2–4 < 35
(8) Large low-rise 30–50 40–50 > 70 3–10 < 50
(9) Sparsely built 10–20 < 20 10–40 3–10 < 10
(10) Heavy industry 20–30 20–40 40–70 5–15 > 300b

2.4.2 Thematic benchmark

A drawback of the traditional accuracy assessment is that
only pixels within TA polygons are evaluated, and those out-
side are not quality-controlled. In addition, high overall accu-
racies do not automatically mean that the resulting LCZ map
is correct, as e.g. an insufficient discrimination of LCZ types
in the training sample can lead to an artificially high OA. To
accommodate such limitations, the resulting LCZ map can be
converted to its corresponding urban canopy parameters (Ta-
ble 1), which are key in urban ecosystem processes (Stewart
and Oke, 2012; Oke et al., 2017; Ching et al., 2018, 2019)
and offer an indirect thematic evaluation of the mapped LCZ
quality. These UCP value ranges are not site-specific but are
designed to be universally applicable to all cities, since they
are based on data gathered from a large sample of measure-
ment studies, modelling studies, existing land cover classifi-
cations, and urban climate literature reviews (Stewart, 2011a;
Stewart and Oke, 2012), and even though this strategy gives
rise to other limitations and challenges (e.g. having only indi-
rect observations available or bumping into spatial and tem-
poral resolution mismatches), it does reveal the holistic na-
ture of the LCZ typology that distinguishes urban surfaces,
accounting for their typical combination of micro-scale land
covers and associated physical properties (Demuzere et al.,
2020a).

This approach is in line with previous regional works
that used datasets available for specific regions only, such
as for Europe (Demuzere et al., 2019a) or the continen-
tal United States (Demuzere et al., 2020a). For the cur-
rent study, (semi-)independent, consistent, and open-source

datasets with global coverage are selected that are critical for
distinguishing the LCZ classes (surface cover, packing and
height of roughness elements, and thermal properties) and
that are ideally representative for the year 2018. The various
products are described first, followed by an explanation of
how the thematic benchmark is performed.

– Surface cover is sourced from the Copernicus Global
Land Cover Layers – Collection 3 (CGLCL3), a global
discrete land cover map at 100 m resolution available
on a yearly basis from 2015 to 2019, of which 2018 is
selected (Buchhorn et al., 2020a, b). These maps de-
scribe the earth’s terrestrial surface in up to 23 distinct
land cover classes following the United Nations Land
Cover Classification System (Di Gregorio and Leonardi,
2016). In contrast to the natural classes, which are pri-
marily obtained via PROBA-V sensor data, the single
urban class is largely identified using the World Settle-
ment Footprint (WSF, Marconcini et al., 2020) from the
DLR (German Aerospace Center), a global map of hu-
man settlements on earth for the year 2015.

– Packing of the roughness elements can be character-
ized by the building (λB), impervious (λI), or total
impervious (λT = λB + λI) surfaces. The recent lit-
erature reports on a variety of products that claim to
represent global impervious surfaces (e.g. Gong et al.,
2020; Marconcini et al., 2020; X. Zhang et al., 2020).
These datasets generally adopt an urban mask approach;
here we follow the European Environmental Agency’s
(EEA) definition of imperviousness density as “the per-
centage of sealed artificial surface” (European Environ-
ment Agency, 2018a). In contrast, the global and high-
resolution Sentinel-2-based probability of built-up areas
(GHS-S2Net) provides a valuable alternative (Corbane
et al., 2021). GHS-S2Net is produced using a convo-
lution neural network architecture for pixel-wise image
classification that automatically extracts built-up areas
at a spatial resolution of 10 m from a global compos-
ite of Sentinel-2 imagery (Corbane et al., 2020) repre-
sentative for 2018. The dataset reports on built-up areas
in the form of probabilities, indicating the probability
of a pixel (values between 0 and 100) belonging to the
built-up class. Moreover, based on an evaluation using
building footprints from 277 regions across the globe
(Corbane et al., 2019), Corbane et al. (2021) indicated
that there is a strong relationship between the output
probabilities and the building densities, suggesting that
the model outputs can be used as a proxy for λB. As
an additional test, we regress the GHS-S2net built-up
probabilities against EEA’s 100 m imperviousness den-
sity (IMD, reflecting λT) and share of built-up (SBU,
reflecting λB) layers for the year 2018 (European Envi-
ronment Agency, 2018a, b) for the 30 largest European
functional urban areas (FUAs, Schiavina et al., 2019;
see also Appendix C for more information). The results
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(described in Appendix D) indicate that the GHS-S2net
built-up probabilities on average explain > 90 % of the
observed λT and λB variability, with regression slopes
closer to 1 for λB. Therefore, GHS-S2net built-up prob-
abilities are used in this study as a proxy for λB.

– Height of the roughness elements (building height, H )
data are taken from the 3D building structure data (un-
published data based on M. Li et al., 2020), a global
1 km2-resolution database of building height, building
footprint, and building volume estimated for the nom-
inal year of 2015. The data are estimated using a ran-
dom forest algorithm, based on a wide range of in-
put layers, including optical imagery (different Landsat
bands), synthetic aperture radar data from Sentinel-1,
derivatives of remote sensing products (such as the en-
hanced vegetation and normalized difference vegetation
indices), and other socio-economic data (road networks,
DEMs, gross domestic product, and Gini indices reflect-
ing economic inequalities within cities). In this product,
building height denotes the average height of all build-
ings in a pixel, weighted by the area of each building. As
such, it does not consider ground surfaces (roads, park-
ing places, etc.) and excludes other tall features such as
trees. Building height is estimated only for areas (pix-
els) that include built-up land in the year 2015 according
to the WSF data (Marconcini et al., 2020).

– AHF is the final LCZ attribute that can be evaluated;
unfortunately, there are no global databases of thermal
and radiative properties of the urban fabric that can
be used. Here, the recent 1 km2 global AHF dataset
from Varquez et al. (2021) is selected (hereafter re-
ferred to as AH4GUC) to benchmark the global LCZ
map. AH4GUC is a freely available database (Varquez
et al., 2020), contains maps of hourly and annual mean
anthropogenic heat emissions representing the periods
2010s and 2050s (2010’s annual mean is used here),
and integrates anthropogenic heat emissions from pri-
mary energy consumption (e.g. the industrial, agricul-
tural, commercial, residential, and transport sectors) and
metabolic processes.

The thematic benchmark is performed for 150 selected
urban regions (Fig. C1), which are identified by selecting
the 10 most populated FUAs per urban ecoregion that are
covered by the global LCZ map. In order to compare the
surface cover (built versus natural) from CGLCL3 to the
LCZ map, the latter is converted into a binary product;
all built LCZs (except LCZ 9 – “Sparsely built”, which is
predominantly natural) are converted to a single “urban”
class, and all remaining classes are considered natural. A
per-pixel quality assessment is then performed for each FUA
and is described in terms of the balanced accuracy (BA) –
providing information about the rate of correctly classified
pixels in an unbalanced setting where natural pixels are

predominant compared to urban pixels – and Cohen’s kappa
(CK) – which compensates for random chance in the pixel
assignment (Corbane et al., 2021).

