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Response to comments 

 
Paper #: essd-2019-118   

Title: Mapping the yields of lignocellulosic bioenergy crops from observations at the global scale 

Journal: Earth System Science Data 

 

Reviewer #2: 

Comment #1  

The authors reported 3,963 observations covering five bioenergy crops in the abstract, however, they 

only used 161 grid cells to train the RF model. The sample size is too limited to map the spatial 

distribution of global bioenergy crops (over 60,000 grid cells). The comparison of the derived maps 

with other modeled maps cannot convince me. 

Response #1  

We thank the reviewer for the comments and suggestions. Please see the detailed point-by-point 

responses below. For the sample size, please see Response #3 for details. 

Comment #2  

1. There were a bunch of variables included in the RF regressions. I suggested to add a diagram to show 

how random forest algorithm works in your study. 

Response #2  

We will add it as suggested (Fig. R5). 

 

Fig R5 Workflow of random forest training and predicting in this study. The abbreviations of 

input variables can be found in Table 1. 

 

Comment #3  

2. At the global scale, there are more than 60,000 grids in 0.5◦ × 0.5◦. Here the authors used 161 grid 

cells for model training, among which you included five types of crop types. I think the training data 

are not substantial enough to build RF regression models. 

Response #3  

We agree that if we only look at the grid cell number, the training dataset covers about ~0.3% (161 / 

60,000) of the global total grid cells. However, the spatial representativeness of the sample is more 

important when being used to upscale the whole population pattern. As shown in Fig. S7 (reproduced 
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below as Fig. R6), our training sample (gray) covers most ranges of climate and soil variables in the 

regions that we predicted (pink), implying that our training data are representative of the global adequate 

regions for bioenergy crop growth and thus appropriate for up-scaling (see L363-373). In addition to 

the range, the distributions also match well between the training sample and the prediction region (Fig. 

R6). Although the distributions of shortwave radiation are different, the importance of this variable in 

the random forest (RF) model is low (7%, Fig. 2a).  

In addition, to avoid possible biases induced by out-of-range prediction, we only limited our predictions 

in regions with MAT and MAP above the minimums in the training data (Section 2.2.3). Thus, this 

gives us 33,216 grid cells in the prediction regions (instead of >60,000 globally) and avoids biased 

predictions in regions that are beyond the capacity of our trained random forest model. We can also add 

a short discussion on the comparison of the “out-of-range” predictions with IAM maps in the revised 

manuscript if needed. 

At last, we would like to emphasize that we systematically collected all the published bioenergy crop 

yield observations that we searched in several literature databases (Li et al. 2018), so it is impossible to 

include more grid cells (currently 273 half-degree cells, 161 after selecting, L157-171) as there are no 

more observations available. Using these data, the OOB R2 that serves as an evaluation of the trained 

random forest is 0.63, implying the trained RF algorithm is acceptable for prediction. 

We will further summarize and discuss these points in the revised manuscript. 

 

Fig. R6 (S7) Distributions of explanatory variables in the training data and in the regions that are 

adequate for bioenergy crop growth. The ranges of variables for each bioenergy crop type in the 

training data are also shown as lines with different colors. 

 

Reference: 

Li, W., Ciais, P., Makowski, D. and Peng, S.: A global yield dataset for major lignocellulosic bioenergy crops 

based on field measurements, Sci. Data, 5(180169), 2018. 

 

Comment #4  
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3. Section 2.3. I appreciate that the authors compared their derived yield maps with the current three 

IAMs. However, it still cannot convince me since all these are modeled maps rather than the actual 

yield data. Is it possible to compare your derived yield maps with the existing inventory? Moreover, the 

authors assumed the derived maps are in 2010 without no temporal changes. To the best of my 

knowledge, the technology improvement has led to a significant increase of crop yield during the past 

several decades. Thus, I think it is not appropriate to compare your yield map with the present day’s 

maps. The long-term average covering the time period of your collected observations is better for 

comparison. Line 198-199: What do you mean ‘actual yield maps’? Is it your derived yield map from 

RF or other? If yes, I do not think you can consider it as an ‘actual yield map’. 

