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Abstract. Most scenarios from integrated assessment models (IAMs) that project greenhouse gas emissions
include the use of bioenergy as a means to reduce CO2 emissions or even to achieve negative emissions (together
with CCS – carbon capture and storage). The potential amount of CO2 that can be removed from the atmosphere
depends, among others, on the yields of bioenergy crops, the land available to grow these crops and the efficiency
with which CO2 produced by combustion is captured. While bioenergy crop yields can be simulated by models,
estimates of the spatial distribution of bioenergy yields under current technology based on a large number of
observations are currently lacking. In this study, a random-forest (RF) algorithm is used to upscale a bioenergy
yield dataset of 3963 observations covering Miscanthus, switchgrass, eucalypt, poplar and willow using climatic
and soil conditions as explanatory variables. The results are global yield maps of five important lignocellulosic
bioenergy crops under current technology, climate and atmospheric CO2 conditions at a 0.5◦× 0.5◦ spatial res-
olution. We also provide a combined “best bioenergy crop” yield map by selecting one of the five crop types
with the highest yield in each of the grid cells, eucalypt and Miscanthus in most cases. The global median yield
of the best crop is 16.3 t DM ha−1 yr−1 (DM – dry matter). High yields mainly occur in the Amazon region and
southeastern Asia. We further compare our empirically derived maps with yield maps used in three IAMs and
find that the median yields in our maps are > 50 % higher than those in the IAM maps. Our estimates of gridded
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bioenergy crop yields can be used to provide bioenergy yields for IAMs, to evaluate land surface models or to
identify the most suitable lands for future bioenergy crop plantations. The 0.5◦× 0.5◦ global maps for yields of
different bioenergy crops and the best crop and for the best crop composition generated from this study can be
download from https://doi.org/10.5281/zenodo.3274254 (Li, 2019).

1 Introduction

Bioenergy crops have for a number of years been promoted
as a source of renewable energy under policies from the Eu-
ropean Union and the US (WBGU, 2009). They have also
gained increasing attention as a global climate mitigation op-
tion (Berndes et al., 2003; Rose et al., 2014; van Vuuren
et al., 2009). Bioenergy with carbon capture and storage
(BECCS) is an important negative-emission technology be-
ing used by integrated assessment models (IAMs) to develop
different climate mitigation scenarios (Fuss et al., 2018; Popp
et al., 2017; Rogelj et al., 2018). BECCS contributes a cu-
mulative carbon-dioxide removal (CDR) between 150 and
1200 Gt CO2 in different future scenarios that limit global
warming to 1.5 ◦C in 2100 compared to the preindustrial
period (Rogelj et al., 2018). This wide range of CDR is
mainly caused by the different shared socio-economic path-
ways (SSPs) used in IAMs as well as by different model set-
tings (Popp et al., 2014; Rogelj et al., 2018).

Grain or high-sugar crops like maize and sugarcane
based on first-generation conversion technologies are not
frequently considered by IAMs because of their lower en-
ergy yields, high fertilizer requirements and the increasing
food demand pressure in future scenarios (Karp and Shield,
2008). Bioenergy production systems in IAMs thus often
refer to lignocellulosic bioenergy and correspond to peren-
nial grasses (e.g., switchgrass and Miscanthus) and/or fast-
growing trees (e.g., poplar, willow and eucalypt) coupled
with technologies for converting lignocellulosic biomass to
bioenergy (second generation; Karp and Shield, 2008). They
can grow under a wider range of climatic conditions and
soil types and have a lower demand for fertilizer (Cadoux
et al., 2012; Miguez et al., 2008) and a larger greenhouse
gas (GHG) abatement potential than first-generation biofuels
(El Akkari et al., 2018). However, the competition for land
used to grow bioenergy crops and other land uses (e.g., food,
timber, wild-species protection) seems inevitable, causing di-
rect and indirect land-use change (LUC) and carbon emis-
sions (Robertson et al., 2017; Smith et al., 2016). One op-
tion for minimizing the land competition and the consequent
LUC emissions is to plant lignocellulosic bioenergy crops on
“marginal lands” (Robertson et al., 2017). So-called marginal
lands are mainly assumed to be abandoned lands that were
formerly used for agriculture. Reasons for the agricultural
land abandonment may include degraded soil quality, low
crop price, or environmental and ecological protection (Kang
et al., 2013; Tang et al., 2010).

The biomass yields of bioenergy crops on marginal lands
or in future land-use scenarios simulated by IAMs are of-
ten estimated from crop yield datasets with limited obser-
vations (e.g., Cai et al., 2011; Havlík et al., 2011; Kyle et
al., 2011; Tang et al., 2010) or using a meta-analysis of ex-
perimental data extracted from scientific papers (Laurent et
al., 2015). These approaches largely oversimplify the spa-
tial variability in climatic conditions and soil properties. Al-
ternatively, yields of bioenergy crops can be simulated by
specific bioenergy crop models (e.g., Hastings et al., 2009;
Miguez et al., 2009) or by dynamic global vegetation models
(DGVMs; Beringer et al., 2011; Li et al., 2018b). Specific
bioenergy crop models represent physiological processes re-
lated to plant production and show a good performance of re-
producing the biomass yields observations, but they are semi-
mechanistic models based on empirical relationships, and
processes other than productivity (e.g., soil carbon dynamic)
are largely not represented (Hastings et al., 2009; Miguez et
al., 2008). In addition, they are often designed for only one
or two bioenergy crop types. By contrast, the DGVMs use
generic plant functional types (PFTs) to represent a group of
plants with similar physiological and phenological charac-
teristics and with complex process representations related to
the carbon cycle, i.e., photosynthesis, carbon allocation, res-
piration, phenology and soil carbon dynamics (Guimberteau
et al., 2018; Sitch et al., 2003). DGVMs with specific repre-
sentation of bioenergy crops and calibrated using site-level
data can provide global bioenergy crop yield maps, but it is
difficult to perfectly match observed yields site by site, partly
due to a lack of explicit management information (e.g., geno-
types, fertilization, plant density) in the DGVMs (Heck et al.,
2016; Li et al., 2018b). Nevertheless, at least two IAMs (IM-
AGE and MAgPIE) use simulated bioenergy crop yield maps
from the DGVM – LPJmL (Bonsch et al., 2016; Stehfest et
al., 2014). Technological progress may be further considered
in IAMs for the future increase in bioenergy (and food) crop
yields.

A detailed global map of bioenergy crop yields based
on a large number of field observations that could be used
to validate the model-based scenarios is, to the best of our
knowledge, currently lacking. Recently, global large datasets
of second-generation bioenergy crop yields were compiled
(LeBauer et al., 2018; Li et al., 2018a). These datasets
provide observation-based crop yields as well as coordi-
nates, climate conditions (e.g., temperature, precipitation),
soil properties (e.g., clay fraction) and management infor-
mation, which can potentially be scaled to the globe using
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machine-learning algorithms. The derived global yield maps
not only are valuable in estimating the global bioenergy pro-
duction potentials but also can be used as input data to IAMs
or to evaluate the performances of specific bioenergy crop
models and DGVMs. Global yield maps could also help gov-
ernments or companies in identifying the most promising ar-
eas for growing bioenergy crops.

