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Abstract. In situ PM2.5 concentration observations have long been used as critical data sources in haze-related
studies. Due to the frequently occurring haze pollution events, China started to regularly monitor PM2.5 concen-
tration nationwide from the newly established air quality monitoring network in 2013. Nevertheless, the acquisi-
tion of these invaluable air quality samples is challenging given the absence of a publicly available data download
interface. In this study, we provided a homogenized in situ PM2.5 concentration dataset that was created on the
basis of hourly PM2.5 data retrieved from the China National Environmental Monitoring Center (CNEMC) via a
web crawler between 2015 and 2019. Methods involving missing value imputation, change point detection, and
bias adjustment were applied sequentially to deal with data gaps and inhomogeneities in raw PM2.5 observations.
After excluding records with limited samples, a homogenized PM2.5 concentration dataset comprising of 1309
5-year long PM2.5 data series at a daily resolution was eventually compiled. This is the first attempt to homoge-
nize in situ PM2.5 observations in China. The trend estimations derived from the homogenized dataset indicate
a spatially homogeneous decreasing tendency of PM2.5 across China at a mean rate of about −7.6 % per year
from 2015 to 2019. In contrast to raw PM2.5 observations, the homogenized data record not only has complete
data integrity but is more consistent over space and time. This homogenized daily in situ PM2.5 concentration
dataset is publicly accessible at https://doi.org/10.1594/PANGAEA.917557 (Bai et al., 2020a) and can be ap-
plied as a promising dataset for PM2.5-related studies such as satellite-based PM2.5 mapping, human exposure
risk assessment, and air quality management.

1 Introduction

A consistent PM2.5 concentration dataset is vital to the anal-
ysis of variations in PM2.5 loadings over space and time as
well as in support of its risk analysis for air quality man-
agement, meteorological forecasting, and health-related ex-
posure assessment (Lelieveld et al., 2015; Yin et al., 2020).
Ground-based monitoring networks are commonly built to
measure concentrations of air pollutants across the globe.

Suffering from extensive and severe haze pollution events
in the past few years (Guo et al., 2014; Ding et al., 2016;
Wang et al., 2016; Cai et al., 2017; Huang et al., 2018; Luan
et al., 2018; Ning et al., 2018), China launched the opera-
tional ambient air quality sampling late in 2012 on the basis
of the sparsely distributed aerosol observation network. To
date, this in situ network has been enlarged to cover almost
all major cities in China consisting of about 1500 monitoring
stations. Concentrations of six key air pollutants including
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PM2.5, PM10, NO2, SO2, CO, and O3 are routinely measured
on an hourly basis while the sampled data are released pub-
licly online by the China National Environmental Monitoring
Center (CNEMC) since 2013.

Although in situ PM2.5 concentration data have played
critical roles in improving our understanding of regional air
quality variations and relevant influential factors (D. Yang et
al., 2018; Q. Yang et al., 2019; Zheng et al., 2017), little con-
cern was raised about the quality of such dataset itself (Bai et
al., 2019a, c; He and Huang, 2018; Zhang et al., 2019, 2018;
Zou et al., 2016). Meanwhile, few studies provided a detailed
description of the accuracy or bias level (uncertainty) of the
observed PM2.5 data in recent years (Xin et al., 2015; You
et al., 2016; Guo et al., 2017; Shen et al., 2018). The pri-
mary reason lies in the fact that neither quality assurance
flags nor metadata information documenting the uncertainty
other than data values were provided, making such quality
assessment infeasible.

The data quality, in particular the data homogeneity, is of
critical importance to the exploration of the given dataset,
especially for trend analysis (Bai et al., 2019c; C. Lin et al.,
2018; Liu et al., 2018; Ma et al., 2015) and data integration
(Bai et al., 2019a, b; T. Li et al., 2017; Zhang et al., 2019)
in which a homogeneous dataset is absolutely essential for
downstream applications. Since two distinct kinds of instru-
ments are used in the current air quality monitoring network
to measure near-surface PM2.5 concentration in China (Bai
et al., 2020b), imperfect instrumental calibration and inter-
mittent replacement of instruments may thus introduce the
obvious issue of discontinuity in PM2.5 observations. Such
inhomogeneity may result in large uncertainty and even bi-
ased results in the subsequent analysis, especially in context-
based and data-driven PM2.5 concentration mapping (Bai et
al., 2019b, a; He and Huang, 2018; Wei et al., 2020), in
which in situ PM2.5 concentration observations are used as
the ground truth to characterize complex statistical relation-
ships with other possible contributing factors.