Response #4  

In Section 2.3, we compared our random forest derived yield maps with those used in IAMs because 

our yield maps are observation based and can be used a benchmark for the present-day yield maps used 

in IAMs. Please see Response #6 for the comparison with inventory data.  

We agree with the reviewer that technology improvement has led to yield increase during the past 

decades, and thus “the long-term average covering the time period of collected observations” is better 

for comparison. However, the plantation of bioenergy crops applied in the IAMs is mainly for climate 

mitigation for removing CO2 from the atmosphere e.g. through BECCS. This mitigation option has been 

proposed in most IAMs to keep the future temperature increase below 1.5 or 2 °C (Rogelj et al., 2018) 

but not yet implemented in large scales. Therefore, there are very limited (no) existing inventory data 

like e.g. those reported to the FAO by countries for other crops (see also Response #6), and the maps 

from IAMs start from present day. That is, unfortunately, no “long-term average covering the time 

period of collected observations” is available for comparison.  

In addition, the comparison of our derived maps with maps from IAMs could be also justified: 1) the 

yield maps used in IMAGE and MAgPIE are from the simulated maps from LPJml model. In the model 

parameterization and calibration for bioenergy crops, LPJml also used available observation data 

(though a much smaller dataset compared to our dataset) covering the past period (e.g. at least since 

1996 in Beringer et al., 2011; 1993-2008 in Heck et al., 2016). 2) The yield map from GLOBIOM is 

also based on historical observation data from FAO and other databases between 1984 and 2006 (see 

details on L216-223). 

L198-199: Yes, “actual yield maps” is the derived yield map from RF. We call “actual yield maps” 

because our derived maps are based on observations and represent the yield that can be achieved under 

current (optimal) technology. We will revise this sentence as “For comparison, we used the present day 

(2010) actual yield maps (derived from RF).”. 

 

Reference: 

Beringer, T., Lucht, W. and Schaphoff, S.: Bioenergy production potential of global biomass plantations under 

environmental and agricultural constraints, GCB Bioenergy, 3(4), 299–312, doi:10.1111/j.1757-

1707.2010.01088.x, 2011 

Heck, V., Gerten, D., Lucht, W. and Boysen, L. R.: Is extensive terrestrial carbon dioxide removal a “green” form 

of geoengineering? A global modelling study, Glob. Planet. Change, 137, 123–130, 

doi:10.1016/j.gloplacha.2015.12.008, 2016 

Rogelj, J., Popp, A., Calvin, K. V., Luderer, G., Emmerling, J., Gernaat, D., Fujimori, S., Strefler, J., Hasegawa, 

T., Marangoni, G., Krey, V., Kriegler, E., Riahi, K., Van Vuuren, D. P., Doelman, J., Drouet, L., Edmonds, J., 

Fricko, O., Harmsen, M., Havlík, P., Humpenöder, F., Stehfest, E. and Tavoni, M.: Scenarios towards limiting 

global mean temperature increase below 1.5 °C, Nat. Clim. Chang., doi:10.1038/s41558-018-0091-3, 2018. 

 

Comment #5  

4. Figure 3. The spatial distribution of predicted yields seems to highly correlated with MAP. For 

example, the Amazon basin and Southeast Asia receive a substantial rainfall per year. The spatial 
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distribution of Eucalypt and Miscanthus are so similar, the same as the remaining three crops. Thus, 

nothing new surprised me. 