The objective of this study is thus to generate spatially
explicit bioenergy yields with a machine-learning algorithm
(random forest – Breiman, 2001 – trained from a global
yield dataset – Li et al., 2018a) with climate, soil condition
and remote-sensing variables as explanatory variables. The
bioenergy crop yield maps produced by the machine-learning
algorithm at a 0.5◦× 0.5◦ spatial resolution are then com-
pared with the yield maps previously used in three IAMs,
i.e., IMAGE (Stehfest et al., 2014), MAgPIE (Popp et al.,
2014) and GLOBIOM (Havlík et al., 2011).

2 Materials and methods

2.1 Data

The global yield dataset used here was compiled from 3963
published field measurements of five main lignocellulosic
bioenergy crops: eucalypt, Miscanthus, switchgrass, poplar
and willow (Li et al., 2018a). All yield records have coordi-
nates (latitude and longitude) and crop types. Other informa-
tion was also documented if it was reported in the original
publications, including the mean annual temperature (MAT),
mean annual precipitation (MAP), soil clay fraction (CF),
planting information (e.g., density, rotation length, harvest
time, age) and management practices (irrigation and fertiliza-
tion). Most yield data in this dataset correspond to the mean
annual harvested biomass (Li et al., 2018a), and only about
one-third of the yield data were reported with age (Li et al.,
2018a), so age is not specifically used in this study, since we
aimed to produce a spatial yield map for present day with-
out temporal variability. Only 36 %, 51 % and 14 % of the
yield observations were reported together with MAT, MAP
and CF, respectively (Li et al., 2018a). For the sites without
such information, we used climate data from the CRUNCEP
gridded dataset (Viovy, 2011) and CF data from the Harmo-
nized World Soil Database (HWSD v1.2; Nachtergaele et al.,
2012; Table 1). For the sites with reported MAT and MAP
in the yield dataset, we compared the reported values with
MAT and MAP from CRUNCEP at the corresponding grid
cell, and they are in a good agreement (Fig. S1). However
the consistency is low between CF from HWSD and those
reported in the site-level yield dataset (Fig. S1), probably due
to the limited number of observations and strong heterogene-
ity of soil properties.

In addition to MAT, MAP and CF, we also used other
explanatory variables (Table 1): (1) shortwave radiation
(SR) derived from the MODIS products (Ryu et al., 2018),
(2) growing-season length (GSL) calculated using daily tem-

perature from CRUNCEP (Viovy, 2011), (3) a soil water
availability index (WAI) calculated from a soil water balance
model using ERA-Interim reanalysis data as inputs (see de-
tails in Tramontana et al., 2016) and (4) the growing-season
summed normalized difference vegetation index (NDVI)
from the MODIS NDVI dataset (Park et al., 2016). GSL is
defined as the number of days between the first 5 successive
days with daily average temperatures greater than 5 ◦C and
the first 5 successive days with daily temperatures smaller
than 5 ◦C in a year (Frich et al., 2002; Mueller et al., 2015).
For this calculation the years were set to start on 1 January
in the Northern Hemisphere and on 1 July in the Southern
Hemisphere.

Because the spatial resolution of CRUNCEP and the WAI
data is 0.5◦×0.5◦ (Table 1), we performed all analyses at this
spatial resolution. Thus, for CF and SR datasets with higher
resolutions (Table 1), the median values in each 0.5◦× 0.5◦

grid cell were used as explanatory variables. Although NDVI
covers the non-bioenergy vegetation type, we used the max-
imum value in each 0.5◦× 0.5◦ grid cell from the original
0.05◦× 0.05◦ resolution as a spatial proxy of the maximum
yield potential that bioenergy crops can reach in the machine-
learning upscaling model. The multi-year median values of
MAT and MAP from CRUNCEP, SR, WAI, and NDVI be-
tween 2001 and 2010 for each grid cell were used to elimi-
nate temporal variability.

2.2 Random-forest modeling

2.2.1 Random forest

Random forest (RF) has been used to analyze the relation-
ships between independent variables and explanatory vari-
ables (e.g., the relation between crop yields and climate by
Hoffman et al., 2018) and for upscaling local data (e.g.,
global soil carbon loss due to human land use by Sanderman
et al., 2017). RF is a machine-learning algorithm that com-
bines a set of regression trees constructed from a random sub-
set of the observations (Breiman, 2001). Because each tree
fitting in the forest uses a bootstrap sample of the training
observations, the part of the dataset not used is called out of
bag (OOB) and can be used to test the tree prediction. This
helps RF to be fitted and validated when being trained, and
thus no extra independent validation dataset is needed.

Here we used Python scikit-learn module (Pedregosa and
Varoquaux, 2011) to perform the RF regressions. We set the
number of trees in forest to be 1000 and the maximum depth
of each tree (branch levels) to be 10. We verified that the co-
efficient of determination (R2) between predictions and ob-
servations in the training data and the R2 of OOB valida-
tion remain constant with a number of trees larger than 1000
or maximum depth larger than 10 (Fig. S2). The importance
of a variable can also be calculated in the scikit-learn mod-
ule based on how much each variable decreases the weighted
impurity, i.e., the sum of the number of splits across all trees
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Table 1. Variables used in the upscaling of bioenergy crop yields.

Variable Description Original resolution Data source

CT Crop type: eucalypt, Miscanthus, – Li et al. (2018a)
switchgrass, poplar or willow

MAT Mean annual temperature (◦C) 0.5◦× 0.5◦ Li et al. (2018a); CRUNCEP (Viovy, 2011)
MAP Mean annual precipitation (mm yr−1) 0.5◦× 0.5◦ Li et al. (2018a); CRUNCEP (Viovy, 2011)
CF Clay fraction 30◦× 30◦ HWSD (Nachtergaele et al., 2012)
SR Shortwave radiation (M J m−2 d−1) 0.05◦× 0.05◦ Ryu et al. (2018)
GSL Growing-season length (d) 0.5◦× 0.5◦ based on CRUNCEP (Viovy, 2011)
WAI Soil water availability index 0.5◦× 0.5◦ Tramontana et al. (2016)
NDVI Growing-season summed normalized 0.05◦× 0.05◦ Park et al. (2016)

difference vegetation index

that include this variable, weighted by the number of sam-
ples it splits (Louppe et al., 2013). Although the RF model
is robust to correlated explanatory variables, the importance
calculation could be biased if there is a strong collinearity
between different variables. We thus calculated the correla-
tions between all continuous explanatory variables (Table 1)
in the training dataset (see Sect. 3.1).