Given the absence of an open-access and quality-assured
in situ PM2.5 concentration dataset in China, in this study,
we attempted to generate a long-term coherent in situ PM2.5
concentration dataset for scientific community to use in fu-
ture applications. A set of methods involving missing value
imputation, change point detection, and bias adjustment were
geared up seamlessly in a big data analytic manner toward
the improvement of data integrity and the removal of possi-
ble discontinuities in raw PM2.5 observations. Such an ana-
lytical process is also referred to as data homogenization in
data science or big data analytics (Cao and Yan, 2012; Wang
et al., 2007). To our knowledge, this is the first attempt to
homogenize a large-scale dataset of in situ PM2.5 concentra-
tion observations in China. In the following sections, we will
introduce the data source as well as detailed big data analyt-
ics methods used for the creation of a homogenized PM2.5
concentration dataset.

2 In situ PM2.5 concentration observations

In this study, the hourly PM2.5 concentration data sam-
pled from more than 1600 state-controlled air quality mon-
itoring stations across China between 1 January 2015 and
31 December 2019 were utilized. These PM2.5 concentration
data were measured on an hourly basis using either beta-
attenuation monitors or a tapered element oscillating mi-
crobalance (TEOM) analyzer. The ordinary instrumental cal-
ibration and quality control were performed according to the
national ambient air quality standard of GB3095-2012 and
HJ 618–2011 (Guo et al., 2009, 2017). Generally, TEOM
can measure PM2.5 concentration within the range of 0–
5000 µgm−3 at a resolution of 0.1 µgm−3, with precision of
±0.5 µgm−3 for the 24 h average and ±1.5 µgm−3 for the
hourly average (Guo et al., 2017; Xin et al., 2012; Xin et al.,
2015). The PM2.5 measurements were publicly released on-
line by the China National Environmental Monitoring Cen-
ter (CNEMC) via the National Urban Air Quality Real-time
Publishing Platform (http://106.37.208.233:20035/, last ac-
cess: 10 November 2020) within 1 h after the direct sampling.

Although the sampled data were publicly released, the ac-
quisition of these valuable samplings is always challenging
because no data download interface is provided to the public
by the CNEMC website. Therefore, it is impossible for users
to retrieve the historical observations from the given web-
site. Rather, the science community has to count on other
measures such as an automatic web crawler for the retrieval
of these online updated data samples from the data publish-
ing platform. Nevertheless, the data records retrieved through
such an approach suffered from significant data losses due to
various unexpected reasons like power outage and internet
interruption. Consequently, the data integrity becomes prob-
lematic and further treatments like gap filling are thus re-
quired to account for such defects.

Moreover, hourly PM2.5 concentration observations that
were sampled at five embassies of the United States in China
from January 2015 to June 2017 were used as an inde-
pendent dataset to evaluate the fidelity of the homogenized
PM2.5 concentration dataset. Geographic locations of these
five embassies are shown in Table S1 in the Supplement.
These PM2.5 data were measured independently under the
US Department of State Air Quality Monitoring Program
and can be acquired from http://www.stateair.net/ (last ac-
cess: 10 November 2020). To be in line with the homoge-
nized dataset, the hourly PM2.5 concentration data were ag-
gregated to the daily level by averaging the 24 h observations
sampled on each date while daily averages were calculated
only for days with more than 12 valid samples of a possible
24 h.
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Figure 1. A schematic flowchart for the creation of a homogenized
daily in situ PM2.5 concentration dataset.

3 Homogenization of in situ PM2.5 concentration
data

For the creation of a long-term coherent in situ PM2.5 con-
centration dataset, it is necessary to create an analytical
framework of the big data analytics which seamlessly gears
up several methods as a whole for the purposes of missing
value imputation, change point detection, and discontinuity
adjustment, given the presence of data gaps and possible
discontinuity in raw PM2.5 observations. Figure 1 shows a
schematic illustration of the general workflow toward gen-
erating a homogenized PM2.5 concentration dataset, and the
whole process can be outlined as follows.

1. It is necessary to perform essential quality control and
gap filling on raw PM2.5 observations so that the bias
arising from large outliers and resampling errors due to
incomplete observations can be reduced.

