Articles | Volume 13, issue 2
https://doi.org/10.5194/essd-13-269-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-269-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Observations of the thermodynamic and kinematic state of the atmospheric boundary layer over the San Luis Valley, CO, using the CopterSonde 2 remotely piloted aircraft system in support of the LAPSE-RATE field campaign
Elizabeth A. Pillar-Little
CORRESPONDING AUTHOR
School of Meteorology, University of Oklahoma, Norman, OK 73072, USA
Center for Autonomous Sensing and Sampling, University of Oklahoma, Norman, OK 73072, USA
Brian R. Greene
School of Meteorology, University of Oklahoma, Norman, OK 73072, USA
Center for Autonomous Sensing and Sampling, University of Oklahoma, Norman, OK 73072, USA
Advanced Radar Research Center, University of Oklahoma, Norman, OK 73019, USA
Francesca M. Lappin
School of Meteorology, University of Oklahoma, Norman, OK 73072, USA
Center for Autonomous Sensing and Sampling, University of Oklahoma, Norman, OK 73072, USA
Tyler M. Bell
School of Meteorology, University of Oklahoma, Norman, OK 73072, USA
Center for Autonomous Sensing and Sampling, University of Oklahoma, Norman, OK 73072, USA
Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, OK 73072, USA
NOAA/OAR National Severe Storms Laboratory, Norman, OK 73072, USA
Antonio R. Segales
Center for Autonomous Sensing and Sampling, University of Oklahoma, Norman, OK 73072, USA
Advanced Radar Research Center, University of Oklahoma, Norman, OK 73019, USA
School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019, USA
Gustavo Britto Hupsel de Azevedo
Center for Autonomous Sensing and Sampling, University of Oklahoma, Norman, OK 73072, USA
School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019, USA
William Doyle
Center for Autonomous Sensing and Sampling, University of Oklahoma, Norman, OK 73072, USA
Sai Teja Kanneganti
Center for Autonomous Sensing and Sampling, University of Oklahoma, Norman, OK 73072, USA
School of Computer Science, University of Oklahoma, Norman, OK 73019, USA
Daniel D. Tripp
Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, OK 73072, USA
NOAA/OAR National Severe Storms Laboratory, Norman, OK 73072, USA
Phillip B. Chilson
School of Meteorology, University of Oklahoma, Norman, OK 73072, USA
Center for Autonomous Sensing and Sampling, University of Oklahoma, Norman, OK 73072, USA
Advanced Radar Research Center, University of Oklahoma, Norman, OK 73019, USA
Related authors
Francesca M. Lappin, Tyler M. Bell, Elizabeth A. Pillar-Little, and Phillip B. Chilson
Atmos. Meas. Tech., 15, 1185–1200, https://doi.org/10.5194/amt-15-1185-2022, https://doi.org/10.5194/amt-15-1185-2022, 2022
Short summary
Short summary
This study evaluates how a classically defined variable, air parcel buoyancy, can be used to interpret transitions in the atmospheric boundary layer (ABL). To capture the high-resolution variations, remotely piloted aircraft systems are used to collect data in two field campaigns. This paper finds that buoyancy has distinct evolutions prior to low-level jet and convective initiation cases. Additionally, buoyancy mixes well to act as an ABL height indicator comparable to other methods.
Gijs de Boer, Adam Houston, Jamey Jacob, Phillip B. Chilson, Suzanne W. Smith, Brian Argrow, Dale Lawrence, Jack Elston, David Brus, Osku Kemppinen, Petra Klein, Julie K. Lundquist, Sean Waugh, Sean C. C. Bailey, Amy Frazier, Michael P. Sama, Christopher Crick, David Schmale III, James Pinto, Elizabeth A. Pillar-Little, Victoria Natalie, and Anders Jensen
Earth Syst. Sci. Data, 12, 3357–3366, https://doi.org/10.5194/essd-12-3357-2020, https://doi.org/10.5194/essd-12-3357-2020, 2020
Short summary
Short summary
This paper provides an overview of the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE) field campaign, held from 14 to 20 July 2018. This field campaign spanned a 1-week deployment to Colorado's San Luis Valley, involving over 100 students, scientists, engineers, pilots, and outreach coordinators. This overview paper provides insight into the campaign for a special issue focused on the datasets collected during LAPSE-RATE.