2.2.2 Model training

The workflow of RF training and predicting is shown in
Fig. S3. The median yield, MAT, MAP and CF of all site
observations for each crop type in each 0.5◦× 0.5◦ grid
cell from the global yield dataset were calculated to build
the training set. That is, for example, several yield observa-
tions were reported in the same 0.5◦× 0.5◦ grid cell, and
the median value of these observations was used for this
grid cell. This gives a total of 273 0.5◦× 0.5◦ grid cells
with yield observations. The SR, GSL, WAI and NDVI in
these grid cells that are not recorded in the yield observa-
tion dataset were derived from each corresponding dataset
(Table 1) and added in the training set. Crop type (CT; Ta-
ble 1) was taken as a categorical variable in the RF train-
ing and was thus converted to five dummy variables, i.e.,
CT_eucalypt, CT_Miscanthus, CT_poplar, CT_switchgrass
and CT_willow. Taking one yield observation of eucalypt for
example, CT_eucalypt was set to 1 and the other four CTs
were set to 0. Alternatively, we also tried one RF regression
for each individual crop type as a sensitivity test for this cat-
egorical variable (see Sect. 4.2).

We first trained the RF model using data from all 273 grid
cells. However, the OOB R2 (0.29) is low, indicating the
poor performance of the trained model. The low OOB R2

is probably because part of observed yields cannot be ex-
plained by the spatially explicit climate and soil conditions
used as the explanatory variables in the model training. For
example, some strong genotypes may produce high yields
under poor climate conditions, while low yields may be ob-
served at some sites with poor soil conditions that are not
representative of the whole 0.5◦× 0.5◦ grid cell. In order to

derive the best RF model for prediction, therefore, we further
adopted a leave-one-out method (Siewert, 2018; Tramontana
et al., 2015). Specifically, RF models were trained each time
by excluding one grid cell in the training set. The RF model
was then used to predict the yield for this excluded grid
cell. The comparison between observations and predictions
is shown in Fig. S4. There are 112 grid cells with predicted
yields that are biased by more than 1σ of the observed yields
(gray dots in Fig. S4a). These strongly biased grid cells were
masked and the remaining 161 grid cells retained to train the
RF model again to obtain the best RF model. The predicted
yields from the best RF model agree well with the observa-
tions (Fig. S4b), and R2 of the OOB validation is 0.63. Note
that the OOB R2 (0.63) serves as an evaluation of the RF
model performance rather than the R2 between predictions
and observations in the training set (0.95; Fig. S4b). In the
RF model training, one can always get a very high R2 for the
training set by expanding the tree depth, but in that case, the
RF model will be overfitted and thus have a poor ability to
predict, suggested by a low OOB R2.

The spatial distribution of the selected grid cells for model
training is shown in Fig. 1. There is good observation cover-
age in the US, Europe, China, southeastern Brazil and south-
ern Australia, but sites are sparse in other regions (Fig. 1).
Eucalypt, Miscanthus, switchgrass, poplar and willow take
16.8 %, 24.2 %, 16.8 %, 26.1 and 16.1 % of the total number
of selected sites in the training data (Fig. 1).

2.2.3 Model prediction

After training by data from the selected 161 grid cells, the
derived RF model was used to predict the global distribu-
tion of bioenergy crops yields. Specifically, the gridded val-
ues of continuous explanatory variables on each 0.5◦× 0.5◦

land grid cell were derived from data sources listed in Ta-
ble 1. Five predictions were made, each with one individual
prescribed bioenergy crop type (e.g., CT_eucalypt= 1 and
the other four CTs are 0 for eucalypt).

Although there are some drought- and/or cold-tolerant Eu-
calyptus species, most species have a limited cold tolerance

Earth Syst. Sci. Data, 12, 789–804, 2020 www.earth-syst-sci-data.net/12/789/2020/



W. Li et al.: Mapping the yields of lignocellulosic bioenergy crops 793

Figure 1. Map of grid cells with yield observations in the global yield dataset. The colored and white markers indicate the selected (blue
dots in Fig. S4a) and masked (gray dots in Fig. S4b) grid cells, respectively, based on a bias threshold of 1σ for the RF modeling of these
yields. The inset pie plot shows the percentages of each bioenergy crop type in the selected grid cells (colored markers) for model training.

and relative high demands for water and are thus usually
cultivated in tropical and warm temperate regions (Jacobs,
1981). Also, because the RF model has a poor ability to ex-
trapolate when the values of explanatory variables are out-
side the ranges of training data, we only limited each crop
prediction to the areas that are adequate for growth. Specifi-
cally, the minimum MAT and MAP over all grid cells in the
training dataset were derived for each crop. The regions ad-
equate for growth of each bioenergy crop were then defined
as grid cells with MAT and MAP higher than the minimums
in the training data. In another word, if either MAT or MAP
in a grid cell is lower than the minimums where a crop type
is grown in the training data, this grid cell is excluded for
upscaling the yield of this crop. The grid cells with adequate
growth conditions for each bioenergy crop type are shown in
Fig. S5a–e. We also provided an integrated map (Fig. S5f)
where at least one bioenergy crop type can grow to represent
the grid cells that can have yield predictions.

Beyond the five predictions made for each bioenergy crop,
we derived a prediction of the “best crop” by selecting the
bioenergy crop with highest yield in each grid cell to indicate
the maximum achievable yields (see Sect. 3.2).

2.3 Bioenergy crop yield maps in IAMs

We compared our derived yield maps from RF with the
bioenergy yields from three IAMs: IMAGE (Stehfest et al.,
2014), MAgPIE (Popp et al., 2014) and GLOBIOM (Havlík
et al., 2011). The yields used in IMAGE and MAgPIE are
simulated by a DGVM – LPJmL (Beringer et al., 2011) –
and have separate yield data for woody (representing poplar,
willow and eucalypt) and herbaceous (representing switch-
grass and Miscanthus) bioenergy crops. For comparison, we
used the present-day (2010) actual yield maps (derived from
RF).

In the IMAGE integrated assessment model framework
(Stehfest et al., 2014), the LPJmL model is an integral com-
ponent for crop and grass yields, hydrology, dynamic vege-
tation, and carbon dynamics (Müller et al., 2016). Bioenergy
crop yields for sugarcane, maize, and herbaceous and woody

crops are represented on the grid level in LPJmL and rep-
resent potential yields under current technology. In the IM-
AGE land model, these potential yields are calibrated on the
regional level to currently observed yields based on Gerssen-
Gondelach et al. (2015) for the present day. Future projec-
tions of bioenergy crop yield depend on scenario-specific as-
sumptions of technological progress (Daioglou et al., 2019),
but the yield map used in this study is for year 2010 and with-
out future yield improvements.

The yield map for year 2010 from MAgPIE used for com-
parison in this study includes the yield improvements due to
technological development from 1995 to 2010. In the yield
maps used as an input to MAgPIE, the potential bioenergy
crop yields simulated by LPJmL (Beringer et al., 2011) were
reduced using information about observed land-use intensity
(Dietrich et al., 2012) and agricultural area (FAO, 2013) be-
cause MAgPIE aims to represent actual yields (Bonsch et al.,
2016; Humpenöder et al., 2014). It is assumed that LPJmL
bioenergy yields represent yields achieved under the highest
currently observed land-use intensity, which is observed in
Europe. Therefore, LPJmL bioenergy yields for all other re-
gions than Europe are reduced proportionally to the land-use
intensity in the given region. In addition, yields are calibrated
at the regional level to meet the Food and Agriculture Organi-
zation of the United Nations (FAO) agricultural area in 1995,
resulting in a further reduction of yields in all regions. MAg-
PIE bioenergy yields can exceed LPJmL bioenergy yields
over time as endogenous investments in R&D (research and
development) push the technology frontier.