2. Short-term time series due to site relocation were tem-
porally merged to attain a long-term record. Then,
PM2.5 concentration time series with a temporal cov-
erage of less than 4 years during the study period were
excluded. Subsequently, the quality-controlled observa-
tions of hourly in situ PM2.5 concentrations were resam-
pled to daily and monthly scales to initiate the homo-
geneity test.

3. Reference time series were constructed for each long-
term PM2.5 concentration record on the basis of data
measured from adjacent monitoring sites. For PM2.5
concentration records failing to produce a reliable ref-
erence series, no homogeneity test was performed for
such data due to the absence of essential reference data
series.

4. The discontinuity identified in each daily long-term
PM2.5 concentration time series were corrected using
the quantile-matching (QM) adjustment method accord-
ing to the change points detected in each monthly data
record with the support of reference series.

5. Post-processing measures such as nonpositive value
correction and another round of gap filling were fur-
ther performed on the homogenized records to attain
a quality-assured in situ PM2.5 concentration dataset.
More details of each analytic method are described in
the following subsections.

3.1 Quality control

Given the possibility of the presence of abnormal samplings,
it is necessary to remove the outliers detected in raw PM2.5
observations to reduce the false alarm rate in change point
detection during the subsequent homogeneity test. Specifi-
cally, hourly PM2.5 concentration data values meeting one
of the following criteria were excluded: (1) out of the range
between 1 and 1000 µgm−3 and (2) more than 3 standard
deviations from the median of observations within a 15 h
time window. Both criteria aimed to remove large outliers
which could result in biased daily averages. Overall, 3.46 %
of PM2.5 samples were treated as outliers and were then ex-
cluded accordingly (treated as missing values).

3.2 Gap filling and resampling

As indicated in our recent study (Bai et al., 2020b), missing-
value-related data gaps become a big obstacle in the exploita-
tion of raw PM2.5 observations that were retrieved from the
CNEMC website, as PM2.5 observations on 40 % of sam-
pling days suffered from data losses due to unexpected rea-
sons. To reduce the impact of missing-value-related sampling
(from hourly to daily) bias on the subsequent homogeneity
test, we filled those missing-value-related data gaps that were
found in each 24 h PM2.5 observation using our recently de-
veloped diurnal cycle constrained empirical orthogonal func-
tion (DCCEOF) method (Bai et al., 2020b). Such a gap fill-
ing effort enabled us to improve the percentage of days with-
out missing data during the study time period from 58.8 % to
97.3 %.

In spite of the improvement of data integrity after gap
filling, the resultant PM2.5 time series remain temporally
discontinuous due to the emergence of several long-lasting
(e.g., more than 24 consecutive hours) missing-data episodes.
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Also, the hourly time series are still too noisy to be handled
by the current homogeneity test software due to the signifi-
cant variation in PM2.5 concentration over space and time.
In such a context, the hourly PM2.5 concentration records
were aggregated to daily and monthly scales to initiate the
homogeneity test. Moreover, the monthly series was primar-
ily used to detect the possible change points while the daily
series was adjusted in reference to the corresponding refer-
ence series according to the change points detected from the
monthly series. To avoid a large resampling bias, monthly
averages were calculated only for those with at least 20 valid
daily means of a possible month at each site. The frequency
of missing values in each month was also calculated as pos-
sible metadata information to support the examination of the
detected change points.

3.3 Homogeneity test

A commonly used homogeneity test software, the RHtestsV4
package, was hereby applied to detect the possible disconti-
nuities in raw PM2.5 data series that were retrieved from the
CNEMC website. As suggested in Wang and Feng (2013),
RHtestsV4 is capable of detecting and adjusting change
points in a data series with first-order autoregressive errors.
Given the low false alarm rate in change point detection and
the capability to adjust discontinuity, the RHtests software
packages have been widely used to homogenize climate data
records such as temperature (Cao et al., 2013; Xu et al., 2013;
Zhao et al., 2014), precipitation (Wang et al., 2010a; Nie et
al., 2019), and other data like boundary layer height (Wang
and Wang, 2016). Two typical methods, namely the PMTred
and PMFred, were embedded in a recursive testing algorithm
in RHtestsV4, with the former relying on the penalized maxi-
mal t test (PMT) while the latter based on the penalized max-
imal F test (PMF) (Wang et al., 2007; Wang, 2008a). With
the incorporation of these empirical penalty functions (Wang,
2008a, b), the problem of the uneven distribution of the false
alarm rate is largely alleviated in RHtestsV4. In contrast to
the PMF, which works without a reference series, the PMT
uses a reference series to detect change points, and the re-
sults are thus far more reliable (Wang, 2008a, b). The way to
generate reference series will be described in the next sub-
section. Also, the RHtestsV4 is capable of making essential
adjustments to the detected discontinuities by taking advan-
tage of the QM adjustment method (Wang and Feng, 2013).