As can be seen from Table 1, the benchmark UCPs λB,
H , and AHF are characterized by value ranges (e.g. λB for
LCZ 1 ranges between 40 % and 60 %), so that a one-to-one
evaluation is not possible. As such, for each of the UCPs,
the mapped LCZ classes are replaced by their corresponding
minimum, mean, and maximum UCP values, which are then
regressed against the reference products described above. As
observed H and AHF products are available at a 1 km2 reso-
lution, the 100 m LCZ-based minimum, mean, and maximum
UCP maps and 10 m GHS-S2Net urban probabilities are all
resampled to a common 1 km2 resolution. The resulting co-
efficients of determination (R2) and slopes are reported as
measures for the LCZ-based UCP explanatory power.

3 Results

3.1 Global LCZ map

Applying the TA curation procedure explained in Sect. 2.1
resulted in 410 ROIs, consisting of 63 847 polygons and
2 018 916 pixels. Their distribution between ERs varies (e.g.
the number of ROIs ranging between 8 and 100: for ER 11
– “Tropical, sub-tropical grassland” and ER 8 – “Tropical,
sub-tropical forest in Asia” respectively), in line with global
population density patterns (Fig. 3). The number of TA poly-
gons are well-distributed across the different LCZ classes
(Fig. E1), with the lowest numbers for LCZs 7 (“Lightweight
low-rise”) and 1 (“Compact high-rise”) and the highest num-
bers for LCZs D (“Low plants”) and 6 (“Open low-rise”). It
is interesting to note that, for most LCZ classes, the biggest
share of TA polygons per LCZ class and urban ecoregion
comes from ROIs in ER 3 – “Temperate forest in East Asia”
(Fig. E1) – even though this ER only has an average num-
ber of ROIs. This is in part caused by a small number of LCZ
Generator submissions with a very high number of TAs, such
as the 3000+ TAs for the larger Nanjing–Bengbu–Huai’an
(People’s Republic of China) submission (Pan, 2021).

Alongside the curated TA samples, 30 earth observa-
tion input features are used in the classification procedure,
an outcome of the feature importance ranking procedure
(Sect. 2.3). The sum average (savg) GLCM texture feature
derived from PALSAR’s HV polarization backscattering co-
efficients is found to be most important, followed by the
newly developed NANTLI metric and the 90th percentile of
the Normalized Difference Vegetation Index (NDVI) multi-
annual composite (Fig. F1). The rest of the selected features
contain information about topography, Landsat 8 bands and
band ratios, Sentinel-2 NDVI band ratios, Sentinel-1 VV and
VH composites, some other PALSAR HH and HV GLCM
textures, and the global canopy forest height (GCFH). For
clarity, a final list of selected features and their description is
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Figure 3. Spatial distribution of global training area (TA) sets on top of the urban ecoregions (ERs), only showing the centroid of each region
of interest (ROI). Marker type reflects the number of TA polygons per ROI, marker colours the TA source. Values between brackets in the
TA source and ER legend indicate the number of ROIs per source and per ER respectively. Note that ER colours and names are adopted from
Schneider et al. (2010).

provided in Table F1. Finally, it is worthwhile noting that the
16 discarded features only indicate a very limited contribu-
tion to the LCZ map quality across all the urban ecoregions.
For example, six features never belong to the top 50 % of
the most important features (VVH, PALSAR_HH_SHADE,
ASPECT, S2_sei_median, S2_csi_median, and CHM) and
another five only one time (S2_B6_median, S2_B7_median,
S2_rep_median, VV_HH, and EBBI) (please refer to Table 2
in Demuzere et al., 2021, for abbreviations). This indicates
the generic character of the selected earth observation input
feature space that is able to cover the global (urban) land
surface heterogeneity representative for different clusters of
climate, vegetation, and urban topologies.

The resulting 100 m spatial resolution global LCZ classifi-
cation, based on all TAs and selected input features, is shown
in Fig. 4. As LCZs were originally designed as a new frame-
work for UHI studies (Stewart and Oke, 2012), they also con-
tain a limited set of “natural” land cover classes (LCZs A to
G) that can be used as “control” or “natural reference” areas,
which dominate the global view. However, the seven natural
classes in the LCZ scheme cannot capture the heterogeneity
of the world’s existing natural ecosystems and thus cannot
match other products such as the 20, 36, or 75 layers that de-
scribe the earth’s terrestrial surface in the Copernicus Global
Land-Cover Layers (Buchhorn et al., 2020a, b), the Euro-
pean Space Agency Climate Change Initiative land cover

map (ESA, 2017), or the global map of terrestrial habitat
types (Jung et al., 2020) respectively. In contrast, the added
value of the LCZ framework (and map) is the diversity of ur-
ban classes, which are easily interpretable and globally con-
sistent, capturing the intra-urban variability of surface forms
and land functions.

This is showcased by zooming into the largest FUAs per
urban ecoregion in Figs. 5, 6, and 7, simultaneously showing
the LCZ classification probabilities (discussed in Sect. 3.2)
and the corresponding binary CGLCL3 surface cover. The
LCZ map for e.g. New York (ER1, Fig. 5) illustrates the com-
pact high- and mid-rise areas clustered in and around Man-
hattan, more open and lower-rise areas outside the city, and
large-scale low-rise and industrial urban land cover around
the port of Newark west of Manhattan. A second example
is the city of Moscow (ER2, Fig. 5), in which its concen-
tric layout mainly hosts LCZs 1, 2, and 4 in the centre and
LCZs 5 and 6 when moving to the suburbs and its satel-
lite cities. Such information is crucial for e.g. characterizing
the UHI, as was recently demonstrated by Varentsov et al.
(2020, 2021). More generally, the global LCZ map allows
us to make such types of assessments for any global urban
area by moving away from the traditional urban mask and
incorporating cities’ internal make-ups (Bechtel et al., 2017;
Ching et al., 2018).
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Figure 4. Global map of local climate zones. Detailed views of the pink bounding boxes are shown in Figs. 5, 6, and 7.

