Articles | Volume 12, issue 4
Earth Syst. Sci. Data, 12, 3067–3080, 2020
https://doi.org/10.5194/essd-12-3067-2020
Earth Syst. Sci. Data, 12, 3067–3080, 2020
https://doi.org/10.5194/essd-12-3067-2020

Data description paper 25 Nov 2020

Data description paper | 25 Nov 2020

A homogenized daily in situ PM2.5 concentration dataset from the national air quality monitoring network in China

Kaixu Bai et al.

Related authors

Technical note: First comparison of wind observations from ESA's satellite mission Aeolus and ground-based radar wind profiler network of China
Jianping Guo, Boming Liu, Wei Gong, Lijuan Shi, Yong Zhang, Yingying Ma, Jian Zhang, Tianmeng Chen, Kaixu Bai, Ad Stoffelen, Gerrit de Leeuw, and Xiaofeng Xu
Atmos. Chem. Phys., 21, 2945–2958, https://doi.org/10.5194/acp-21-2945-2021,https://doi.org/10.5194/acp-21-2945-2021, 2021
Short summary
Filling the gaps of in situ hourly PM2.5 concentration data with the aid of empirical orthogonal function analysis constrained by diurnal cycles
Kaixu Bai, Ke Li, Jianping Guo, Yuanjian Yang, and Ni-Bin Chang
Atmos. Meas. Tech., 13, 1213–1226, https://doi.org/10.5194/amt-13-1213-2020,https://doi.org/10.5194/amt-13-1213-2020, 2020
Short summary

Related subject area

Atmosphere – Atmospheric Chemistry and Physics
Recovery of the first ever multi-year lidar dataset of the stratospheric aerosol layer, from Lexington, MA, and Fairbanks, AK, January 1964 to July 1965
Juan-Carlos Antuña-Marrero, Graham W. Mann, John Barnes, Albeht Rodríguez-Vega, Sarah Shallcross, Sandip S. Dhomse, Giorgio Fiocco, and Gerald W. Grams
Earth Syst. Sci. Data, 13, 4407–4423, https://doi.org/10.5194/essd-13-4407-2021,https://doi.org/10.5194/essd-13-4407-2021, 2021
Short summary
Observations of the downwelling far-infrared atmospheric emission at the Zugspitze observatory
Luca Palchetti, Marco Barucci, Claudio Belotti, Giovanni Bianchini, Bertrand Cluzet, Francesco D'Amato, Samuele Del Bianco, Gianluca Di Natale, Marco Gai, Dina Khordakova, Alessio Montori, Hilke Oetjen, Markus Rettinger, Christian Rolf, Dirk Schuettemeyer, Ralf Sussmann, Silvia Viciani, Hannes Vogelmann, and Frank Gunther Wienhold
Earth Syst. Sci. Data, 13, 4303–4312, https://doi.org/10.5194/essd-13-4303-2021,https://doi.org/10.5194/essd-13-4303-2021, 2021
Short summary
UV-Indien network: ground-based measurements dedicated to the monitoring of UV radiation over the western Indian Ocean
Kevin Lamy, Thierry Portafaix, Colette Brogniez, Kaisa Lakkala, Mikko R. A. Pitkänen, Antti Arola, Jean-Baptiste Forestier, Vincent Amelie, Mohamed Abdoulwahab Toihir, and Solofoarisoa Rakotoniaina
Earth Syst. Sci. Data, 13, 4275–4301, https://doi.org/10.5194/essd-13-4275-2021,https://doi.org/10.5194/essd-13-4275-2021, 2021
Short summary
Changes in global air pollutant emissions during the COVID-19 pandemic: a dataset for atmospheric modeling
Thierno Doumbia, Claire Granier, Nellie Elguindi, Idir Bouarar, Sabine Darras, Guy Brasseur, Benjamin Gaubert, Yiming Liu, Xiaoqin Shi, Trissevgeni Stavrakou, Simone Tilmes, Forrest Lacey, Adrien Deroubaix, and Tao Wang
Earth Syst. Sci. Data, 13, 4191–4206, https://doi.org/10.5194/essd-13-4191-2021,https://doi.org/10.5194/essd-13-4191-2021, 2021
Short summary
A global total column ozone climate data record
Greg E. Bodeker, Jan Nitzbon, Jordis S. Tradowsky, Stefanie Kremser, Alexander Schwertheim, and Jared Lewis
Earth Syst. Sci. Data, 13, 3885–3906, https://doi.org/10.5194/essd-13-3885-2021,https://doi.org/10.5194/essd-13-3885-2021, 2021
Short summary

Cited articles

Bai, K., Chang, N.-B., Yu, H., and Gao, W.: Statistical bias correction for creating coherent total ozone record from OMI and OMPS observations, Remote Sens. Environ., 182, 150–168, https://doi.org/10.1016/j.rse.2016.05.007, 2016. 
Bai, K., Chang, N.-B., Zhou, J., Gao, W., and Guo, J.: Diagnosing atmospheric stability effects on the modeling accuracy of PM2.5/AOD relationship in eastern China using radiosonde data, Environ. Pollut., 251, 380–389, https://doi.org/10.1016/j.envpol.2019.04.104, 2019a. 
Bai, K., Li, K., Chang, N.-B., and Gao, W.: Advancing the prediction accuracy of satellite-based PM2.5 concentration mapping: A perspective of data mining through in situ PM2.5 measurements, Environ. Pollut., 254, 113047, https://doi.org/10.1016/j.envpol.2019.113047, 2019b. 
Bai, K., Ma, M., Chang, N.-B., and Gao, W.: Spatiotemporal trend analysis for fine particulate matter concentrations in China using high-resolution satellite-derived and ground-measured PM2.5 data, J. Environ. Manage., 233, 530–542, https://doi.org/10.1016/j.jenvman.2018.12.071, 2019c. 
Bai, K., Li, K., Wu, C., Chang, N.-B., and Guo, J.: A homogenized daily in situ PM2.5 concentration dataset in China during 2015–2019, PANGAEA, https://doi.org/10.1594/PANGAEA.917557, 2020a. 
Download
Short summary
PM2.5 data from the national air quality monitoring network in China suffered from significant inconsistency and inhomogeneity issues. To create a coherent PM2.5 concentration dataset to advance our understanding of haze pollution and its impact on weather and climate, we homogenized this PM2.5 dataset between 2015 and 2019 after filling in the data gaps. The homogenized PM2.5 data is found to better characterize the variation of aerosol in space and time compared to the original dataset.