Here the PMT method rather than the PMF was used to
detect change points given the higher confidence of the for-
mer method in change point detection due to the involvement
of reference series (Wang and Feng, 2013). To ensure the re-
liability of detected discontinuities, the change point was de-
fined and confirmed at a nominal 99 % confidence level, and
the data records were then declared to be homogeneous once
no change point was identified. Subsequently, the QM adjust-
ment method was applied to correct PM2.5 observations with
evident drifts with the support of reference series, namely, to

homogenize PM2.5 concentration data series. To avoid large
sampling uncertainty in the estimate of QM adjustments, the
Mq (i.e., the number of categories on which the empirical
cumulative distribution function is estimated) was automati-
cally determined by the software to ensure adequate samples
for the estimation of mean difference and probability density
function. Meanwhile, the number to determine the base seg-
ment (i.e., Iadj) was set to zero so that data in other segments
were all adjusted to the segment with the longest temporal
coverage.

3.3.1 Construction of reference series

A good reference series is vital to the relative homogene-
ity test because it helps pinpoint possible discontinuities in
each base series (the data series to be tested) and determines
the performance of the subsequent data adjustment. In gen-
eral, reference series can be organized by using one specific
record either measured from one adjacent station or aggre-
gated from multiple observations (Cao and Yan, 2012; Peter-
son and Easterling, 1994; Xu et al., 2013; Wang et al., 2016).
The most straightforward way is to use the neighboring data
series either measured at the nearest station or series that are
highly correlated with the base series (Peterson and Easter-
ling, 1994; Cao and Yan, 2012; Wang and Feng, 2013). Such
methods, however, fail to take the representativeness of the
neighboring series into account since the neighboring series
may also suffer from discontinuities.

To avoid the misuse of inhomogeneous PM2.5 concentra-
tion records as reference series, a complex yet robust data
integration scheme was hereby developed to screen, orga-
nize, and construct reference series for each in situ PM2.5
concentration data series. For each daily PM2.5 concentra-
tion data series, all the neighboring series were first identi-
fied from their surroundings with a lag distance as large as of
50 km. No reference series was constructed once there was
no neighboring series available within the given radius, and
in turn the homogeneity of the given record was not exam-
ined. Otherwise, both correlation coefficient (R) and coeffi-
cient of variation (CV) were calculated between the given
base series and each selected neighboring series to assess
their representativeness (Shi et al., 2018; Rodriguez et al.,
2019). Then, neighboring series with R greater than 0.8 and
CV smaller then 0.2 were selected as candidates to construct
the reference series for a given base series.

The reference series was then constructed by averaging
both the base and the candidate series at each observation
time if there was only one candidate series. For the situation
with more than one candidate series, the empirical orthog-
onal function (EOF) method was applied to these multiple
candidates and then the original fields were reconstructed
with the leading principal components when the accumu-
lated variance explained by them exceeded 80 %. This was
expected to reduce the possible impacts of abnormal observa-
tions and short-term discontinuities in the neighboring can-
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didates on the resultant reference series. Subsequently, the
reference series were organized and constructed through a
spatial weighting scheme as each reconstructed record was
assigned a spatially resolved weight according to their rela-
tive distances to the base series over space. Here we applied
a Gaussian kernel function to estimate the weight of each
neighboring observation that can influence the base series in
space, and such a scheme has been proven to be effective in
assessing the spatial autocorrelation of PM2.5 concentration
(Bai et al., 2019b). Mathematically, the reference series can
be constructed from the following equations:

PMref =

N∑
i=1

wi ·PMi
cand∑

wi

, (1)

w = exp
(
−d2

2h2

)
, (2)

where PMref and PMcand denote the reference and candidate
series, respectively. N is the total number of candidate se-
ries while w is the spatially resolved weight assigned to each
candidate series and d is the spatial lag distance between the
base and the corresponding candidate series. h is a spatial
correlation length that is used to modulate the relative influ-
ence of a distant observation on the data measured at the base
site. In this study, an empirical value of 50 km was used ac-
cording to the estimated semi-variogram results (Bai et al.,
2019b).