Historic urbanization patterns are the consequence of
countless decisions made at building, neighbourhood, and
city scales. As such, cities have unique fingerprints reflect-
ing distinct topographic, cultural, and economic contexts. To
assess the global differences of built forms and functions, the
LCZ frequencies are first categorized into groups reflecting
their degree of total impervious fraction. The high-λT cluster
(LCZs 1, 2, 3, and 8) is characterized by average λT> 85 %,
whilst the medium-λT cluster (LCZs 4, 5, 6, and 9) typically
has average λT values between 25 % and 70 %. A third clus-
ter is added that groups LCZs 7 and 10, two LCZ classes that
are distinct for their materials (LCZ 7) and anthropogenic
heating (LCZ 10). The distribution of these clusters is then
aggregated and visualized per urban ecoregion, enriched by
their corresponding underlying LCZ classes and their build-
ing height properties (Fig. 8). It is clear that there are funda-
mental geographic differences in the urban layout of cities:
cities in e.g. ER 1 (“Temperate forest in North America”) are
dominated by the open cluster, and more specifically LCZ
6. The small fraction taken by the compact cluster is in turn
dominated by LCZ 8. In contrast, cities in ER 11 (“Tropical,
sub-tropical grassland”) have a more balanced distribution of
compact and open classes. Here, the compact class is mostly
occupied by LCZs 3 and 8 and the open cluster by LCZs 6
and 9. One consistent pattern is however apparent: a clear
domination of low-rise built forms across all urban ecore-
gions. The two most contrasting examples in this respect are
ER 3, with a relevant share of LCZs 1, 2, 4, and 5, and ER 10
(“Tropical, sub-tropical savannah in Africa”) that is almost
completely dominated by low-rise built forms.

3.2 Quality assessment and benchmarking

As part of the multiple lightweight global random forest
model procedure described in Sect. 2.3, a global LCZ classi-
fication probability layer is produced that identifies how of-
ten the modal LCZ was mapped (out of a total of 50 random
forest results), indicating a first measure of the robustness of
the classification. This classification probability layer (%) is
shown in the middle panels of Fig. 5 for the largest FUAs
per urban ecoregion. Yet in order to get a more comprehen-
sive overview, LCZ-based classification probabilities are ag-
gregated over all 13 135 cities in the Global Human Settle-
ment Layer Urban Centres Database (GHS-UCDB, Florczyk
et al., 2019) and displayed per LCZ class (Fig. 9) and ER
(Fig. H1). Mean classification probabilities across the globe
are greater than 50 % for all LCZ classes, meaning that the
resulting modal LCZ class was mapped by more than half
of the 50 LCZ models. The highest classification probability
values are obtained for LCZs 6, 8, A (“Dense trees”), and
G (“Water”) (∼ 80 % to 100 %), and the lowest values are
found for LCZs 1, 4, 5, and 7, which can be for a variety of
reasons. First, these LCZ types are typically characterized by
a lower number of TAs, decreasing its potential weight in the
random forest models. Second, some of these LCZ classes
are characterized by similar building footprints and impervi-
ous surface areas (e.g. LCZs 4 and 5) yet differ mainly in the
height of their roughness elements (see Table 1). As a con-
scious decision was made to use the lower-resolution build-
ing height dataset as a semi-independent benchmark dataset
(described in Sect. 2.4.2), currently no input feature directly
represents the roughness of buildings (see also Demuzere
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Figure 5. LCZ map, its classification probability, and the corresponding binary Copernicus urban land cover (CGLCL3) for the largest
functional urban areas in urban ERs 1 to 5.

et al., 2019b, 2020a). In terms of the ER-stratified values
(Fig. H1), all classification probabilities per LCZ class are
in line with the global values, demonstrating the universal-
ity of the LCZ typology and the robustness of the classi-
fiers and input features across the urban ecoregions. Classifi-

cation probabilities for LCZ 7 deviate from this behaviour
(values< 40 % for ERs 11 and 12), which might be due
to the relatively low number of ROIs and the concurring
lower number of TA polygons for LCZ 7. In addition, as
this LCZ class includes informal settlements – often con-
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Figure 6. Like Fig. 5 but for the largest functional urban areas in urban ecoregions 6 to 10.

sisting of lightweight materials and densely packed buildings
inter-spaced with hard-packed surfaces – these pixels present
a challenge for the classifier because of their mixed spec-
tral signature (Stewart, 2011b; Brousse et al., 2020a; Van de
Walle et al., 2021, 2022). For this LCZ type, future versions
of the global map might benefit and build further upon recent

efforts dedicated to mapping informal urban settlements (see
e.g. Kuffer et al., 2020; Assarkhaniki et al., 2021; Owusu
et al., 2021; Abascal et al., 2022).

The traditional accuracy assessment using the independent
training/test samples obtained via the “splitting the polygon
pool” approach (Xu et al., 2021) and the 50 lightweight ran-
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Figure 7. Like Fig. 5 but for the largest functional urban areas in urban ecoregions 11 to 15.

dom forest models results in scores of > 70 % for all OA
metrics (Fig. G1). The variability across the 50 random for-
est models is small, indicating the robustness of the global
classification protocol. Interestingly, the global OA values
using the reduced set of final input features is higher com-
pared to the accuracy assessment using all input features

(74.5 %± 15.1, Fig. F1), supporting the valid removal of un-
informative input features from the multi-dimensional input
feature space. The class-wise F1 metric shows larger vari-
ability with values for the built LCZs between 50 % (LCZ 1
– “Compact high-rise”) and 78 % (LCZ 6 – “Open low-rise”)
and> 60 % for all natural classes. The lowest accuracy is ob-
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Figure 8. Distribution of the built LCZ classes for all 13 135 urban centres in the Urban Centre Database, aggregated per urban ER. The inner
rings indicate the HIGH (LCZs 1, 2, 3, and 8), MEDIUM (LCZs 4, 5, 6, and 9) and OTHER (LCZs 7 and 10) degree of total imperviousness
(λT) clusters. The outer rings depict the actual LCZ classes. The expansion of individual LCZ wedges visually reflects the differences in
building height across LCZ classes (see Table 1).

Figure 9. Classification probabilities of the mapped LCZ classes, aggregated over all urban centres from GHS-UCDB. The grey boxplots
depict the classification probability distribution for all global urban centres, per LCZ class, with boxes and whiskers spanning the 25th–75th
and 5th–95th percentiles respectively and means and medians indicated by the white dots and black lines respectively. The vertical lines in
the colours of the urban ERs (colour legend as in Fig. 3) indicate the 25th–75th percentile range averaged over the urban centres, stratified
per ER. ER-coloured dots indicate the mean. Results stratified per urban ecoregion are available in Appendix H.
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tained for LCZs 1, 4, 5, 7, and 10, in line with the results of
the classification probability layer discussed above.

Since the LCZ typology is a representation of urban form
– defined via the corresponding universal LCZ-based canopy
parameters – a thematic benchmark allows us to indirectly as-
sess the quality of the LCZ map for continuous land surfaces,
including those pixels not part of the TA samples used in the
traditional accuracy assessment. Figure 10a reveals a good
correspondence between the built LCZ classes and the urban
class from the CGLCL3 – taken from the World Settlement
Footprint data (Marconcini et al., 2020) – with an average BA
and CK of 90 % and 73 % respectively. Stratifying the BA
results per urban ecoregion indicates a similar performance,
with mean BA values ranging between 83 % (ER3) and 93 %
(ER4) (Fig. I1). A similar variability can be observed for the
CK results stratified per urban ecoregion, with mean CK val-
ues ranging between 65 % (ER8) and 80 % (ER9). These re-
sults indicate that the global LCZ map presents a good cor-
respondence to a state-of-the-art and dedicated built-up land
data product and is thus able to correctly discriminate be-
tween built-up and natural land cover (confirmed indepen-
dently by an OAbu of ∼ 95 %, an accuracy metric that evalu-
ates the built versus natural LCZ classes only – Fig. G1).