Response #5  

Yes, MAP as the most important variable in the RF regression is exactly what we obtained from the 

model training, and thus the predictions largely depend on the spatial patterns of annual rainfall. This 

is consistent with previous studies that MAP is the main predictor of NPP across spatial gradients 

(Knapp et al., 2017). Although the general spatial patterns look similar, there are still differences caused 

by other factors than MAP. This could be partly reflected by the different occupying regions from 

different bioenergy crops in Fig. 3g. To address the reviewer’s concern on the similarity, we further 

plotted the map of yield differences between eucalypt and Miscanthus and among the other three crops. 

As shown in Fig R7, there are substantial differences between the yields of eucalypt and Miscanthus. 

The higher yields of eucalypt than Miscanthus in South America, East US, central Africa and southeast 

Asia and lower yields in other regions (Fig. R7a) can also be reflected by the best crop type in Fig. 3g. 

Because the contribution of crop types (poplar, switchgrass and willow) is low the trained random forest 

algorithm (CT_poplar, CT_switchgrass and CT_willow in Fig. 2a), the predicted yields in the regions 

where all three crops can grow are controlled by other mutual variables and thus similar. Therefore, the 

yield differences among these three crops are mainly caused by the different ‘adequate’ regions for 

growth (Fig. S4) defined by the minimum MAT and MAP in the observation dataset (L181-190). For 

example, willow can survive in regions with lower MAT and MAP, and thus have higher yield that 

poplar and switchgrass in these regions (Fig. R7c,d). 

We will add the figure and corresponding discussion in the revised manuscript. 

 

Figure R7 Difference of predicted yields between various bioenergy crop types. 

 

Reference: 

Knapp, A. K., Ciais, P., & Smith, M. D. Reconciling inconsistencies in precipitation–productivity relationships: 

implications for climate change. New Phytologist, 214(1), 41-47, 2017. 

 

Comment #6  

5. Figure 5. Did you compare your areas with any existing inventory data? It is better to compare yours 

with them since the total amount of production is also important. 

Response #6  
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For Miscanthus and switchgrass, there are only small-scale experimental plots in different regions and 

no large-scale plantation, so, to the best of our knowledge, no region- or country-scale inventory data 

are available. Most yield data at farm levels were already included in our observation yield dataset (see 

“Field_type” and “Field_size” in Table 2 in Li et al. 2018).  

For poplar, willow and eucalypt, we searched on several literature databases and on Google but only 

found one FAO report by Del Lungo et al. (FAO, 2006). We collected the mean annual increment (MAI) 

data for species of eucalyptus, populus and salix for each country (Table R1, extracted from Table 6a 

in FAO, 2006). The volume unit of MAI was converted to mass unit of yield based on the wood density 

of different tree types (Engineering ToolBox, 2004). 

The main difficulty is however lack of spatially explicit data about where are plantations located in 

national-scale inventory data, preventing an accurate comparison with the RF predicted yields. Still, we 

derived the yield range in the whole country from the RF predicted yield maps and compared with the 

yield range from the inventory data (FAO, 2006, Fig. R8). Most yield ranges from the inventory data 

overlapped with the ranges from RF maps (e.g. eucalypt and willow in Argentina) although the former 

is generally lower than the latter (Fig. R8). The higher minimum and maximum yields from RF could 

be caused partly by the exclusion of regions with MAP and MAT below the minimums from the 

observation dataset (to avoid out-of-range prediction, see details on L181-190). Especially, in some 

large countries, the inventory data may have plantations in some harsh climate and soils (e.g. most 

eucalypt plantations distribute in drier areas in the South Brazil). However, we must note that it is not 

a fair comparison without knowing the exact plantation locations in each country. 

If the reviewer knows some other data sources, we will appreciate if you could let us know and we will 

add them for comparison. 

 

Table R1 Plantation area and maximum and minimum MAI (mean annual increment) of eucalypt, 

poplar and willow from inventory data compiled in FAO 2006. 