For any record having neighboring series within 50 km but
poorly correlated (R < 0.8 or CV > 0.2) to all its neighbors
(meaning the base series differ from the neighbors), the ref-
erence series were created by following the same procedures
as those detailed above by taking the nearest neighbor as the
base series. For the situation with only one candidate series
available, it is logical to compare both the base and the can-
didate series against other data to check which one should
be corrected. In this study, the PM2.5 time series estimated
from the MERRA-2 aerosol reanalysis in the same way as
described in He et al. (2019) was used. The one with higher
correlation to this external PM2.5 time series was then used
as the reference (deemed as homogeneous) while the other
was considered as the base series (that needs to be adjusted).
Such an inclusive scheme empowered us to screen and con-
struct reference series for 1262 long-term PM2.5 concentra-
tion records across the board. In contrast, no reference series
were constructed for 47 isolated records.

3.3.2 Post-processing measures

Several post-processing measures were applied to the ad-
justed data records to further improve the quality of this
dataset. Since nonpositive values may appear in the QM ad-
justed data series if the original values are close to zero
(Wang et al., 2010b), nonpositive values were replaced with
the smallest valid PM2.5 concentration amount measured at
each monitoring site during the study period. Subsequently,

the data gaps in the adjusted data due to long-term miss-
ing values were filled by first calibrating the corresponding
data values in the reference series measured on the same date
(if available) to the homogenized datum level. The modified
quantile–quantile adjustment (MQQA) method proposed in
Bai et al. (2016) was hereby used given its adaptive data ad-
justment principle. For the predicted values, such a MQQA
scheme rendered higher accuracy than those interpolated
from data values measured on adjacent dates because PM2.5
concentration is spatially more correlated than in the tempo-
ral domain (Bai et al., 2019b). For the remaining data gaps,
those missing values were reconstructed in a similar proce-
dure to the DCCEOF method (Bai et al., 2020b). Note that
the matrix used for EOF analysis in the context of DCCEOF
was constructed using the neighboring data series measured
within a radius of 100 km with a temporal lag of 30 d at most.
Finally, all data values were rounded to integers to be in line
with the original PM2.5 concentration observations.

4 Results and discussion

4.1 Descriptive statistics

Prior to data homogenization, we first need to exclude those
short-term and less reliable records. Figure 2 shows the tem-
poral variations in the number of air quality monitoring sta-
tions deployed in China during 2015–2019 as well as the
spatial patterns of the frequency of missing values for each
long-term PM2.5 concentration record. It shows that a total
of about 1630 air quality monitoring stations had been de-
ployed in China before 2020. Nevertheless, about 1500 sites
routinely providing PM2.5 observations were kept in oper-
ation since 2015 (Fig. 2a). By referring to the data conti-
nuity of PM2.5 observations, it is noticeable that 100 mon-
itoring stations had been withdrawn before 2020 because
no PM2.5 observations were provided for more than three
consecutive months since the release of their last valid data
(Fig. 2b). Meanwhile, 42 pairs of stations were found to be
relocated since new stations nearby started to provide PM2.5
observations soon after the suspension of the original site.
This is also corroborated by the temporal lags of PM2.5 ob-
servations between original and newly deployed stations, as
many of them were found to have a time lag less than 15 d.
Also, 94 sites were found to have limited data records due
to short temporal coverage (newly deployed). Finally, 1353
long-term PM2.5 concentration records with their first valid
data released earlier than 2015 were identified. In regard to
the frequency of missing values, it is indicative that data
gaps were obvious in these long-term PM2.5 concentration
records, with about 6 % of hourly data values missed on
∼ 47 % of sampling days on average. This also motivates us
to first fill such data gaps to improve the data integrity.

https://doi.org/10.5194/essd-12-3067-2020 Earth Syst. Sci. Data, 12, 3067–3080, 2020



3072 K. Bai et al.: A homogenized daily in situ PM2.5 concentration dataset

Figure 2. Spatial and temporal patterns of air quality monitoring stations in the study area. (a) Temporal variations of the total number
of air quality monitoring stations. (b) Spatial patterns of the frequency of missing values in each long-term hourly PM2.5 concentration
record measured from 1 January 2015 to 31 December 2019. Stations were categorized into distinct groups according to their data length and
temporal continuity. The frequency of missing values was calculated as the ratio of the number of missing values in each PM2.5 concentration
record to the total number of samplings from the time of the release of the first valid data to 31 December 2019.