For λB,H , and AHF – characterized by UCP value ranges
(Table 1) – a one-to-one evaluation with their reference
datasets (described in Sect. 2.4.2) is not possible. As such,
minimum, mean, and maximum UCP values are regressed
against these reference products, from which the coefficients
of determination (R2) and slopes represent the measures of
the explanatory power of the LCZ map (Figs. 10b, c and I2
for results stratified per urban ecoregion). The LCZ-based
building surface fraction λB is in very good agreement with
the GHS-S2Net proxies, with meanR2 values close to 0.9 for
the whole value range. Slope values provide a slightly more
nuanced result, with average values of 0.69, 1, and 1.22 when
targeting the minimum, mean, and maximum λB UCP values.
In other words, assigning the means of the λB value ranges
to each corresponding LCZ class is a very good approxima-
tion for the building surface fraction for global cities. Results
for building heights H and the AHF can be interpreted in the
same way (Figs. 10b, c and I3 and I4 for results stratified
per urban ecoregion). For H , R2/slope values range between
0.42/2.5 and 0.5/0.59 for the maximum and minimum LCZ-
based H values. Also here, the best results are obtained us-
ing the mean of the LCZ-based value ranges, even though
only∼ 50 % of the observed building height is explained and
the mean LCZ-based values tend to overestimate the refer-
ence values. For AHF, it is clear that assigning the minimum
of the LCZ-based AHF range to the LCZ map has little ex-
planatory power: R2 is 0.1 with a slope of∼ 0.1. Sightly bet-
ter results are obtained when using the maximum and espe-
cially the mean of the AHF value range, but here only 30 %
of the observed AHF variability can also be explained by
the LCZ map. From previous anthropogenic heat flux works
(Oke et al., 2017), it is clear that this is not surprising. The

AHF values provided by Stewart and Oke (2012) are fixed
ranges, reflecting the mean annual heat flux density from
fuel combustion and human activity (transportation, space
cooling/heating, industrial processing, human metabolism) at
the local scale. Yet, as also indicated in their Table 4 (foot-
note c), these values vary significantly with latitude, season,
and population density. LCZs have previously been shown to
indirectly capture information on population densities (De-
muzere et al., 2020a), and the role of seasonality with re-
spect to LCZ-based annual AHF values has also been dis-
cussed elsewhere (e.g. Varentsov et al., 2020). Yet it is ob-
vious that the observed zonal AHF variability in AH4GUC
(Varquez et al., 2021, their Fig. 5) is neglected completely
in this thematic benchmark. This means that, for example,
an LCZ 6 neighbourhood in tropical Singapore will be as-
signed the same mean annual AHF values as an LCZ 6 area
in the high-latitude city of Helsinki (Finland), even though
it is clear that their building cooling/heating patterns will be
completely different (Quah and Roth, 2012; Karsisto et al.,
2016). This reveals a strong limitation of using AHF as an
independent benchmark of the global LCZ map. Unfortu-
nately, as there are currently no globally explicit databases
on thermal and radiative properties of the urban fabric, AHF
is currently the only available proxy to indirectly assess the
“thermal” signature of a built environment. Finally, there are
a number of other elements that might affect deviations be-
tween the LCZ-based UCP parameters and their benchmark
products and comparison methods: some benchmark prod-
ucts are merely indirect observations (e.g. GHS-S2Net ur-
ban probabilities being used as a measure for λB), and UCPs
might have dissimilar definitions (e.g. the geometric average
of buildings heights versus the average of building heights
weighted by the building footprint) or data matching differ-
ences as a consequence of different resolutions and map pro-
jections leading to potential artefacts from resampling.

4 Serving earth system modelling and urban-scale
environmental science

Despite the new focus on cities as a critical scale for cli-
mate change risk management, we know very little about
most cities on the planet – being generally ignorant of their
extent, how they are constructed, and how they are occu-
pied (Demuzere et al., 2020a). This knowledge gap is espe-
cially true for urban areas in low- and middle-income coun-
tries, where 90 % of the projected world population growth
of 2.5 billion over the next couple of decades will occur.
This is in strong contrast to current urban knowledge, which
is predominantly shaped by research on and from high-
income countries (Nagendra et al., 2018). The global local
climate zone map presented here provides a globally consis-
tent and climate-relevant urban description, which is an im-
portant prerequisite for developing fit-for-purpose integrated
climate-sensitive urban planning policies (Georgescu et al.,
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Figure 10. Results for the thematic benchmark, for the urban mask from the Copernicus Global Land Cover Layers (a) and the building
surface fraction, building height, and anthropogenic heat flux (λB, H , and AHF respectively) (b, c). All accuracies are derived for the 150
global LCZ functional urban areas. For built-up land, accuracy is expressed using the balanced accuracy (BA) and Cohen’s kappa (CK). For
λB, H , and AHF, the coefficients of determination (R2) (b) and slopes (c) result from the regression between the reference datasets and
their corresponding universal LCZ-based values from Stewart and Oke (2012), using minimum (Min), mean, and maximum (Max) values
(colours). For all panels, boxes and whiskers span the 25th–75th and 5th–95th percentiles respectively. The means and medians are indicated
by the black dots and lines respectively. Results stratified per urban ecoregion are available in Appendix I.

2015). As LCZs are developed from generalized perspectives
of built forms and land cover types that are universally rec-
ognized and applicable (Stewart and Oke, 2012), this global
LCZ map provides standardized and harmonized data of all
cities, allowing us to consistently assess the heterogeneous
nature of cities’ urban forms and functions and providing the
much-needed platform for comparative analyses, systematic
learning, and horizontal knowledge exchange between cities
and regions (Raven et al., 2018; Ching et al., 2018; Bai et al.,
2018; Creutzig et al., 2019; Reba and Seto, 2020).

As cities are complex systems and their components are
difficult to understand in isolation, scaling – a general an-
alytical framework used by many disciplines – is often
put forward to understand and describe cities’ dynamics,
growth, and evolution in scientifically predictable, quanti-
tative, and universal laws (Bettencourt et al., 2007, 2020).
Some works for example represent city growth, structures,
and functions (e.g. urban area, albedo, population density,
building density, building heights, anthropogenic heat flux,
and sky view factor) completely by population (Schläpfer
et al., 2015; Manoli et al., 2019; Martilli et al., 2020). Other
work has explored the correspondence between population
density and carbon dioxide emissions (Ribeiro et al., 2019)
and the allometric-scaling relationships between settlement
populations and non-point-source emissions of air pollutants
(MacKenzie et al., 2019). In reality, the global universality of
these scaling laws is unknown, as many are created based on
regional information only, mostly for data-rich parts of the
world (Bettencourt and West, 2010). Currently, city popula-
tion is often used as a proxy for urban form (e.g. Schläpfer
et al., 2015; Manoli et al., 2019), but the global LCZ map

offers a richer alternative. In addition, the combination of
population and LCZ may provide deeper insights into the
variations of form in different cultural, socioeconomic, and
climatic contexts and help guide future urban development.
Since LCZs distinguish urban areas based on their form, the
global map provides the means to assess the universality of
the above-mentioned scaling laws and refine/improve them.
In addition, the global LCZ map has value beyond climate
applications when combined with other spatially resolved ur-
ban information (Reba and Seto, 2020), like flooding hazard,
biodiversity, and air quality.