The bioenergy crop yield map used in GLOBIOM rep-
resents the yields from short-rotation tree plantations (i.e.,
Eucalyptus, Acacia, Gmelina, Betula, Populus, Salix) and
thus only woody bioenergy crops. To generate this map,
field-measured yields (i.e., as mean annual increments of
stem wood) for different short-rotation tree species with
proper management practices were first collected from var-
ious databases (dated between 1984 and 2006 and sourced
from different global regions) and then upscaled to a global
yield map based on the spatial patterns of potential net pri-
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Figure 2. Variable importance in the trained RF model (a) and R2

from the regressions between different explanatory variables (Ta-
ble 1) in the training data (b). The importance of one variable is cal-
culated based on the sum of the number of splits across all trees that
include this variable, weighted by the number of samples it splits.
The relative contributions of each explanatory variable (summed to
100 %) are shown here.

mary productivity (NPP) from Cramer et al. (1999). The es-
timation of area potentials for tree plantations in the GLO-
BIOM maps followed an approach similar to the one pro-
posed by Zomer et al. (2008), including thresholds of tree
growth based on aridity, temperature, elevation, population
density and existing land cover (Havlík et al., 2011).

3 Results

3.1 Explanatory variables importance

The importance of explanatory variables to the RF model is
shown in Fig. 2a, indicating their contributions to the overall
tree splits in the forest. We verified that spatial R2 is gen-
erally low between any pair of variables (median R2

= 0.06;
interquartile range – IQR= 0.14), with a maximumR2 of 0.6
between MAT and GSL (Fig. 2b).

MAP is the most important variable in the RF regres-
sion, with a contribution of 18.0 % to the overall tree
splits. Another water-related variable, WAI, derived from
a simple-bucket model with rainfall and evapotranspiration
(ET) datasets, also has a significant contribution (11.9 %),
but we note here that ET from observations over natural and
cultivated systems may be different from ET in a world with
large areas covered by bioenergy crops. The second most im-
portant variable is GSL, contributing 17.5 % to the tree splits.
However, it should be noted that the correlation between
GSL and MAT is relatively high (R2

= 0.6; Fig. 2b) because
GSL was calculated using daily temperature. The contribu-
tions of GSL and MAT (4.3 %) may thus be not well sep-
arated because of the collinearity, but this did not influence
the prediction because RF prediction is not sensitive to the
collinearity of explanatory variables. Nevertheless, it implies
that temperature-related variables are also very important for
predicting the bioenergy crop yields in addition to MAP and
WAI. Overall, water-related and temperature-related vari-

ables (MAP, WAI, GSL and MAT) are the most impor-
tant variables, together representing an importance level of
51.7 %.

Among bioenergy crop type dummy variables used in the
RF model, CT_eucalypt and CT_Miscanthus have marked
contributions (14.8 % and 10.8 %), while the contributions
from other crop types (CT_poplar, CT_switchgrass and
CT_willow) are low (< 3 %; Fig. 2a). This reflects the fact
that eucalypt and Miscanthus are generally more productive
than others (Li et al., 2018a). The total importance of all
bioenergy crop types indices is 29.6 %.

NDVI, as a proxy of maximum plant productivity in each
grid cell (Sect. 2.1), and SR contribute 8.4 % and 6.9 % to
the trained RF model. CF, as the only soil property used in
the regression, has a minor contribution of 3.5 % (Fig. 2a),
indicating that soil conditions may have little impact on the
bioenergy crop yields. However, this should be interpreted
cautiously, considering the mismatch between CF from the
HWSD dataset and from the yield observation dataset based
on field measurements (Fig. S1c).

3.2 Predicted climate-limited yields

The spatially explicit yield maps of different bioenergy crops
were predicted based on the climatic and soil conditions in
each grid cell (Fig. 3). MAP is the most important variable in
the RF regression (Fig. 2a), and thus the predictions largely
depend on the spatial patterns of annual rainfall. This is con-
sistent with previous studies in which MAP is the main pre-
dictor of NPP across spatial gradients (Knapp et al., 2017).
Although the general spatial patterns seem similar, there are
still differences caused by other factors than MAP. In gen-
eral, eucalypt and Miscanthus have higher yields than the
other three bioenergy crops (poplar, willow and switchgrass).
The global median yields of eucalypt and Miscanthus in the
considered regions are 16.0 (4.1; IQR of grid cells adequate
for growth, same below) and 15.3 t DM ha−1 yr−1 (2.0 tons
of dry matter – DM; Fig. 3a, b). The spatial distributions of
predicted yields for poplar, willow and switchgrass show a
similar pattern (Fig. 3c–e) because of the low importance of
these three crop types in the RF regression (Fig. 2a). Still, the
global median yields are slightly different, i.e., 10.1, 10.6 and
10.3 t DM ha−1 yr−1 (1.7, 1.7 and 1.6 t DM ha−1 yr−1, re-
spectively) for poplar, willow and switchgrass, respectively,
mainly due to the difference in areas that are adequate for
growth (Fig. S5).

The global median yield of the best bioenergy crop is
16.3 t DM ha−1 yr−1 (7.0 t DM ha−1 yr−1), with the highest
yields in the Amazon area and southeastern Asia (Fig. 3f).
Consistent with the high yields of Miscanthus and eucalypt,
they are the main compositions of the best crop globally, oc-
cupying 41.3 % and 35.9 % of the total grid cells that are ad-
equate for bioenergy crop growth (Fig. 3g). Eucalypt domi-
nates as being the best crop in the wet tropical regions, while
Miscanthus distributes dominantly in the dry tropical regions
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Figure 3. Spatial distribution of predicted yields for different bioenergy crops (a–f) and best crop type in each grid cell that is adequate for
growth (g). The inset pie plot in (g) shows the fractions of grid cells occupied by each bioenergy crop type. The white areas indicate regions
where no prediction was derived due to inadequate conditions defined by minimum temperature and precipitation (see Sect. 2).

and the temperate regions. Willow is the best crop in only
21.2 % of the total grid cells, mainly in the regions with more
severe conditions where other crops are excluded for growth
based on the MAT and MAP ranges. The fractions of poplar
and switchgrass are very low (Fig. 3g), indicating that they
are not as competitive as the other crops in term of yields.

Maps of yield differences between eucalypt and Miscant-
hus and among the other three crops are shown in Fig. S6.
There are substantial differences between the yields of euca-
lypt and Miscanthus. The higher yields of eucalypt than Mis-
canthus in South America, the eastern US, central Africa and
southeastern Asia and lower yields in other regions (Fig. S6a)
can also be reflected by the best crop type in Fig. 3g. Be-
cause the contribution of crop types (poplar, switchgrass
and willow) is low in the trained random-forest algorithm
(CT_poplar, CT_switchgrass and CT_willow in Fig. 2a), the
predicted yields in the regions where all three crops can grow
are controlled by other mutual variables and thus similar.
Therefore, the yield differences among these three crops are
mainly caused by the different adequate regions for growth
(Fig. S5) defined by the minimum MAT and MAP in the
observation dataset. For example, the regions adequate for
willow growth include some areas with lower MAP, like the
western US, eastern Europe and central Asia (Fig. S5), than
for poplar and switchgrass.