Brian C. Filipiak, David B. Wolff, Aaron Spaulding, Ali Tokay, Charles N. Helms, Adrian M. Loftus, Alexey V. Chibisov, Carl Schirtzinger, Mick J. Boulanger, Charanjit S. Pabla, Larry Bliven, Eun Yeol Kim, Francesc Junyent, V. Chandrasekar, Hein Thant, Branislav M. Notaros, Gustavo Britto Hupsel de Azevedo, and Diego Cerrai
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-162, https://doi.org/10.5194/essd-2025-162, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
A GPM Ground Validation field campaign in Connecticut collected high-resolution microphysical and radar observations of winter precipitation. This field campaign was unique because there was a wide-ranging suite of instruments capable of observing all phases of precipitation co-located with comparable measurements. The observations provide an opportunity to verify and understand complex winter precipitation events through satellite data, microphysical processes, and numerical model simulations.
Francesca Lappin, Gijs de Boer, Petra Klein, Jonathan Hamilton, Michelle Spencer, Radiance Calmer, Antonio R. Segales, Michael Rhodes, Tyler M. Bell, Justin Buchli, Kelsey Britt, Elizabeth Asher, Isaac Medina, Brian Butterworth, Leia Otterstatter, Madison Ritsch, Bryony Puxley, Angelina Miller, Arianna Jordan, Ceu Gomez-Faulk, Elizabeth Smith, Steven Borenstein, Troy Thornberry, Brian Argrow, and Elizabeth Pillar-Little
Earth Syst. Sci. Data, 16, 2525–2541, https://doi.org/10.5194/essd-16-2525-2024, https://doi.org/10.5194/essd-16-2525-2024, 2024
Short summary
Short summary
This article provides an overview of the lower-atmospheric dataset collected by two uncrewed aerial systems near the Gulf of Mexico coastline south of Houston, TX, USA, as part of the TRacking Aerosol Convection interactions ExpeRiment (TRACER) campaign. The data were collected through boundary layer transitions, through sea breeze circulations, and in the pre- and near-storm environment to understand how these processes influence the coastal environment.
Gustavo Britto Hupsel de Azevedo, Bill Doyle, Christopher A. Fiebrich, and David Schvartzman
Atmos. Meas. Tech., 15, 5599–5618, https://doi.org/10.5194/amt-15-5599-2022, https://doi.org/10.5194/amt-15-5599-2022, 2022
Short summary
Short summary
Strong changes in pressure, temperature, and humidity occur when small scientific aircraft ascend through the atmosphere to measure carbon dioxide. These strong changes can produce errors in the carbon dioxide measurements. To avoid these errors, we present a low-cost and simple correction method. This low-complexity method allows more researchers to study atmospheric carbon dioxide, reducing entry barriers in this field.
Antonio R. Segales, Phillip B. Chilson, and Jorge L. Salazar-Cerreño
Atmos. Meas. Tech., 15, 2607–2621, https://doi.org/10.5194/amt-15-2607-2022, https://doi.org/10.5194/amt-15-2607-2022, 2022
Short summary
Short summary
The mitigation of undesired contamination, sensor characterization, and signal conditioning and restoration is crucial to improve the reliability of the weather unmanned aerial system (UAS) deliverables. This study presents an overview of the general considerations and procedures to compensate for slow sensor response and other sources of error for temperature and humidity measurements collected using a UAS.
James B. Duncan Jr., Laura Bianco, Bianca Adler, Tyler Bell, Irina V. Djalalova, Laura Riihimaki, Joseph Sedlar, Elizabeth N. Smith, David D. Turner, Timothy J. Wagner, and James M. Wilczak
Atmos. Meas. Tech., 15, 2479–2502, https://doi.org/10.5194/amt-15-2479-2022, https://doi.org/10.5194/amt-15-2479-2022, 2022
Short summary
Short summary
In this study, several ground-based remote sensing instruments are used to estimate the height of the convective planetary boundary layer, and their performance is compared against independent boundary layer depth estimates obtained from radiosondes launched as part of the CHEESEHEAD19 field campaign. The impact of clouds (particularly boundary layer clouds) on the estimation of the boundary layer depth is also investigated.
