Articles | Volume 12, issue 4
https://doi.org/10.5194/essd-12-3067-2020
https://doi.org/10.5194/essd-12-3067-2020
Data description paper
 | 
25 Nov 2020
Data description paper |  | 25 Nov 2020

A homogenized daily in situ PM2.5 concentration dataset from the national air quality monitoring network in China

Kaixu Bai, Ke Li, Chengbo Wu, Ni-Bin Chang, and Jianping Guo

Related authors

LGHAP v2: a global gap-free aerosol optical depth and PM2.5 concentration dataset since 2000 derived via big Earth data analytics
Kaixu Bai, Ke Li, Liuqing Shao, Xinran Li, Chaoshun Liu, Zhengqiang Li, Mingliang Ma, Di Han, Yibing Sun, Zhe Zheng, Ruijie Li, Ni-Bin Chang, and Jianping Guo
Earth Syst. Sci. Data, 16, 2425–2448, https://doi.org/10.5194/essd-16-2425-2024,https://doi.org/10.5194/essd-16-2425-2024, 2024
Short summary
A merged continental planetary boundary layer height dataset based on high-resolution radiosonde measurements, ERA5 reanalysis, and GLDAS
Jianping Guo, Jian Zhang, Jia Shao, Tianmeng Chen, Kaixu Bai, Yuping Sun, Ning Li, Jingyan Wu, Rui Li, Jian Li, Qiyun Guo, Jason B. Cohen, Panmao Zhai, Xiaofeng Xu, and Fei Hu
Earth Syst. Sci. Data, 16, 1–14, https://doi.org/10.5194/essd-16-1-2024,https://doi.org/10.5194/essd-16-1-2024, 2024
Short summary
LGHAP: the Long-term Gap-free High-resolution Air Pollutant concentration dataset, derived via tensor-flow-based multimodal data fusion
Kaixu Bai, Ke Li, Mingliang Ma, Kaitao Li, Zhengqiang Li, Jianping Guo, Ni-Bin Chang, Zhuo Tan, and Di Han
Earth Syst. Sci. Data, 14, 907–927, https://doi.org/10.5194/essd-14-907-2022,https://doi.org/10.5194/essd-14-907-2022, 2022
Short summary
Technical note: First comparison of wind observations from ESA's satellite mission Aeolus and ground-based radar wind profiler network of China
Jianping Guo, Boming Liu, Wei Gong, Lijuan Shi, Yong Zhang, Yingying Ma, Jian Zhang, Tianmeng Chen, Kaixu Bai, Ad Stoffelen, Gerrit de Leeuw, and Xiaofeng Xu
Atmos. Chem. Phys., 21, 2945–2958, https://doi.org/10.5194/acp-21-2945-2021,https://doi.org/10.5194/acp-21-2945-2021, 2021
Short summary
Filling the gaps of in situ hourly PM2.5 concentration data with the aid of empirical orthogonal function analysis constrained by diurnal cycles
Kaixu Bai, Ke Li, Jianping Guo, Yuanjian Yang, and Ni-Bin Chang
Atmos. Meas. Tech., 13, 1213–1226, https://doi.org/10.5194/amt-13-1213-2020,https://doi.org/10.5194/amt-13-1213-2020, 2020
Short summary