3.3 Comparison with maps used in IAMs

The comparison of best bioenergy crop yields in our RF map
with the maps used in IMAGE, MAgPIE and GLOBIOM
is shown in Fig. 4. The best crop yields refer to the higher
yields between woody and herbaceous crops in each grid
cell for IMAGE and MAgPIE and the woody crop yields for
GLOBIOM, since only short-rotation trees were included in
this model. Compared to the RF map, yields are generally
lower in the maps used in IAMs (Fig. 4c, e, g), with global
median differences of −7.0, −8.1 and −5.2 t DM ha−1 yr−1

for IMAGE, MAgPIE and GLOBIOM, respectively. How-
ever yields from the IAM maps are higher than the RF map
in some regions, e.g., the southeastern US and southeastern
Asia for the MAgPIE map (Fig. 4e) and some places in Brazil
and northern China for the GLOBIOM map (Fig. 4g). Much
lower yields in the IAM maps than the RF map were found in
the equatorial winter dry (“Aw” category based on Köppen–
Geiger climate classification; Kottek et al., 2006) regions in
southeast Brazil, Africa, India and Australia (Fig. 4c, e, g),
especially for IMAGE and MAgPIE. In the equatorial full
humid (“Af”) and monsoonal (“Am”) regions in South Amer-
ica (mainly Amazon region) and Africa (around the Demo-
cratic Republic of the Congo), the yield difference is small
between the RF and IMAGE and GLOBIOM maps (Fig. 4c,
g). In the “Af” and “Am” regions in southeastern Asia, how-
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Figure 4. Comparison of bioenergy crop yields between the RF map and maps used in three IAMs (IMAGE, MAgPIE and GLOBIOM).
Panels (a, b, d, f) are the best crop yields from each dataset, and the panels (c, e, g) refer to the yield differences between RF and each
IAM map (IAM yields minus RF yields where yields are available in both paired maps). The best-crop-yield map from RF (a) is the same
as Fig. 3f. The best crop yields in IMAGE and MAgPIE (b, d) are the higher yields between woody and herbaceous bioenergy crops in each
grid cell. The best crop yields in GLOBIOM (f) are the yields of woody crops (short-rotation trees), since there is no herbaceous bioenergy
crop in GLOBIOM.

ever, yields are lower from GLOBIOM than from RF but
similar between IMAGE and RF (Fig. 4c, g). For MAgPIE,
yields are systematically lower than those from RF in these
tropical regions except southeastern Asia (Fig. 4e). On the
other hand, yields from MAgPIE are closest to the RF yields
in all the three IAM maps in Europe.

We also showed the best-crop-yield distribution his-
tograms from different maps (Fig. 5). Most areas in the RF
map have a yield ranging from 15 to 20 t DM ha−1 yr−1, and
other areas located in another two ranges have yields ranging
from 5 to 13 t DM ha−1 yr−1 and 20 to 24 t DM ha−1 yr−1. By
contrast, a large fraction of areas from the IAM maps are as-
sociated with yields lower than 15 t DM ha−1 yr−1 (Fig. 5).
This is consistent with the generally higher yields in the
RF map than the IAM maps in Fig. 4. In fact, the median
mean yield in the regions where yields are available in the
four datasets (the overlapped regions between Fig. 4a, b, d,
f) from RF is > 50 % higher than the median yields from
IAM maps (80 %, 83 % and 59 % for IMAGE, MAgPIE and
GLOBIOM, respectively). The shapes of yield distributions
among IAMs are also different (Fig. 5). There are more areas
with yields below 7 and above 20 t DM ha−1 yr−1 in the IM-

AGE and MAgPIE maps than the GLOBIOM map. This is
also reflected by the higher IQR from IMAGE (IQR= 9.1)
and MAgPIE (8.7) than GLOBIOM (5.7 t DM ha−1 yr−1).
Although both IMAGE and MAgPIE yield maps are based
on LPJmL, there are slight differences due to the calibration
of the original potential yields of LPJmL to actual yields.
Compared to IMAGE, MAgPIE has more areas with yields
below 12 DM ha−1 yr−1 but fewer areas with yields between
17 and 22 DM ha−1 yr−1 (Fig. 5).

Yields from the IAM maps were also compared directly
with yields from field site observations (Fig. 6) that were
used to train the RF model (Fig. S4b). Consistent with the
global results (Figs. 4, 5), yields from the three IAM maps
were lower at most sites (median difference is −4.5, −4.3
and −2.0 DM ha−1 yr−1, respectively; Fig. 6a–c). Yields
from IMAGE are roughly consistent with the site observa-
tions for switchgrass but much lower for Miscanthus and eu-
calypt (Fig. 6a). In MAgPIE, herbaceous crops’ (Miscanthus
and switchgrass) yields lie around the 1 : 1 line, but woody
crops’ (eucalypt, poplar and willow) yields are generally
lower than the site observations (Fig. 6b). Because the bioen-
ergy crops in the GLOBIOM maps refer to short-rotation
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Figure 5. Histograms of best crop yields in our RF yield map and
yield maps used in the three IAMs. Only regions where yield values
are available in all the four maps are used to generate the histogram.

Figure 6. Comparison of yields from random-forest (RF) and IAM
yield maps with site observations used to train the RF model (see the
spatial distribution of sites in Fig. 1). Dashed lines indicate the 1 : 1
lines. The median differences and root-mean-square errors (RM-
SEs) between site observations and yields from RF and IAMs are
also shown.

trees, the yields are similar to the field measurements of wil-
low and poplar (also switchgrass) but much lower compared
to the observed yields of Miscanthus and eucalypt (Fig. 6c).

In addition to the comparison of the best crop yields, we
also showed the yields of woody and herbaceous crops in
each dataset, respectively (Fig. S7). Yields of woody bioen-
ergy crops in the IAM maps are lower than those in the RF
map, especially for IMAGE and MAgPIE. By contrast, the
herbaceous crop yields from IMAGE and MAgPIE are close
to the RF yields in some regions like the Amazon and south-
eastern Asia.

4 Discussion

4.1 Yield comparison with other studies

Our estimated global median yields (Fig. 3) are generally
within the ranges summarized by Searle and Malins (2014)
from field measurements in the literature for five second-
generation bioenergy crops: 0–51, 5–44, 0–35, 0–21 and 1–
35 t DM ha−1 yr−1, respectively, for eucalypt, Miscanthus gi-
ganteus, poplar, willow and switchgrass. The yields from
RF also agree with the yield ranges of several bioenergy
crop species (e.g., Miscanthus giganteus, Panicum virgatum,
Salix, Populus) based on published yield data (Laurent et al.,
2015).

For Miscanthus and switchgrass, there are only small-
scale experimental plots in different regions and no large-
scale plantation, so no region- or country-scale inventory
data are available for comparison. Most yield data at farm
levels were already included in our observation yield dataset
(see “Field_type” and “Field_size” in Table 2 in Li et al.,
2018a).

