Articles | Volume 12, issue 2
https://doi.org/10.5194/essd-12-789-2020
https://doi.org/10.5194/essd-12-789-2020
Data description paper
 | 
02 Apr 2020
Data description paper |  | 02 Apr 2020

Mapping the yields of lignocellulosic bioenergy crops from observations at the global scale

Wei Li, Philippe Ciais, Elke Stehfest, Detlef van Vuuren, Alexander Popp, Almut Arneth, Fulvio Di Fulvio, Jonathan Doelman, Florian Humpenöder, Anna B. Harper, Taejin Park, David Makowski, Petr Havlik, Michael Obersteiner, Jingmeng Wang, Andreas Krause, and Wenfeng Liu

Related authors

Reconstructed global monthly burned area maps from 1901 to 2020
Zhixuan Guo, Wei Li, Philippe Ciais, Stephen Sitch, Guido R. van der Werf, Simon P. K. Bowring, Ana Bastos, Florent Mouillot, Jiaying He, Minxuan Sun, Lei Zhu, Xiaomeng Du, Nan Wang, and Xiaomeng Huang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-556,https://doi.org/10.5194/essd-2024-556, 2025
Preprint under review for ESSD
Short summary
Modeling biochar effects on soil organic carbon on croplands in a microbial decomposition model (MIMICS-BC_v1.0)
Mengjie Han, Qing Zhao, Xili Wang, Ying-Ping Wang, Philippe Ciais, Haicheng Zhang, Daniel S. Goll, Lei Zhu, Zhe Zhao, Zhixuan Guo, Chen Wang, Wei Zhuang, Fengchang Wu, and Wei Li
Geosci. Model Dev., 17, 4871–4890, https://doi.org/10.5194/gmd-17-4871-2024,https://doi.org/10.5194/gmd-17-4871-2024, 2024
Short summary
The impacts of elevated CO2 on forest growth, mortality, and recovery in the Amazon rainforest
Yitong Yao, Philippe Ciais, Emilie Joetzjer, Wei Li, Lei Zhu, Yujie Wang, Christian Frankenberg, and Nicolas Viovy
Earth Syst. Dynam., 15, 763–778, https://doi.org/10.5194/esd-15-763-2024,https://doi.org/10.5194/esd-15-763-2024, 2024
Short summary
Evaluating the vegetation–atmosphere coupling strength of ORCHIDEE land surface model (v7266)
Yuan Zhang, Devaraju Narayanappa, Philippe Ciais, Wei Li, Daniel Goll, Nicolas Vuichard, Martin G. De Kauwe, Laurent Li, and Fabienne Maignan
Geosci. Model Dev., 15, 9111–9125, https://doi.org/10.5194/gmd-15-9111-2022,https://doi.org/10.5194/gmd-15-9111-2022, 2022
Short summary
Oil palm modelling in the global land surface model ORCHIDEE-MICT
Yidi Xu, Philippe Ciais, Le Yu, Wei Li, Xiuzhi Chen, Haicheng Zhang, Chao Yue, Kasturi Kanniah, Arthur P. Cracknell, and Peng Gong
Geosci. Model Dev., 14, 4573–4592, https://doi.org/10.5194/gmd-14-4573-2021,https://doi.org/10.5194/gmd-14-4573-2021, 2021
Short summary