Since the LCZ typology was initially designed for urban
temperature studies (Stewart and Oke, 2012), typical applica-
tions focus on the UHI, usually providing the context for de-
signing and analysing observations from urban meteorologi-
cal networks (Skarbit et al., 2017; Beck et al., 2018; Chieppa
et al., 2018; Verdonck et al., 2018; Yang et al., 2018; Leconte
et al., 2020; Milošević et al., 2021; Y. Zhang et al., 2020;
Zong et al., 2021), from crowd-sourced data (Fenner et al.,
2017; Varentsov et al., 2021; Fenner et al., 2021; Potgieter
et al., 2021; Brousse et al., 2022), or from remote sensing
(Wang and Ouyang, 2017; Bechtel et al., 2019b; Eldesoky
et al., 2021; Stewart et al., 2021). However, the typology
has been used for other purposes (see also Lehnert et al.,
2021, for European applications), such as urban heat (risk)
assessment studies (Verdonck et al., 2019b; Van de Walle
et al., 2022), climate-sensitive design, land use/land cover
change, urban planning (policies) (Perera and Emmanuel,
2018; Aminipouri et al., 2019; Vandamme et al., 2019; Ma-
haroof et al., 2020; Chen et al., 2021b; Zhi et al., 2021),
anthropogenic heat, building energy demand and consump-
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tion, carbon emissions (Wu et al., 2018; Santos et al., 2020;
Yang et al., 2020; Benjamin et al., 2021; Kotharkar et al.,
2022), quality of life (Sapena et al., 2021), urban ventilation
(Z. Zhao et al., 2020), air quality (Steeneveld et al., 2018;
T. Lu et al., 2021), urban vegetation phenology and ecosys-
tem patterns, functions, and dynamics (Kabano et al., 2021;
Zhao et al., 2022), and epidemiological studies (Brousse
et al., 2019, 2020a).

The LCZ scheme is a core element of the WUDAPT
project to provide consistent urban data to support climate
science (Ching et al., 2018, 2019), and many modelling sys-
tems nowadays ingest the LCZ typology, such as e.g. the
Surface Urban Energy and Water Balance Scheme (SUEWS,
Alexander et al., 2015, 2016), UrbClim (Verdonck et al.,
2018, 2019b; Sharma et al., 2019; Gilabert et al., 2021),
the Vertical City Weather Generator (Moradi et al., 2022),
ENVI-met (Middel et al., 2014; Lyu et al., 2019; Bande
et al., 2020), the urban multi-scale environmental predic-
tor (UMEP, Lindberg et al., 2018), MUKLIMO_3 (Bokwa
et al., 2019; Matsaba et al., 2020; Gál et al., 2021), COSMO-
CLM and the WUDAPT-TO-COSMO tool (Wouters et al.,
2016; Brousse et al., 2019, 2020b; Varentsov et al., 2020; Van
de Walle et al., 2021), the Weather Research and Forecast-
ing model (WRF, Brousse et al., 2016; Hammerberg et al.,
2018; Molnár et al., 2019; Pellegatti Franco et al., 2019;
Wong et al., 2019; Mu et al., 2020; Zonato et al., 2020; Pa-
tel et al., 2020; Hirsch et al., 2021; Patel et al., 2022), and
the WUDAPT-TO-WRF tool (Demuzere et al., 2022c). Most
studies focus on individual cities, with the work of Patel et al.
(2022) being an exception as it uses the European LCZ map
(Demuzere et al., 2019a) to simulate a continental-scale heat
wave event. The LCZ map presented here allows the extrac-
tion of urban data suited to the scale of study and can support
global climate and earth system modelling.

Regional climate models are expected to remain indispens-
able tools that complement global models for understanding
physical processes governing regional climate variability and
change (Gutowski et al., 2020). Yet at the same time regional
climate model developments also serve as precursors for the
evolution of global climate models, and major efforts are cur-
rently under way to increase ESMs to kilometre-scale resolu-
tions (Schär et al., 2020; Bauer et al., 2021). Recently, Fuhrer
et al. (2018) performed a near-global climate simulation at
a horizontal grid spacing of just 930 m. Such advancements
will represent a quantum leap in (urban) global climate mod-
elling, enabling the explicit treatment of the complex inter-
actions between the fine-grained urban heterogeneity and its
atmosphere (Martilli et al., 2020). To date, however, climate
projections focused on built landscapes are absent, partly ow-
ing to the lack of climate-relevant urban data for ESMs (Zhao
et al., 2021; Hertwig et al., 2021). Only one ESM included

details of urban form in CMIP51 (Zhao et al., 2021) and a few
more in CMIP6: except for GFDL-ESM (Dunne et al., 2020),
these CMIP6 ESMs all use the Community Land Model-
Urban (CLMU) canopy parameterization (Oleson and Fed-
dema, 2020). Yet despite its pole position, CLMU’s lead de-
velopers indicate that transitioning to the LCZ urban classes
and their corresponding UCPs will likely be beneficial for
better simulating the interactions between the urban fabric
and the climate system (Oleson and Feddema, 2020). Even-
tually, a closer connection between the global LCZ map and
the ESM community might have a direct impact on climate
change policies via the IPCC’s2 upcoming 7th cycle of As-
sessment Reports and its planned Special Reports on Cities
and Climate Change.

Even though the LCZ typology presents a leap forward
in describing intra-urban heterogeneity in a universal man-
ner, its generalization of course also has its limitations. In the
words of Stewart and Oke (2012), “its view of the landscape
universe is highly reductionist [. . . ] and LCZs represent a
simple composition of buildings, roads, plants, soils, rock,
and water, each in varying amounts and each arranged uni-
formly into 17 recognizable patterns. The 17 patterns should
nevertheless be familiar to users in most cities, and should
be adaptable to the local character of most sites”. This multi-
urban class typology follows the discourse of most categor-
ical mapping efforts discussed elsewhere (Coops and Wul-
der, 2019), such that individual LCZ classes are all physi-
cally discrete in surface structure and land cover, leading to
well-defined boundaries separating most classes. However,
users of LCZs must always accept that the internal homo-
geneity portrayed by each class is unlikely to be found in the
real world but that the attempt to classify surface complex-
ity in cities represents a key advancement in urban climate
science (Stewart and Oke, 2012). It also represents a help-
ful starting point for more detailed studies of urban form and
function at smaller spatial scales. Likewise, due to its reduc-
tionist character, the landscape universe represented by the
17 LCZ classes is not complete for several reasons. First, we
do not apply LCZ sub-classes that represent combinations
of built types, land cover types, and land cover properties
(Stewart and Oke, 2012), allowing for a mixture of several
LCZ types but reducing its universality. Secondly, some land-
scapes such as extensive greenhouses are not included in the
scheme, since they are unlikely to be selected for urban heat
island studies. Moreover, the scale of real urban structures
does not always match the climatic definition of local scales.
However, we are convinced that the scheme is the best com-
promise between climatic variation and generic description
of urban structures.