For poplar, willow and eucalypt, we collected some in-
ventory data of mean annual increment (MAI) for species
of Eucalyptus, Populus and Salix for each country (Table S1,
extracted from Table 6a in FAO, 2006). The volume unit of
MAI was converted to the mass unit of yield based on the
wood density of different tree types (Engineering ToolBox,
2004). The main difficulty is, however, the lack of spatially
explicit data about where are plantations located in national-
scale inventory data, preventing an accurate comparison with
the RF-predicted yields. Still, we derived the yield range in
the whole country from the RF-predicted yield maps and
compared them with the yield range from the inventory data
(FAO, 2006; Fig. S8). Most yield ranges from the inventory
data overlapped with the ranges from RF maps (e.g., euca-
lypt and willow in Argentina), although the former is gener-
ally lower than the latter (Fig. S8). The higher minimum and
maximum yields from RF could be caused partly by the ex-
clusion of regions with MAP and MAT below the minimums
from the observation dataset (to avoid out-of-range predic-
tion). Especially in some large countries, the inventory data
may have plantations in some harsh climates and soils (e.g.,
most eucalypt plantations distribute in drier areas in southern
Brazil). However, we must note that it is not a fair compar-
ison without knowing the exact plantation locations in each
country.

4.2 Sensitivity tests and uncertainties in the RF model

We trained RF models using climatic and soil variables and
observed yields at a resolution of 0.5◦× 0.5◦. However, cli-
mate and soil conditions at the observation sites may not
match the mean values in the corresponding 0.5◦ grid cell. In
addition, the number of observation sites in a grid cell may
also influence the derived median yields in this grid cell be-
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cause of the possible sampling biases (e.g., all observations
concentrating in a very small place that is not representative
of the whole grid cell). We thus tried to train the model at a
resolution of 0.01◦× 0.01◦ using high-resolution MAP and
MAT from WorldClim (Hijmans et al., 2005), but the OOB
R2 did not improve. We also tried using shortwave incom-
ing radiation from CRUNCEP (Viovy, 2011) instead of that
from Ryu et al. (2018). SR from CRUNCEP was simply con-
verted from the cloudiness provided by CRU based on the
calculation of clear-sky incoming solar radiation as a func-
tion of date and latitude of each pixel (Viovy, 2011). By con-
trast, SR data from BESS were computed based on a series
of forcing data from Terra and Aqua MODIS Atmosphere
and Land products, including solar zenith angle, dark-target
and deep-blue combined aerosol optical depth, cloud opti-
cal thickness, cloud top pressure, cloud top temperature, sur-
face pressure and surface temperature, total column precip-
itable water vapor and total ozone burden, and land surface
shortwave albedo (Ryu et al., 2018). The SR data from BESS
were also highly consistent with the observational field data
(R2
= 0.95; see Fig. 2 in Ryu et al., 2018). We still tested the

RF performance using SR from CRUNCEP, and the OOB
R2 remained unchanged (0.63), possibly due to the relatively
low contribution of SR in the random-forest training (Fig. 2a)
and the high spatial correlation between SR from BESS and
from CRUNCEP.

We also tried growing-season integrated climate variables
instead of annual mean values, but there is no significant im-
provement in the model training. Therefore, we focused our
analyses on 0.5◦× 0.5◦ grid cells using mostly mean annual
values, since the yield dataset only reported MAP and MAT
(no growing-season integrated values) from observations. In
addition, the soil properties from HWSD are also highly un-
certain (Fig. S1c), and the coarse resolution may not be able
to represent the local soil conditions, partly explaining the
low importance of CF in the RF model (Fig. 2). More detailed
local soil property maps could help to improve the CF impor-
tance and thus the corresponding RF model performance.

We replaced the model-derived WAI with satellite-based
surface soil moisture (SM) data, including the mean annual
soil moisture data from the Soil Moisture and Ocean Salinity
(SMOS) satellite during 2010–2018 (Li et al., 2020) and the
Soil Moisture Active Passive (SMAP) satellite during 2015–
2018 (O’Neill et al., 2019). The OOB R2 for SMOS and
SMAP are 0.60 and 0.59 respectively, compared to the orig-
inal value of 0.63. The lower performance may be caused by
the fact that satellite-based soil moisture data only accounted
for soil water status in the top centimeters, whereas produc-
tivity is influenced by root-zone soil moisture. In addition,
the importance ranking changed from no. 4 for WAI (Fig. 2a)
to no. 8 for SM_SMOS and SM_SMAP (Fig. S9). The rela-
tive order of other variables remains unchanged.

Although the total number of 0.5◦× 0.5◦ grid cells (161)
for RF training is relatively small compared to the global to-
tal land grid cells (> 60 000), the spatial representativeness of

the sample is more important when being used to upscale the
whole population pattern. As shown in Fig. S10, our train-
ing sample (gray) covers most ranges of climate and soil
variables in the regions that we predicted (pink), implying
that our training data are representative of the global ade-
quate regions for bioenergy crop growth and thus appropri-
ate for upscaling. In addition to the range, the distributions
also match well between the training sample and the predic-
tion region. Although the distributions of shortwave radia-
tion are different, the importance of this variable in the RF
model is low (Fig. 2a). Furthermore, to avoid possible biases
induced by out-of-range prediction, we only limited our pre-
dictions in regions with MAT and MAP above the minimums
in the training data (Sect. 2.2.3). Thus, this gives us 33 216
grid cells in the prediction regions (instead of> 60 000 glob-
ally) and avoids biased predictions in regions that are beyond
the capacity of our trained random-forest model. Lastly, we
would like to emphasize that the bioenergy crop yield obser-
vations were found in published articles or reports in several
literature databases and systematically collected (Li et al.,
2018a), so it is impossible to include more grid cells (cur-
rently 273 0.5◦ grid cells – 161 after selecting), as there are
no more observations available. Using these data, the OOB
R2 that serves as an evaluation of the trained random forest
is 0.63, implying the trained RF algorithm is acceptable for
prediction.

The temporal resolution and coverage of the training
dataset are important for training the machine-learning
model given the temporal variations in climate conditions.
Therefore, we analyzed the sampling time in the training
dataset; ∼ 30 % of the yield observations do not have a re-
ported sampling year in the original dataset as well as∼ 30 %
in the aggregated 0.5◦× 0.5◦ data used for random-forest
training. We thus arbitrarily set 2 years before the publication
year as the sampling year for the yield observations with-
out reported sampling years (e.g., setting 1997 as the sam-
pling year if the reference paper was published in 1999).
The frequency of the sampling years in the 0.5◦ data used
for random-forest training is shown in Fig. S11. The sam-
pling years range from 1969 to 2016, with a median year of
1999. We then derived temperature (T ), precipitation (P ) and
shortwave radiation (SW; from CRUNCEP because BESS
SW starts from 2001) and soil water availability index (WAI)
at the sampling year for each grid cell and re-trained the ran-
dom forest (RF). However, the OOB R2 is 0.54, lower than
the original value of 0.63. Possible reasons may include the
following: (1) RF training may largely respond to the spatial
gradients of climate and soil conditions, and thus the con-
tribution of temporal variation may be low, and (2) climate
conditions for the sampling year may be a good predictor of
yields for annually harvested herbaceous crops, but yields of
woody crops like eucalypt, poplar and willow may also be
impacted by the previous years in the whole growing cycle.
Unfortunately, only about 18 % of the observations have both
a reported harvest year and age, impeding the derivation of
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the mean climate conditions during the whole growing cy-
cle. In addition, using the climate conditions at the sampling
years also changed the variable importance (Fig. S12) com-
pared to the original one (Fig. 2a). Precipitation is no longer
an important contributing variable, while contributions of the
other variables are more or less similar to those in the original
trained RF.