Related subject area

Biogeosciences and biodiversity
High-resolution carbon cycling data from 2019 to 2021 measured at six Austrian long-term ecosystem research sites
Thomas Dirnböck, Michael Bahn, Eugenio Diaz-Pines, Ika Djukic, Michael Englisch, Karl Gartner, Günther Gollobich, Johannes Ingrisch, Barbara Kitzler, Karl Knaebel, Johannes Kobler, Andreas Maier, Armin Malli, Ivo Offenthaler, Johannes Peterseil, Gisela Pröll, Sarah Venier, Christoph Wohner, Sophie Zechmeister-Boltenstern, Anita Zolles, and Stephan Glatzel
Earth Syst. Sci. Data, 17, 685–702, https://doi.org/10.5194/essd-17-685-2025,https://doi.org/10.5194/essd-17-685-2025, 2025
Short summary
An organic matter database (OMD): consolidating global residue data from agriculture, fisheries, forestry and related industries
Gudeta Weldesemayat Sileshi, Edmundo Barrios, Johannes Lehmann, and Francesco Nicola Tubiello
Earth Syst. Sci. Data, 17, 369–391, https://doi.org/10.5194/essd-17-369-2025,https://doi.org/10.5194/essd-17-369-2025, 2025
Short summary
Gas exchange velocities (k600), gas exchange rates (K600), and hydraulic geometries for streams and rivers derived from the NEON Reaeration field and lab collection data product (DP1.20190.001)
Kelly S. Aho, Kaelin M. Cawley, Robert T. Hensley, Robert O. Hall Jr., Walter K. Dodds, and Keli J. Goodman
Earth Syst. Sci. Data, 16, 5563–5578, https://doi.org/10.5194/essd-16-5563-2024,https://doi.org/10.5194/essd-16-5563-2024, 2024
Short summary
A post-processed carbon flux dataset for 34 eddy covariance flux sites across the Heihe River Basin, China
Xufeng Wang, Tao Che, Jingfeng Xiao, Tonghong Wang, Junlei Tan, Yang Zhang, Zhiguo Ren, Liying Geng, Haibo Wang, Ziwei Xu, Shaomin Liu, and Xin Li
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-370,https://doi.org/10.5194/essd-2024-370, 2024
Revised manuscript accepted for ESSD
Short summary
A spectral–structural characterization of European temperate, hemiboreal, and boreal forests
Miina Rautiainen, Aarne Hovi, Daniel Schraik, Jan Hanuš, Petr Lukeš, Zuzana Lhotáková, and Lucie Homolová
Earth Syst. Sci. Data, 16, 5069–5087, https://doi.org/10.5194/essd-16-5069-2024,https://doi.org/10.5194/essd-16-5069-2024, 2024
Short summary

Cited articles

Balkovič, J., Skalský, R., Folberth, C., Khabarov, N., Schmid, E., Madaras, M., Obersteiner, M., and van der Velde, M.: Impacts and Uncertainties of +2 C of Climate Change and Soil Degradation on European Crop Calorie Supply, Earth's Future, 6, 373–395, https://doi.org/10.1002/2017EF000629, 2018. 
Beringer, T., Lucht, W., and Schaphoff, S.: Bioenergy production potential of global biomass plantations under environmental and agricultural constraints, GCB Bioenergy, 3, 299–312, https://doi.org/10.1111/j.1757-1707.2010.01088.x, 2011. 
Berndes, G., Hoogwijk, M., and Van Den Broek, R.: The contribution of biomass in the future global energy supply: A review of 17 studies, Biomass Bioenerg., 25, 1–28, https://doi.org/10.1016/S0961-9534(02)00185-X, 2003. 
Bonsch, M., Humpenöder, F., Popp, A., Bodirsky, B., Dietrich, J. P., Rolinski, S., Biewald, A., Lotze-Campen, H., Weindl, I., Gerten, D., and Stevanovic, M.: Trade-offs between land and water requirements for large-scale bioenergy production, GCB Bioenergy, 8, 11–24, https://doi.org/10.1111/gcbb.12226, 2016. 
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 
Download
Short summary
We generated spatially explicit bioenergy crop yields based on field measurements with climate, soil condition and remote-sensing variables as explanatory variables and the machine-learning method. We further compared our yield maps with the maps from three integrated assessment models (IAMs; IMAGE, MAgPIE and GLOBIOM) and found that the median yields in our maps are > 50 % higher than those in the IAM maps.
Share
Altmetrics
Final-revised paper
Preprint