Species 
Area 

(1000 ha) 

MAI min 

(m3/ha/y) 

MAI max 

(m3/ha/y) 
Country 

Eucalyptus grandis 335 21 27 South Africa 

Eucalyptus nitens 231 19 26 South Africa 

Eucalyptus spp. 473 8 21 Sudan 

Populus spp. 3220 9 18 China 

Eucalyptus spp. 2397 8 21 China 

Eucalyptus spp. 4047 8 21 Indonesia, Viet Nam, India 

Populus spp. 171 9 18 India 

Populus spp. 84 9 18 
Belgium, Netherlands, Ukraine, 

Latvia 

Populus hybrids 83 16 21 Italy 

Eucalyptus globulus 442 16 25 Australia 

Eucalyptus nitens 35 19 26 Australia 

Eucalyptus dunnii 18 16 18 Australia 

Eucalyptus grandis 18 21 27 Australia 

Eucalyptus pilularis 18 18 18 Australia 

Eucalyptus regnans 18 18 20 Australia 

Eucalyptus spp. 3678 8 21 Brazil, Chile 

Eucalyptus grandis 99 21 27 Argentina 

Populus spp. 31 9 18 Brazil, Chile 

Salix alba 23 13 20 Argentina 

Salix babylonica 23 20 25 Argentina 
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Salix babylonica var. 

sacramenta 
23 20 25 Argentina 

Salix hibrids 23 20 25 Argentina 

 

Figure R8 Yield ranges from (limited) inventory data and our random forest maps at country 

levels. IVI stands for Indonesia, Viet Nam and India; BNUL stands for Belgium, Netherlands, 

Ukraine and Latvia. 

 

 

 

Reference: 

Engineering ToolBox. Density of Various Wood Species. [online] Available at: 

https://www.engineeringtoolbox.com/wood-density-d_40.html [Accessed 15/11/2019]. 2004. 

Brown, S. Estimating biomass and biomass change of tropical forests: a primer (Vol. 134). Food & Agriculture 

Org. 1997. 

FAO. Global planted forests thematic study: results and analysis, by A. Del Lungo, J. Ball and J. Carle. Planted 

Forests and Trees Working Paper 38. Rome (also available at www.fao.org/forestry/site/10368/en). 2006. 

Li, W., Ciais, P., Makowski, D. and Peng, S.: A global yield dataset for major lignocellulosic bioenergy crops 

based on field measurements, Sci. Data, 5(180169), 2018. 

 

Comment #7  

6. Figure 2. You listed the variable importance in the trained RF model. It turns out that MAP is the 

dominant variable. You provide Figure S8 to show the relationship of bioenergy crop yield with 

temperature. However, MAT is not quite important compared with other variables. Why did not you 

show the relationship of each crop with dominant variables, such as MAP, GSL, WAI, etc. 

Response #7  

We only plotted the relationship with MAT because temperature is a target variable of future global 

warming and we would like to show how the yield will change with temperature increase in the future. 

We agree that MAP is the dominant variable in the RF, but temperature related variables (GSL and 

MAT) also contribute significantly. As suggested, we will further add the relationships with the 

dominant variables (reproduced below). 

http://www.fao.org/forestry/site/10368/en
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Figure R9 Relationship of bioenergy crop yield with mean annual precipitation (MAP) across all 

grid cells that are adequate for bioenergy crop growth. 

 

 

Figure R10 Relationship of bioenergy crop yield with growing season length (GSL) across all grid 

cells that are adequate for bioenergy crop growth. 

 

 

Figure R11 Relationship of bioenergy crop yield with soil water availability index (WAI) across 

all grid cells that are adequate for bioenergy crop growth. 
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Figure R12 Relationship of bioenergy crop yield with growing season integrated normalized 

difference vegetation index (NDVI) across all grid cells that are adequate for bioenergy crop 

growth. 

 

Figure R13 Relationship of bioenergy crop yield with shortwave radiation (SR) across all grid 

cells that are adequate for bioenergy crop growth. 

 

Figure R14 Relationship of bioenergy crop yield with clay fraction (CF) across all grid cells that 

are adequate for bioenergy crop growth. 
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