Management factors like fertilization, irrigation, species
and harvest time are important for bioenergy crop growth
and impact the yields (Karp and Shield, 2008; Miguez et
al., 2008). In the RF model training and prediction, however,
we only used spatially explicit climatic conditions, clay frac-
tion and crop type as explanatory variables, and other fac-
tors (e.g., management drivers) were not included because
these explanatory variables are not available on a gridded ba-
sis. This may partly be responsible for the moderate OOB
R2 (0.63) in the model training. One other reason for the
difficulty in taking management into account is the incom-
plete information reported for this variable from field mea-
surements and thus in the yield observation dataset (Li et al.,
2018a). For example, 75 % of the observations did not re-
port irrigation information (Li et al., 2018a). Another reason
is that different management practices are difficult to harmo-
nize. For example, fertilization may be applied annually, only
one time at a plantation or irregularly (Li et al., 2018a); there
are not enough data samples further classifying crop types
(e.g., species or genotypes). Specific to the resolution of our
analyses, it is difficult to derive a median or mean manage-
ment quantification for a 0.5◦ grid cell from all observations
inside. In addition, crop age is an important factor in pre-
dicting the yields because of the growth cycle of perennial
crops like Miscanthus (Lesur et al., 2013). However, the yield
data in the observation datasets mainly refer to mean annual
biomass yield, which blended the growth cycle, especially
for the trees (Li et al., 2018a). In the field measurement stud-
ies, biomass yield for trees is often calculated by the total
biomass divided by age, although some studies may report
the biomass increment at a certain age. Also, because only
about one-third of observations have age information and we
only aimed to produce a spatially explicit map, age is not
used as an explanatory variable in the RF model.

We attempted a RF model training by including an irri-
gation flag (yes or no), fertilization flag (yes or no) and/or
fertilization frequency (annual or one time). However, these
attempts failed to improve the model, and the importance of
these factors was very low (< 1 %). The nitrogen application
rate reported in the yield observation dataset was also taken
as a continuous variable in the exploring RF model training,
but it only contributed < 4 % to the total tree splits. Reasons
for the low contribution of fertilization (flag, frequency or
application rate) may include unknown basic nutrient avail-
ability from soils, the possible existence of nitrogen-fixing
bacteria, and dry and wet nitrogen depositions. In addition,
the yield response of Miscanthus to fertilizer application may
not be significant (Cadoux et al., 2012; Heaton et al., 2004).

We took the bioenergy crop type (CT in Table 1) as a cat-
egorical variable in our RF model to include yield data from
all crops in order to make full use of the climate gradient in-
formation in the upscaling. However, this mixes climate in-
formation from one crop with the other crops and may induce
some uncertainties. We thus trained one RF model for one in-
dividual bioenergy crop, and the OOB R2 is 0.42, 0.02, 0.43,
0.19 and 0.42 for eucalypt, Miscanthus, poplar, willow and
switchgrass, respectively. The OOB R2 for individual crops
is lower than the OOB R2 of the original RF model using
all crops (OOB R2

= 0.63, Sect. 2.2.2), especially for Mis-
canthus and willow, probably because of the limited num-
ber of observations. Still, we mapped the yields for each in-
dividual crop with an OOB R2 greater than 0.4 (i.e., euca-
lypt, poplar and willow) and compared them with our origi-
nal estimates (Fig. S13). Although there are some small dif-
ferences for poplar and switchgrass, this barely influences
our best crop results, since poplar and switchgrass are the
highest-yielding crops in only 1.6 % of the cells (Fig. 3g).
For eucalypt, our original estimates are higher than the yield
predictions from the individual crop (eucalypt) RF model in
northwestern Brazil and southeastern Asia but lower in other
regions in Brazil and in the temperate regions (Fig. S13).
The overall relative differences, however, are small for eu-
calypt, with median positive and negative values of 4.0 %
(IQR= 11.0) and −7.2 % (5.6 %), respectively.

The prediction of the RF model tends to be not reliable for
predictors out of the training data range, and such extrapo-
lation should be considered to be inaccurate. We thus com-
pared the distributions of variables in the training data and
the global data used for prediction and provided the ranges
for each bioenergy crop type in the training data (Fig. 10).
Because we limited our predictions in the regions that are
adequate for bioenergy crop growth using minimum MAT
and MAP from observations (Sect. 2.2.3), the distributions
of variables used for predictions largely overlapped the distri-
butions from the training data (Fig. S10), implying that most
of the predictions are reliable without extrapolations out of
ranges. Although SR from 20 to 25 MJ m−2 d−1 is not pre-
sented in the training data (Fig. S10), the importance of SR
in the RF model is relatively low (Fig. 2a), and thus the in-
fluence on our predictions is expected to be small. We should
note that only minimum MAT is used to define the adequate
regions, but some high-temperature stress (e.g., through heat,
vapor pressure deficit or summer drought) could also limit
the growth. Although this is not explicitly considered in this
study, the area with MAT higher than the maximum MAT in
the training data is very small (Fig. S10).

Our predictions are based on the current climate and CO2
level, and thus the future climate changes and CO2 fertil-
ization effects are not included. The photosynthetic pathway
for C4 plants (such as Miscanthus and switchgrass) is closer
to optimal levels of CO2 with present-day atmospheric lev-
els. The CO2 effect could result in large increases in pro-
ductivity, especially for the C3 plants, but data on bioen-
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ergy crop yield responses to CO2 are very sparse, although
this is being addressed in current field studies (e.g., Norby
et al., 2016). We adopted a space-for-time approach and an-
alyzed the spatial relationship between yields and temper-
ature (Fig. S14) to account for the possible yield changes
in response to future temperature changes due to adapta-
tion. Yields are positively correlated with temperature for all
bioenergy crops (Fig. S14; correlations with other explana-
tory variables are shown in Figs. S15–20). Miscanthus has
the strongest response to temperature, with an increasing rate
of 0.41 t DM ha−1 yr−1 ◦C−1. Eucalypt and willow have a
similar increasing rate (0.27 and 0.26 t DM ha−1 yr−1 ◦C−1).
The temperature sensitivities of yields are lower for poplar
and switchgrass (0.14 and 0.18 t DM ha−1 yr−1 per ◦C). The
overall yield response to temperature for the best crop is
0.42 t DM ha−1 yr−1 ◦C−1 (Fig. S14). It is higher than each
individual crop because it combined the yield gradient from
multiple crops, so the yield sensitivities to temperature for
the best crop also comprise possible transitions of the low-
yield crop type to the high-yield type. Based on an increase of
0.9 ◦C from the preindustrial period until now (Millar et al.,
2017), the temperature sensitivity of the best crop implies a
mean increase of 0.46 t DM ha−1 yr−1 in yields from present
day to 2100 in the 2 ◦C temperature increase scenario. How-
ever, this is just a simple extrapolation based on spatial gra-
dients and should be interpreted cautiously. For example, a
future increase in soil aridity could cause soil degradations
and counteract the yield increases due to CO2 fertilization
and temperature increase (Balkovič et al., 2018).