1Coupled Model Intercomparison Project, led by the World
Climate Research Programme (https://www.wcrp-climate.org/
wgcm-cmip, last access: 22 August 2022)

2Intergovernmental Panel on Climate Change
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This first version of the global LCZ map itself also has
limitations. For example, LCZ 7 requires more attention and
alternative mapping strategies, as discussed in Sect. 3.2. Con-
fusion may also exist between classes with similar imper-
vious and built-up surface fractions characterized by sim-
ilar spectral characteristics (not shown), which can lead to
confusion between these classes (see e.g. the confusion be-
tween LCZs 3 and 8 in the LCZ map for Lima (Peru, ER11),
Fig. 7). Similarly, the confusion between classes with sim-
ilar surface fractions yet different heights of roughness el-
ements might also be improved in the future. More gener-
ally, the results of the thematic benchmark reveal that two-
dimensional information (urban land cover and building sur-
face fractions) is well-represented but that the correspond-
ing three-dimensional (3D) information requires more atten-
tion. Ongoing developments such as the work on the Digital
Synthetic City (Ching et al., 2019), tailored towards provid-
ing more detailed information on the urban landscape (WU-
DAPT Levels 1 and 2), or global 3D building information
(M. Li et al., 2020; Esch et al., 2022; Kamath et al., 2022)
might contribute to improving the quality of future LCZ map
releases. It is also important to note that the LCZ map also
inherits shortcomings of the many global earth observation
input features upon which it is built, such as some missing
data in areas that are frequently covered in clouds or gaps in
coverage because of changing satellite duty cycles. Such lim-
itations can be addressed in future releases of the map, e.g.
by harvesting the growing number of TA samples submitted
to the LCZ Generator (which received more than 1500 sub-
missions in less than 1 year of operation), ingesting more and
new high-resolution (earth observation) datasets when avail-
able, or implementing alternative scalable classification algo-
rithms (e.g. Yokoya et al., 2018; Yoo et al., 2020; Rosentreter
et al., 2020). Nevertheless, from the many above-mentioned
examples and applications it is clear that this global LCZ map
has a lot of potential, serving urban and climate sciences at
various scales. The map is universal and allows for compar-
isons between global regions. Yet at the same time it is flex-
ible enough to allow anyone to adapt it to suit their purpose,
using for example user- and site-specific LCZ-based UCP
values if available (Ching et al., 2018). In other words, the
global LCZ map describes all the cities of the world in the
same, universal language, but interested users can read it in
their own dialect. In addition, interested users are invited to
actively contribute to future releases of this product by sub-
mitting city-specific training area sets to the LCZ Generator.
This community engagement will not only improve the qual-
ity of the next LCZ map releases, but will also contribute to
the overall WUDAPT philosophy to provide urban canopy
information and modelling infrastructure to facilitate urban-
focused climate, weather, air quality, and energy-use mod-
elling application studies (Ching et al., 2018). Finally, this
development will also support future large-scale dynamic
LCZ mapping efforts. Such examples to date are rare and
focus on targeted cities (e.g. Vandamme et al., 2019; Wang

et al., 2019; Demuzere et al., 2020b; C. Zhao et al., 2020;
Y. Lu et al., 2021; Zhi et al., 2021), yet they reveal large
potential in terms of characterizing the temporal transfor-
mations of urban morphologies across and within different
cities, identify the main drivers of such changes, and bridge
the gap between policy-making and urbanization patterns re-
quired to come up with informed, data-driven, and rational
urban planning strategies toward sustainable city develop-
ments.

5 Data availability

The global local climate zone map, representative
for the nominal year 2018 and with a spatial res-
olution of ∼ 100 m (EPSG:4326), is available from
https://doi.org/10.5281/zenodo.6364594 (Demuzere et al.,
2022a). The dataset contains various layers stored as separate
GeoTIFF files, including (1) lcz_filter, the recommended
global LCZ map after applying the morphological Gaussian
filter described in Demuzere et al. (2020a), (2) lcz, like
(1) but presenting the raw LCZ map before applying the
morphological Gaussian filter, and (3) the LCZ classification
probability layer (%) that identifies how often the modal
LCZ from (2) was chosen per pixel. The LCZ maps have the
default WUDAPT LCZ colour scheme embedded (Fig. 1),
and all imagery can be processed using (free) GIS software,
e.g. QGIS. In addition, a teaser sample is provided to ease
accessibility, providing the LCZ map information for the 15
largest functional urban areas stratified by urban ecoregion.
These GeoTIFF files reflect the underlying data used in
Figs. 5, 6, and 7 of the paper. This teaser dataset is available
from https://doi.org/10.5281/zenodo.6364705 (Demuzere
et al., 2022b).

6 Conclusions

Since their introduction in 2012, local climate zones (LCZs)
have become a standard for characterizing urban landscapes
according to climate-relevant properties of the surface. From
that point forward, the number of applications using this uni-
versal urban typology has been growing exponentially, re-
vealing the relevance and potential for a wide range of urban
sciences. One of the typology’s most popular uses is digital
mapping, which can generate UCPs at the city scale for input
to numerical climate models. However, the lack of available
and consistent global data on the form and function of cities
has impeded progress in urban climate sciences so far, limit-
ing applications to cities or regions for which LCZ maps are
currently available.

The 100 m-resolution global LCZ map presented here is
the first of its kind depicting the much needed global intra-
urban heterogeneity in a universal language. It allows easy
access to local climate zone data for regional- and global-
scale analysis and provides a seamless integration into ex-
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isting topographic, natural land cover, and other global-scale
data products. The map is generated by building further upon
previous studies whilst adding new methodological features
that balance optimal learning across global climates and ur-
ban typologies with accuracy, computational feasibility, and
efficiency.

Since this global map identifies the relevant data for plan-
ning and climate on neighbourhood, city, and global scales,
it is designed to become part of a basic infrastructure to sup-
port a host of studies on exposure to environmental hazards,
energy demand, climate adaptation, and mitigation solutions
and human health, as examples.

Appendix A: WUDAPT’s digitization guidelines

In order to guide a user in the digitization of LCZ train-
ing area polygons, a set of digitization guidelines is pro-
vided on the WUDAPT web page (https://www.wudapt.org/
digitize-training-areas/, last access: 22 August 2022). This
information is split into two parts, discussing (1) how to dig-
itize a LCZ polygon using Google Earth and the provided
.kml template, and (2) good-practice guidelines for digitiza-
tion (Fig. A1).

