Articles | Volume 12, issue 2
https://doi.org/10.5194/essd-12-789-2020
https://doi.org/10.5194/essd-12-789-2020
Data description paper
 | 
02 Apr 2020
Data description paper |  | 02 Apr 2020

Mapping the yields of lignocellulosic bioenergy crops from observations at the global scale

Wei Li, Philippe Ciais, Elke Stehfest, Detlef van Vuuren, Alexander Popp, Almut Arneth, Fulvio Di Fulvio, Jonathan Doelman, Florian Humpenöder, Anna B. Harper, Taejin Park, David Makowski, Petr Havlik, Michael Obersteiner, Jingmeng Wang, Andreas Krause, and Wenfeng Liu

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Wei Li on behalf of the Authors (19 Jan 2020)  Author's response   Manuscript 
ED: Referee Nomination & Report Request started (22 Jan 2020) by Scott Stevens
RR by Anonymous Referee #2 (10 Feb 2020)
ED: Publish subject to technical corrections (25 Feb 2020) by Scott Stevens
AR by Wei Li on behalf of the Authors (26 Feb 2020)  Manuscript 
Download
Short summary
We generated spatially explicit bioenergy crop yields based on field measurements with climate, soil condition and remote-sensing variables as explanatory variables and the machine-learning method. We further compared our yield maps with the maps from three integrated assessment models (IAMs; IMAGE, MAgPIE and GLOBIOM) and found that the median yields in our maps are > 50 % higher than those in the IAM maps.
Altmetrics
Final-revised paper
Preprint