Related subject area

Atmospheric chemistry and physics
Biologically effective daily radiant exposure for erythema appearance, previtamin D3 synthesis, and clearing of psoriatic lesions derived from erythemal broadband meters at Belsk, Poland, for the period 1976–2023
Janusz W. Krzyścin, Agnieszka Czerwińska, Bonawentura Rajewska-Więch, Janusz Jarosławski, Piotr S. Sobolewski, and Izabela Pawlak
Earth Syst. Sci. Data, 17, 3757–3775, https://doi.org/10.5194/essd-17-3757-2025,https://doi.org/10.5194/essd-17-3757-2025, 2025
Short summary
Global high-resolution fire-sourced PM2.5 concentrations for 2000–2023
Yonghang Hu, Chenguang Tian, Xu Yue, Yadong Lei, Yang Cao, Rongbin Xu, and Yuming Guo
Earth Syst. Sci. Data, 17, 3741–3756, https://doi.org/10.5194/essd-17-3741-2025,https://doi.org/10.5194/essd-17-3741-2025, 2025
Short summary
A high-resolution divergence and vorticity dataset in Beijing derived from radar wind profiler mesonet measurements
Xiaoran Guo, Jianping Guo, Deli Meng, Yuping Sun, Zhen Zhang, Hui Xu, Liping Zeng, Juan Chen, Ning Li, and Tianmeng Chen
Earth Syst. Sci. Data, 17, 3541–3552, https://doi.org/10.5194/essd-17-3541-2025,https://doi.org/10.5194/essd-17-3541-2025, 2025
Short summary
Development of Level 2 aerosol and surface products from cross-track scanning polarimeter POSP on board the GF-5(02) satellite
Cheng Chen, Xuefeng Lei, Zhenhai Liu, Haorang Gu, Oleg Dubovik, Pavel Litvinov, David Fuertes, Yujia Cao, Haixiao Yu, Guangfeng Xiang, Binghuan Meng, Zhenwei Qiu, Xiaobing Sun, Jin Hong, and Zhengqiang Li
Earth Syst. Sci. Data, 17, 3497–3519, https://doi.org/10.5194/essd-17-3497-2025,https://doi.org/10.5194/essd-17-3497-2025, 2025
Short summary
A global classification dataset of daytime and nighttime marine low-cloud mesoscale morphology based on deep-learning methods
Yuanyuan Wu, Jihu Liu, Yannian Zhu, Yu Zhang, Yang Cao, Kang-En Huang, Boyang Zheng, Yichuan Wang, Yanyun Li, Quan Wang, Chen Zhou, Yuan Liang, Jianning Sun, Minghuai Wang, and Daniel Rosenfeld
Earth Syst. Sci. Data, 17, 3243–3258, https://doi.org/10.5194/essd-17-3243-2025,https://doi.org/10.5194/essd-17-3243-2025, 2025
Short summary

Cited articles

Bai, K., Chang, N.-B., Yu, H., and Gao, W.: Statistical bias correction for creating coherent total ozone record from OMI and OMPS observations, Remote Sens. Environ., 182, 150–168, https://doi.org/10.1016/j.rse.2016.05.007, 2016. 
Bai, K., Chang, N.-B., Zhou, J., Gao, W., and Guo, J.: Diagnosing atmospheric stability effects on the modeling accuracy of PM2.5/AOD relationship in eastern China using radiosonde data, Environ. Pollut., 251, 380–389, https://doi.org/10.1016/j.envpol.2019.04.104, 2019a. 
Bai, K., Li, K., Chang, N.-B., and Gao, W.: Advancing the prediction accuracy of satellite-based PM2.5 concentration mapping: A perspective of data mining through in situ PM2.5 measurements, Environ. Pollut., 254, 113047, https://doi.org/10.1016/j.envpol.2019.113047, 2019b. 
Bai, K., Ma, M., Chang, N.-B., and Gao, W.: Spatiotemporal trend analysis for fine particulate matter concentrations in China using high-resolution satellite-derived and ground-measured PM2.5 data, J. Environ. Manage., 233, 530–542, https://doi.org/10.1016/j.jenvman.2018.12.071, 2019c. 
Bai, K., Li, K., Wu, C., Chang, N.-B., and Guo, J.: A homogenized daily in situ PM2.5 concentration dataset in China during 2015–2019, PANGAEA, https://doi.org/10.1594/PANGAEA.917557, 2020a. 
Download
Short summary
PM2.5 data from the national air quality monitoring network in China suffered from significant inconsistency and inhomogeneity issues. To create a coherent PM2.5 concentration dataset to advance our understanding of haze pollution and its impact on weather and climate, we homogenized this PM2.5 dataset between 2015 and 2019 after filling in the data gaps. The homogenized PM2.5 data is found to better characterize the variation of aerosol in space and time compared to the original dataset.
Share
Altmetrics
Final-revised paper
Preprint