Figure A1. Good-practice guidelines for digitizing LCZ training
area polygons (© Google Earth 2020).
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Appendix B: GLCM texture and NANTLI input
features

To date, very few studies have tested the added value of tex-
ture features (derived from the Gray-Level Co-occurrence
Matrix, GLCM) in the LCZ classification procedure. Forget
et al. (2018) found that combining features computed from
both Sentinel-1 VV and VH backscatter polarizations con-
sistently led to better LCZ classification performances in 12
sub-Saharan African urban areas, even though the introduc-
tion of textures computed from different spatial scales did
not improve the classification performances. Along the same
lines, Hu et al. (2018) found that Sentinel-1 dual-Pol SAR
data (including texture features) can contribute to the classi-
fication of transcontinental cities into several LCZ classes.
Also, Brousse et al. (2020a) successfully used Sentinel-1
GLCM texture features with an 11-by-11 kernel window size
to map nine sub-Saharan African urban areas, in order to bet-
ter capture the heterogeneities of built-up surfaces.

Since Sentinel-1 backscatter information is already avail-
able in the input feature space, and inspired by the find-
ings of Hay Chung et al. (2021), PALSAR (Phased Array
type L-band Synthetic Aperture Radar, Shimada et al., 2014)
backscattering information was added, though not the pure
HH and HV backscatter information as in Hay Chung et al.
(2021), but rather the GLCM texture features derived from
them (Haralick et al., 1973; Conners et al., 1984; Chen et al.,
2021a), as follows.

1. A median 2017–2019 PALSAR composite is created for
both the HH and HV polarization backscattering coeffi-
cients.

2. For each polarization, the 18 GLCM texture features are
derived, with 2-by-2 and 4-by-4 kernel windows, cor-
responding to 50 and 100 m spatial resolutions respec-
tively.

3. Only the contrast, dissimilarity, inertia, sum average,
and cluster shade texture measures are retained, as the
remaining textures indicated little added value in the
LCZ mapping (not shown).

In addition, the Visible Infrared Imaging Radiometer Suite
(VIIRS) Day/Night Band (DNB), provided by Mills et al.
(2013), was also used as follows.

1. A median 2017–2019 composite is created from
the monthly VIIRS Stray Light Corrected Nighttime
Day/Night Band Composites (NTL).

2. This median NTL image is smoothed with a convolution
filter using a radius of 300 m.

3. Afterwards, the smoothed NTL image is normalized
(hereafter referred to as NTLnorm).

4. NANTLI is calculated, a Normalized Difference Vege-
tation Index (NDVI)-adjusted NTL index, according to
Eq. (B1).

NANTLI=
1+ (NTLnorm−NDVI)
1− (NTLnorm−NDVI)

×NTL (B1)

Note that NANTLI is analogous to EANTLI (Zhuo et al.,
2015) yet uses the Landsat 8 NDVI input feature available
from Demuzere et al. (2021) instead of the EVI (Enhanced
Vegetation Index), introduced to mitigate both saturation
problems and blooming effects of VIIRS data (Zhuo et al.,
2018; X. Zhang et al., 2020).

The added values of these features are evaluated by map-
ping 45 cities (3 cities per urban ecoregion, characterized
by large TA samples with a large number of different LCZ
classes) into LCZs, following the procedure of the LCZ Gen-
erator (Demuzere et al., 2021) but each time using a different
set of earth observation input features. This results in four
experiments.

– GEN: the default 33 input features available from the
LCZ Generator

– GEN+NANTLI: GEN and NANTLI

– GEN+NANTLI+P2: GEN, NANTLI, and the PALSAR
texture features derived with kernel size 2-by-2

– GEN+NANTLI+P4: GEN, NANTLI, and the PALSAR
texture features derived with kernel size 4-by-4

Results are evaluated in terms of the overall accuracy
metrics (OAs) described in Sect. 2.4. Figure B1a dis-
plays the OAs for the GEN experiment for each individ-
ual city sorted by urban ecoregion (ERs 1–15). Figure B1b,
c, and d indicate the change in OAs for GEN+NANTLI,
GEN+NANTLI+P2, and GEN+NANTLI+P4 respectively
compared to GEN. Adding NANTLI increases the aver-
age OAs between 0.3 % and 2 %, with individual city val-
ues ranging between −1 % and 5.8 % (for Constantine,
ER12, and Cologne, ER2, respectively). Adding PALSAR
texture features further increases the average OAs between
0.8 % and 3.2 % (GEN+NANTLI+P2, Fig. B1C) and be-
tween 0.9 % and 3.8 % (GEN+NANTLI+P4, Fig. B1d).
Here, individual city values range between −0.3 (Itanagar,
ER14) and 7.8 % (Rosario, ER4) for GEN+NANTLI+P2
and between −0.9 (Havana, ER6) and 13.8 % (Rosaria) for
GEN+NANTLI+P4. As such, the VIIRS-based NANTLI in-
put feature together with the PALSAR-based GLCM texture
features, using a 4-by-4 kernel size, are selected as an addi-
tional earth observation for the LCZ mapping procedure.
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Figure B1. Overall accuracies for the various input feature experiments: absolute overall accuracies for all cities for GEN (a) and differences
in overall accuracies for experiments GEN+NANTLI (b), GEN+NANTLI+P2 (c), and GEN+NANTLI+P4 (d) compared to GEN. Numbers
on the top x axis indicate the average overall accuracy (change) across all cities. ER refers to urban ecoregion.
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Appendix C: Selected functional urban areas for
thematic benchmarks

Functional urban areas (FUAs), as defined by the Organisa-
tion for Economic Co-operation and Development (OECD)
and the European Union, are sets of contiguous local (ad-
ministrative) units composed of a city and its surrounding,
less densely populated local units that are part of the city’s
labour market (commuting zone). As such, these units not
only offer the opportunity to evaluate more densely built city
centres, but also their sparsely built or natural neighbouring
landscapes. The 10 most populated FUAs per urban ecore-
gion used in the thematic benchmark are depicted in Fig. C1.

Figure C1. Spatial distribution of the 10 most populated functional urban areas per urban ecoregion. Note that ER colours are adopted from
Schneider et al. (2010).
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Appendix D: GHS-S2Net versus EEA

Corbane et al. (2021) illustrated that there is a strong rela-
tionship between the output probabilities of GHS-S2Net and
observed building densities, suggesting that the model out-
puts can be used as a proxy for impervious surface fractions.
As an additional benchmark, we evaluate the GHS-S2Net
built-up probabilities for the 30 largest (in surface area) Eu-
ropean FUAs (Paris, London, Dortmund, Katowice, Oslo,
Madrid, Budapest, Warsaw, Berlin, Lyon, Copenhagen, Mi-
lan, Frankfurt am Main, Toulouse, Cologne, Hamburg, Vi-
enna, Helsinki, Leeds, Rotterdam, Prague, Belfast, Liège,
Rome, Nantes, Gothenburg, Munich, Krakow, Zurich, and
Istanbul) against two products from the European Environ-
mental Agency (EEA):

1. the 100 m Copernicus high-resolution imperviousness
density (IMD) layer for 2018 (European Environment
Agency, 2018a), a thematic product that indicates the
total sealing density (λT), ranging from 0 % to 100 %,
and

2. the 100 m share of built-up (SBU) layer for 2018 (Euro-
pean Environment Agency, 2018b), an aggregated ver-
sion of the 10 m impervious built-up map that indicates
the building surface fraction (λB), ranging from 0 % to
100 %.