Francesca M. Lappin, Tyler M. Bell, Elizabeth A. Pillar-Little, and Phillip B. Chilson
Atmos. Meas. Tech., 15, 1185–1200, https://doi.org/10.5194/amt-15-1185-2022, https://doi.org/10.5194/amt-15-1185-2022, 2022
Short summary
Short summary
This study evaluates how a classically defined variable, air parcel buoyancy, can be used to interpret transitions in the atmospheric boundary layer (ABL). To capture the high-resolution variations, remotely piloted aircraft systems are used to collect data in two field campaigns. This paper finds that buoyancy has distinct evolutions prior to low-level jet and convective initiation cases. Additionally, buoyancy mixes well to act as an ABL height indicator comparable to other methods.
Miguel Sanchez Gomez, Julie K. Lundquist, Petra M. Klein, and Tyler M. Bell
Earth Syst. Sci. Data, 13, 3539–3549, https://doi.org/10.5194/essd-13-3539-2021, https://doi.org/10.5194/essd-13-3539-2021, 2021
Short summary
Short summary
In July 2018, the International Society for Atmospheric Research using Remotely-piloted Aircraft (ISARRA) hosted a flight week to demonstrate unmanned aircraft systems' capabilities in sampling the atmospheric boundary layer. Three Doppler lidars were deployed during this week-long experiment. We use data from these lidars to estimate turbulence dissipation rate. We observe large temporal variability and significant differences in dissipation for lidars with different sampling techniques.
Tyler M. Bell, Petra M. Klein, Julie K. Lundquist, and Sean Waugh
Earth Syst. Sci. Data, 13, 1041–1051, https://doi.org/10.5194/essd-13-1041-2021, https://doi.org/10.5194/essd-13-1041-2021, 2021
Short summary
Short summary
In July 2018, numerous weather sensing remotely piloted aircraft systems (RPASs) were flown in a flight week called Lower Atmospheric Process Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE). As part of LAPSE-RATE, ground-based remote and in situ systems were also deployed to supplement and enhance observations from the RPASs. These instruments include multiple Doppler lidars, thermodynamic profilers, and radiosondes. This paper describes data from these systems.
Gijs de Boer, Adam Houston, Jamey Jacob, Phillip B. Chilson, Suzanne W. Smith, Brian Argrow, Dale Lawrence, Jack Elston, David Brus, Osku Kemppinen, Petra Klein, Julie K. Lundquist, Sean Waugh, Sean C. C. Bailey, Amy Frazier, Michael P. Sama, Christopher Crick, David Schmale III, James Pinto, Elizabeth A. Pillar-Little, Victoria Natalie, and Anders Jensen
Earth Syst. Sci. Data, 12, 3357–3366, https://doi.org/10.5194/essd-12-3357-2020, https://doi.org/10.5194/essd-12-3357-2020, 2020
Short summary
Short summary
This paper provides an overview of the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE) field campaign, held from 14 to 20 July 2018. This field campaign spanned a 1-week deployment to Colorado's San Luis Valley, involving over 100 students, scientists, engineers, pilots, and outreach coordinators. This overview paper provides insight into the campaign for a special issue focused on the datasets collected during LAPSE-RATE.
Cited articles
Bailey, S. C. C., Sama, M. P., Canter, C. A., Pampolini, L. F., Lippay, Z. S., Schuyler, T. J., Hamilton, J. D., MacPhee, S. B., Rowe, I. S., Sanders, C. D., Smith, V. G., Vezzi, C. N., Wight, H. M., Hoagg, J. B., Guzman, M. I., and Smith, S. W.: University of Kentucky measurements of wind, temperature, pressure and humidity in support of LAPSE-RATE using multisite fixed-wing and rotorcraft unmanned aerial systems, Earth Syst. Sci. Data, 12, 1759–1773, https://doi.org/10.5194/essd-12-1759-2020, 2020. a, b
Barbieri, L., Kral, S. T., Bailey, S. C., Frazier, A. E., Jacob, J. D., Reuder, J., Brus, D., Chilson, P. B., Crick, C., Detweiler, C., Doddi, A., Elston, J., Foroutan, H., González-Rocha, J., Greene, B. R., Guzman, M. I., Houston, A. L., Islam, A., Kemppinen, O., Lawrence, D., Pillar-Little, E. A., Ross, S. D., Sama, M. P., Schmale, D. G., Schuyler, T. J., Shankar, A., Smith, S. W., Waugh, S., Dixon, C., Borenstein, S., and de Boer, G.:
Intercomparison of small unmanned aircraft system (sUAS) measurements for
atmospheric science during the LAPSE-RATE campaign, Sensors, 19, 2179,
https://doi.org/10.3390/s19092179, 2019. a, b, c, d, e
Bonin, T., Chilson, P., Zielke, B., and Fedorovich, E.: Observations of the
Early Evening Boundary-Layer Transition Using a Small Unmanned Aerial System, Bound.-Lay. Meteorol., 146, 119–132, https://doi.org/10.1007/s10546-012-9760-3, 2012. a
Bonin, T. A., Chilson, P. B., Zielke, B. S., Klein, P. M., and Leeman, J. R.: Comparison and application of wind retrieval algorithms for small unmanned aerial systems, Geosci. Instrum. Method. Data Syst., 2, 177–187, https://doi.org/10.5194/gi-2-177-2013, 2013. a
Bonin, T. A., Blumberg, W. G., Klein, P. M., and Chilson, P. B.: Thermodynamic and turbulence characteristics of the southern great plains nocturnal boundary layer under differing turbulent regimes, Bound.-Lay. Meteorol., 157, 401–420, https://doi.org/10.1007/s10546-015-0072-2, 2015. a
Brosy, C., Krampf, K., Zeeman, M., Wolf, B., Junkermann, W., Schäfer, K., Emeis, S., and Kunstmann, H.: Simultaneous multicopter-based air sampling and sensing of meteorological variables, Atmos. Meas. Tech., 10, 2773–2784, https://doi.org/10.5194/amt-10-2773-2017, 2017. a
Brus, D., Gustafsson, J., Kempinen, O., de Boer, G., and Hirsikko, A.: Atmospheric aerosol, gases and meteorological parameters measured during the LAPSE-RATE campaign, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2020-251, in review, 2020. a
Chilson, P. B., Bell, T. M., Brewster, K. A., Britto Hupsel de Azevedo, G., Carr, F. H., Carson, K., Doyle, W., Fiebrich, C. A., Greene, B. R., Grimsley, J.L., Kanneganti, S. T., Martin, J., Moore, A., Palmer, R. D., Pillar-Little, E. A., Salazar-Cerreno, J. L., Segales, A. R., Weber, M. E., Yeary, M., and Droegemeier, K. K.: Moving towards a Network of Autonomous UAS Atmospheric
Profiling Stations for Observations in the Earth’s Lower Atmosphere: The 3D
Mesonet Concept, Sensors, 19, 2720, https://doi.org/10.3390/s19122720, 2019. a
de Boer, G., Argrow, B., Cassano, J., Cione, J., Frew, E., Lawrence, D., Wick,
G., and Wolff, C.: Advancing Unmanned Aerial Capabilities for Atmospheric
Research, B. Am. Meteorol. Soc., 100, ES105–ES108,
https://doi.org/10.1175/BAMS-D-18-0254.1, 2019. a
de Boer, G., Diehl, C., Jacob, J., Houston, A., Smith, S. W., Chilson, P.,
Schmale, David G., I., Intrieri, J., Pinto, J., Elston, J., Brus, D.,
Kemppinen, O., Clark, A., Lawrence, D., Bailey, S. C. C., Sama, M. P.,
Frazier, A., Crick, C., Natalie, V., Pillar-Little, E., Klein, P., Waugh, S.,
Lundquist, J. K., Barbieri, L., Kral, S. T., Jensen, A. A., Dixon, C.,
Borenstein, S., Hesselius, D., Human, K., Hall, P., Argrow, B., Thornberry,
T., Wright, R., and Kelly, J. T.: Development of Community, Capabilities, and Understanding through Unmanned Aircraft-Based Atmospheric Research: The
LAPSE-RATE Campaign, B. Am. Meteorol. Soc., 101, E684–E699, https://doi.org/10.1175/BAMS-D-19-0050.1, 2020a. a, b
de Boer, G., Houston, A., Jacob, J., Chilson, P. B., Smith, S. W., Argrow, B., Lawrence, D., Elston, J., Brus, D., Kemppinen, O., Klein, P., Lundquist, J. K., Waugh, S., Bailey, S. C. C., Frazier, A., Sama, M. P., Crick, C., Schmale III, D., Pinto, J., Pillar-Little, E. A., Natalie, V., and Jensen, A.: Data generated during the 2018 LAPSE-RATE campaign: an introduction and overview, Earth Syst. Sci. Data, 12, 3357–3366, https://doi.org/10.5194/essd-12-3357-2020, 2020b. a, b, c
de Boer, G., Waugh, S., Erwin, A., Borenstein, S., Dixon, C., Shanti, W., Houston, A., and Argrow, B.: Measurements from mobile surface vehicles during LAPSE-RATE, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2020-173, in review, 2020c. a, b
Elston, J., Argrow, B., Stachura, M., Weibel, D., Lawrence, D., and Pope, D.:
Overview of Small Fixed-Wing Unmanned Aircraft for Meteorological Sampling,
J, Atmos. Ocean. Tech., 32, 97–115,
https://doi.org/10.1175/JTECH-D-13-00236.1, 2015. a
Glasheen, K., Pinto, J., Steiner, M., and Frew, E.: Assessment of Finescale
Local Wind Forecasts Using Small Unmanned Aircraft Systems, J.