4.3 Comparison with other yield maps

One potential application of our RF yield maps is to be used
as an input to IAMs, so we made detailed comparisons with
the currently used yields maps in three IAMs in terms of
spatial patterns (Fig. 4), yield distributions (Fig. 5) and site-
level yields (Fig. 6). Yields from the IAM maps are gener-
ally lower than those from our derived RF maps (Figs. 4, 5)
and the site-level field observations (Fig. 6). One possible
reason is that the IMAGE and MAgPIE models calibrated
the simulated potential yields of LPJmL (highest yield that
can be achieved by the best management practices currently
available) to the actual yields (see Sect. 2.3). The field obser-
vations are usually under some degree of management like
irrigation or fertilization, and are thus close to the poten-
tial yields, so IAMs reduced the yields using a calibration
factor to represent the gap between the potential and actual
yields, as the potential yields may not be reached in reality,
especially in some low-income countries. As another con-
sequence of using data from well-managed field trials, the
predicted yields from the RF model could be higher than the
practical yields in large-scale plantations. Most of the obser-
vations in the training data are from small-scale experimen-
tal trials with management practices rather than real farmers’
fields (Li et al., 2018a). In addition, some yield observations

are based on harvests at the peak yield time in summer or
autumn rather than in winter or early spring after leaf fall
and drying in practice. In fact, Searle and Malins (2014) re-
viewed bioenergy crop yields in the literature and concluded
that there are significantly lower yields in semi-commercial-
scale trails than small plots because of the biomass drying
loss and inefficient mechanical harvest. Crops in small plots
may also benefit from the edge effect by receiving more light
(Searle and Malins, 2014). However we should note that the
median yield in each grid cell with multiple observations is
used to the train the RF model, and thus some extremely
high yield observations due to intensive management prac-
tices may not contribute strongly to the trained RF model.

In addition, inclusion of or more dependence on the high-
yield bioenergy crop types (i.e., Miscanthus and eucalypt) in
the RF model would also lead to higher yield predictions. For
example, in LPJmL, where the IMAGE and MAgPIE yield
maps come from, switchgrass and Miscanthus were treated
as one single PFT (Beringer et al., 2011; Heck et al., 2016),
although these two crop types have very different physio-
logical parameters and thus significant difference in yields
(Dohleman et al., 2009; Heaton et al., 2008; Li et al., 2018b).
The calibration of this one single PFT using both yields’
data from switchgrass and Miscanthus would overestimate
yields of the former and underestimate the latter. For euca-
lypts, LPJmL seemed to underestimate the yields in the first
place (see the comparison with field measurements in Fig. 1b
in Heck et al., 2016). The RF model trained in this study, on
the other hand, relies more on the crop types of Miscanthus
and eucalypt (see their importance in Fig. 2a). Although yield
maps from IMAGE and MAgPIE were both based on the
LPJmL simulations, they showed some differences in spatial
patterns, yield distributions and site-level yield comparison
due to different calibration processes for the yield data simu-
lated by LPJmL (see Sect. 2.3).

Yields from the GLOBIOM map are close to the site-level
observations of willow, poplar and switchgrass (Fig. 6c).
Therefore, the lower yields from GLOBIOM than the best
crop yields from RF are mainly caused by the inclusion of
Miscanthus and more eucalypt observation data in the RF
model. More contributions from these high-yield crops drive
the yields higher in the RF predictions.

Accurate input data of bioenergy crop yields are crucial
for IAMs to simulate the future land-use change through the
trade-off between BECCS and other climate mitigation op-
tions. The global median yields from our RF map are> 50 %
higher than those used in IAMs in the overlapped regions
(Fig. 5). Therefore, if our RF yield data are used in IAMs
and all the other conditions being equal, it will make the
BECCS option more competitive and require less land for
bioenergy crop plantation to achieve the same mitigation tar-
get, although gaps between predicted yields from RF and ac-
tual yields particularly in low-income countries need to be
further taken into account. Also, it may need more water
and nutrients in order to sustain the high yields. Although
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the yield response to fertilizers may be not obvious (Cadoux
et al., 2012; Miguez et al., 2008), the net nutrient loss from
biomass harvest must be replenished to maintain the nutrient
balance in the soil and support further growth.

In addition, we compared the yield map derived from ran-
dom forest with the yields simulated by the land surface
model – ORCHIDEE (Fig. S21). Because poplar and wil-
low were taken as one PFT in ORCHIDEE (Li et al., 2018b),
the average yields of poplar and willow from random for-
est were used for comparison (Fig. S21b). The yields sim-
ulated by ORCHIDEE are generally higher than those from
random forest, especially for Miscanthus and poplar and wil-
low. This could be largely expected because in this version
of ORCHIDEE, there are no nutrient limitations on plant
growth, no effect of pests and disease on crops, and the man-
agement practices were implicitly included when adjusting
the productivity parameters in the model to match the site ob-
servations with management like irrigation, fertilization or a
specific highly productive genotype. There could be a similar
case in LPJmL (Heck et al., 2016), and this could also be why
the IAMs calibrated the LPJmL yields based on currently ob-
served yields to get the potential yield maps (Sect. 2.3). On
the other hand, the predictions from random forest are largely
constrained by the yield range of observations, representing
the yields that can be achieved (or were achieved during the
period when yield data were reported) under current (opti-
mal) technology. This is exactly the purpose of producing
this data product in our study, which is observation-based
and can be used to benchmark the yields simulated by land
surface models or IAMs.

5 Data availability

The field observed site-level yield data for major lig-
nocellulosic bioenergy crops can be downloaded from
https://doi.org/10.6084/m9.figshare.c.3951967 (Li et al.,
2018a). The 0.5◦× 0.5◦ gridded global maps for yields
of different bioenergy crops and the best crop and for
the best crop composition generated from the random-
forest model in this study can be download from
https://doi.org/10.5281/zenodo.3274254 (Li, 2019).

6 Conclusion

We mapped bioenergy crop yields at the global scale using
a machine-learning method trained on field yield data and
based on several climatic and soil conditions. In addition to
evaluating the performances of IAMs and DGVMs, our spa-
tially explicit bioenergy crop yields can also be used to de-
termine the suitable lands with proper bioenergy crop yields,
conduct life cycle assessment and estimate the nutrient re-
moval from biomass harvest. Although there are a large num-
ber of field measurements in the yield observation dataset
used to build the RF model, the geographic coverage is poor

in some regions. Therefore, more field measurements in re-
gions with limited observations (e.g., Africa) and a proper
quantification and synthesis of management factors will be
useful to improve the predictions of global yields in future.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-12-789-2020-supplement.
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