Figure D1. Hexbin illustration of the EEA imperviousness density (IMD, reflecting λT) and share of built-up (SBU, reflecting λB) against
GHS-S2Net built-up probabilities for the European functional urban area (FUA) of Dortmund (Germany). Linear regression equations and
R2 values are provided for both λT (a) and λB (b). The logarithmic colour bar represents the number of pixels in each imperviousness bin.

In line with Bechtel et al. (2019a), all data layers are re-
sampled to a common 1 km grid. Afterwards, EEA’s IMD
(λT) and SBU (λB) land-only pixels are regressed against the
GHS-S2Net built-up probabilities for all 30 European FUAs
(see Fig. D1 as an illustration), and the corresponding co-
efficients of determination (R2) and slopes are reported for
λT and λB separately (Fig. D2). Most R2 values exceed 0.9
for both λT and λB, confirming that GHS-S2net is able to ex-
plain most of the observed EEA impervious surface fractions.
On average, the slopes of the regression between the built-up
probabilities of GHS-S2Net and EEA’s IMD and SBU prod-
ucts are 0.6 and 0.7 respectively. These results confirm the
findings of Corbane et al. (2021) that the GHS-S2net built-
up probabilities can serve as a proxy for λB.

https://doi.org/10.5194/essd-14-3835-2022 Earth Syst. Sci. Data, 14, 3835–3873, 2022



3858 M. Demuzere et al.: Global map of local climate zones

Figure D2. Distribution of R2 values and slopes for the regressions between GHS-S2Net and EEA’s IMD (λT) and SBU (λB) datasets for
the 30 selected European FUA boundaries. Grey boxes and whiskers span the 25th–75th and 5th–95th percentiles respectively. The means
and medians are indicated by the black dots and lines respectively.

Appendix E: Final number training area polygons per
LCZ class

Figure E1. Number of training area polygons per LCZ class and ER (colours as in Fig. 3).
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Appendix F: Final input features

Figure F1. Feature importance ranking for the globe and per urban ER. Bars in bright orange depict the input features (per spatial unit)
that belong to the top 50 % of the most important variables. Numbers on top depict the overall accuracy ± the standard deviation (%). Blue
numbers on the right-hand side describe how often an input feature belongs to the top half of the most important features. Features with a
value ≥ 5 are used in pathway 2 to create the global LCZ map and are indicated by the blue dot in the global panel on the left. These features
are described in more detail in Table F1.
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Table F1. Final set of input features used in the global LCZ mapping process. The information is structured by a sensor, with the input
feature names referring to the abbreviations used in the feature importance ranking shown in Fig. F1.

Sensor Input feature Description

PALSAR HH_contrast Contrast GCLM texture parameter from the HH polarization backscatter
HH_dist Dissimilarity GCLM texture parameter from the HH polarization backscatter
HH_savg Sum average GCLM texture parameter from the HH polarization backscatter
HV_contrast Contrast GCLM texture parameter from the HV polarization backscatter
HV_diss Dissimilarity GCLM texture parameter from the HV polarization backscatter
HV_intertia Inertia GCLM texture parameter from the HV polarization backscatter
HV_savg Sum average GCLM texture parameter from the HV polarization backscatter

Landsat 8 B2_median Band 2 (blue) surface reflection median composite
B3_median Band 3 (green) surface reflection median composite
B4_median Band 4 (red) surface reflection median composite
B7_median Band 7 (shortwave infrared 2) surface reflection median composite
B10_median Band 10 (brightness temperature) median composite
B11_median Band 11 (brightness temperature) median composite
bci_median Biophysical Composition Index median composite
ndbi_median Normalized Difference Built Index median composite
ndbai_median Normalized Difference BAreness Index median composite
ndvi_p10 10th percentile of the Normalized Difference Vegetation Index composite
ndvi_median Normalized Difference Vegetation Index median composite
ndvi_p90 90th percentile of the Normalized Difference Vegetation Index composite
ndwi_median Normalized Difference Water Index median composite

Sentinel-1 VV Single co-polarization, vertical transmit/vertical receive median composite
VH Single co-polarization, horizontal transmit/horizontal receive median composite
S1_StdDev Standard deviation of VV and VH combined

Sentinel-2 S2_ndvi_re1_median Normalized Difference Vegetation Index Red Edge 1 median composite
S2_ndvi_re2_median Normalized Difference Vegetation Index Red Edge 2 median composite

Other DEM High-accuracy global DEM at 3 arcsec resolution from MERIT (Multi-Error-
Removed Improved-Terrain Digital Elevation Model), version 1.0.3

DSM Global digital surface model (DSM) dataset with a horizontal resolution of ap-
proximately 30 m from ALOS World 3D, version 3.2

SLOPE Slope derived from the MERIT DEM
GCFH Global forest canopy height data

VIIRS NANTLI Normalized Difference Vegetation Index adjusted Night-time Light Index,
based on Landsat’s NDVI and VIIRS Day/Night Band
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Appendix G: Traditional accuracy assessment

Figure G1. Overall and class-wise F1 accuracies for the global random forest LCZ models. Coloured boxes and grey whiskers span the
25th–75th and 5th–95th percentiles respectively. The means and medians are indicated by the white dots and black lines respectively.
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Appendix H: Classification probabilities stratified per
urban ecoregion

Figure H1. Classification probabilities of the mapped LCZ classes, aggregated over all urban centres from GHS-UCDB. The grey boxplots
depict the classification probability distribution for all global urban centres, per ER, with boxes and whiskers spanning the 25th–75th and
5th–95th percentiles respectively and means and medians indicated by the white dots and black lines respectively. The vertical lines in the
colours of the LCZ classes indicate the 25th–75th percentile range averaged over the urban centres, with LCZ-coloured dots indicating the
mean.
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Appendix I: Thematic benchmark results per urban
ecoregion

Figure I1. Balanced accuracy (a) and Cohen’s kappa (b) for the 150 global LCZ FUA regions in terms of built-up land, stratified by urban
ecoregion (colours as in Fig. 3). Boxes and grey whiskers span the 25th–75th and 5th–95th percentiles respectively. The means and medians
are indicated by the white dots and black lines respectively.

Figure I2. Coefficients of determination (R2) and slopes resulting from the regression between the reference dataset for λB and the corre-
sponding universal LCZ-based values from Stewart and Oke (2012), using minimum, mean, and maximum values (colours), for all FUAs
stratified per ecoregion. Coloured boxes and grey whiskers span the 25th–75th and 5th–95th percentiles respectively. The means and medians
are indicated by the black dots and lines respectively.
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Figure I3. Like Fig. I2 but for building height H .

Figure I4. Like Fig. I2 but for the anthropogenic heat flux AHF.
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