Aerosp. Inform. Syst., 17, 182–192, https://doi.org/10.2514/1.I010747, 2020. a
Greene, B. R., Segales, A. R., Waugh, S., Duthoit, S., and Chilson, P. B.: Considerations for temperature sensor placement on rotary-wing unmanned aircraft systems, Atmos. Meas. Tech., 11, 5519–5530, https://doi.org/10.5194/amt-11-5519-2018, 2018. a, b, c
Greene, B. R., Bell, T. M., Pillar-Little, E. A., Segales, A. R., Britto
Hupsel de Azevedo, G., Doyle, W., Tripp, D. D., Kanneganti, S. T., and
Chilson, P. B.: University of Oklahoma CopterSonde Files from LAPSE-RATE,
https://doi.org/10.5281/zenodo.3737087, 2020. a, b, c
Greene, B. R., Kral, S. T., Chilson, P. B., and Reuder, J.: Gradient-based
turbulence estimates from multicopter profiles of the stable boundary layer
during ISOBAR18, Bound.-Lay. Meteorol., in preparation, 2021. a
Jacob, J., Chilson, P., Houston, A., and Smith, S.: Considerations for
atmospheric measurements with small unmanned Aircraft systems, Atmosphere-Basel, 9, 252, https://doi.org/10.3390/atmos9070252, 2018. a, b
Koch, S. E., Fengler, M., Chilson, P. B., Elmore, K. L., Argrow, B., Andra,
D. L., and Lindley, T.: On the Use of Unmanned Aircraft for Sampling
Mesoscale Phenomena in the Preconvective Boundary Layer, J.
Atmos. Ocean. Tech., 35, 2265–2288,
https://doi.org/10.1175/JTECH-D-18-0101.1, 2018. a, b, c
Kral, S. T., Reuder, J., Vihma, T., Suomi, I., Haualand, K. F., Urbancic,
G. H., Greene, B. R., Steeneveld, G.-J., Lorenz, T., Maronga, B., Jonassen,
M. O., Ajosenpää, H., Båserud, L., Chilson, P. B., Holtslag, A.
A. M., Jenkins, A. D., Kouznetsov, R., Mayer, S., Pillar-Little, E. A.,
Rautenberg, A., Schwenkel, J., Seidl, A. W., and Wrenger, B.: The Innovative
Strategies for Observations in the Arctic Atmospheric Boundary Layer Project
(ISOBAR): Unique fine-scale observations under stable and very stable
conditions, B. Am. Meteorol. Soc., 1–64,
https://doi.org/10.1175/BAMS-D-19-0212.1, online first, 2020. a, b, c
Lee, T. R., Buban, M., Dumas, E., and Baker, C. B.: A New Technique to Estimate
Sensible Heat Fluxes around Micrometeorological Towers Using Small Unmanned
Aircraft Systems, J. Atmos. Ocean. Tech., 34,
2103–2112, https://doi.org/10.1175/JTECH-D-17-0065.1, 2017. a
Lee, T. R., Buban, M., Dumas, E., and Baker, C. B.: On the Use of Rotary-Wing
Aircraft to Sample Near-Surface Thermodynamic Fields: Results from Recent
Field Campaigns, Sensors, 19, 10, https://doi.org/10.3390/s19010010, 2018. a
Neumann, P. P. and Bartholmai, M.: Real-time wind estimation on a micro
unmanned aerial vehicle using its inertial measurement unit, Sensor.
Actuat. A-Phys., 235, 300–310, https://doi.org/10.1016/j.sna.2015.09.036, 2015. a
Palomaki, R. T., Rose, N. T., van den Bossche, M., Sherman, T. J., and
De Wekker, S. F.: Wind estimation in the lower atmosphere using multirotor
aircraft, J. Atmos. Ocean. Tech., 34, 1183–1191,
https://doi.org/10.1175/JTECH-D-16-0177.1, 2017. a
Pinto, J. O., Jensen, A. A., Jiménez, P. A., Hertneky, T., Muñoz-Esparza, D., Dumont, A., and Steiner, M.: Realtime WRF LES Simulations to Support UAS Flight Planning and Operations During 2018 LAPSE-RATE, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2020-242, in review, 2020. a, b, c
Segales, A. R., Greene, B. R., Bell, T. M., Doyle, W., Martin, J. J., Pillar-Little, E. A., and Chilson, P. B.: The CopterSonde: an insight into the development of a smart unmanned aircraft system for atmospheric boundary layer research, Atmos. Meas. Tech., 13, 2833–2848, https://doi.org/10.5194/amt-13-2833-2020, 2020a. a, b, c, d, e, f, g, h, i, j, k, l
Segales, A. R., Tridgell, A., Mackay, R., Barker, P., Marchi, L. D.,
WickedShell, Riseborough, P., Pittenger, T., jason4short, Kancir, P.,
jschall, Hall, L., de Sousa, G. J., Oborne, M., Walser, J., Hickey, P.,
Lucas, A., Lefebvre, R., Purohit, S. B., Ferreira, F., murata, k.,
de Oliveira Filho, C. M., Staroselskii, G., Morphett, G., Denecke, M.,
Whitehorn, M., Hall, P., Shamaev, E., Jehangir, R., Goppert, J., and Vilches,
V. M.: oucass/CASS-ardupilot: CASSv1.6.0-Copter-3.6.12, Zenodo,
https://doi.org/10.5281/zenodo.3494655, 2020b. a
Segales, A. R., Tridgell, A., Mackay, R., Barker, P., Marchi, L. D.,
WickedShell, and Vilches, V. M.: oucass/CASS-ardupilot: CASSv1.6.1-Copter-3.6.12 (Version CASSv1.6.1-Copter-3.6.12), Zenodo, https://doi.org/10.5281/zenodo.3974526, 2020c.
a
Trier, S. B., Davis, C. A., Ahijevych, D. A., and Manning, K. W.: Use of the
parcel buoyancy minimum (B min) to diagnose simulated thermodynamic
destabilization. Part I: Methodology and case studies of MCS initiation
environments, Mon. Weather Rev., 142, 945–966, 2014. a
Wagner, T. J., Klein, P. M., and Turner, D. D.: A New Generation of
Ground-Based Mobile Platforms for Active and Passive Profiling of the
Boundary Layer, B. Am. Meteorol. Soc., 100, 137–153, https://doi.org/10.1175/BAMS-D-17-0165.1, 2019. a
Wainwright, C. E., Bonin, T. A., Chilson, P. B., Gibbs, J. A., Fedorovich, E., and Palmer, R. D.: Methods for evaluating the temperature structure-function parameter using unmanned aerial systems and large-eddy simulation,
Bound.-Lay. Meteorol., 155, 189–208, 2015. a
Zhang, Y. and Klein, S. A.: Mechanisms affecting the transition from shallow to
deep convection over land: Inferences from observations of the diurnal cycle
collected at the ARM Southern Great Plains site, J. Atmos. Sci., 67, 2943–2959, 2010. a
Zielke, B.: A Procedure for Obtaining High-Density In-Situ Measurements of
Ozone Concentration Within the Planetary Boundary Layer, Master thesis,
University of Oklahoma, 2011. a
Short summary
During July 2018, researchers from OU participated in the LAPSE-RATE field campaign in San Luis Valley, Colorado. The OU team completed 180 flights using three RPASs over the course of 6 d of operation to collect vertical profiles of the thermodynamic and kinematic state of the ABL. This article describes sampling strategies, data collection, platform intercomparibility, data quality, and the dataset's possible applications to convective initiation, drainage flows, and ABL transitions.
During July 2018, researchers from OU participated in the LAPSE-RATE field campaign in San Luis...
Altmetrics
Final-revised paper
Preprint