4.2 Homogenization of in situ PM2.5 data

A total of 1395 long-term (with 5-year observations) PM2.5
concentration records were acquired with the inclusion of
42 temporally merged data series at those relocated stations.
After removing those suffering from more than three con-
secutive months of data losses, 1309 long-term yet consecu-
tive PM2.5 concentration records were obtained. The homo-
geneity test was finally performed on 1262 records due to
the availability of reference series. Figure 3 shows the spa-
tial patterns of the total number of change points detected
in 1262 monthly PM2.5 concentration records. The ubiqui-
tous change points imply that there is an obvious inhomo-
geneity in this in situ PM2.5 concentration dataset. About
57 % (719 out of 1262) of the records failed to pass the ho-
mogeneity test due to the presence of change points. Given
the overall good agreement between the base and reference
series (refer to Fig. S1 for the correlation coefficient and
root mean square error between them), it indicted that these
PM2.5 concentration records did suffer from evident discon-
tinuities. Meanwhile, the vast majority (∼ 80 %) of the in-
homogeneous PM2.5 records suffered from no more than two
change points (Fig. 3), suggesting the mean shift could be the
primary reason for the detected discontinuities. Moreover, 20
records were even found to be suffering from no less than five
significant change points, indicating phenomenal discontinu-
ities in these records.

Figure 4 shows the temporal variability of the number
of change points detected in monthly PM2.5 concentration
records. As indicated, change points were detected in every
specific month of the year from May 2015 to July 2019, espe-
cially in late spring (e.g., May), in which change points were
more likely to be detected (Fig. 4b). This is attributable to the

seasonality of PM2.5 loading in China as high PM2.5 concen-
trations are always observed in the winter whereas low val-
ues are observed in the summer. Consequently, change points
were more likely to be detected during the chronic transition
periods (e.g., spring to summer). In addition, it is noteworthy
that a large volume of change points was detected in early
2015, indicating the existence of phenomenal discontinuities
during this period (Fig. 4a). After checking the temporal vari-
ations in PM2.5 concentration, findings indicate that PM2.5
observations varied with large deviations among each other
during this period. This could be linked to the imperfect in-
strument calibration or irregular operation in the early stages.

Due to the lack of essential metadata information, it is
a challenge for us to verify each detected change point
through a manual inspection. Rather, the variations in the
base and reference series were explored to identify the possi-
ble reasons for the detected discontinuities. Figure 5 presents
three typical inhomogeneous PM2.5 time series with different
numbers of change points. The inter-comparisons between
the base and reference series indicate an overall good agree-
ment among them in terms of the long-term variation ten-
dency. However, drifts were still phenomenal in their resid-
ual series, which were even more evident when referring to
their mean-shift series. For example, both the residual and
mean-shift series shown in Fig. 5d clearly illustrate a typi-
cal discontinuity as there was an obvious departure of mean
PM2.5 concentration level during the period of January to Oc-
tober 2016. In contrast, Fig. 5b and e present another typical
inhomogeneity as a statistically significant decreasing trend
was found in the residual series, with monthly PM2.5 con-
centration deviations decreasing from nearly 5 to −4 µgm−3

stepwise. Such inhomogeneity would undoubtedly result in a
large bias in the trend estimations over that region. Figure 5c
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Figure 3. Spatial patterns of the total number of change points
detected in each long-term yet consecutive PM2.5 concentration
record in the study area. Gray dot indicates there was no change
point detected in this PM2.5 concentration record.

and f show the change points detected in the merged PM2.5
time series at a pair of relocated sites. It is noteworthy that
the detected discontinuity should be largely ascribed to the
inconsistency that emerged in the first data series rather than
to the site relocation.

Figure 6 shows the estimated linear trends for PM2.5 resid-
ual series that failed to pass the homogeneity test. Approxi-
mately 89 % of the residual series were found to exhibit sta-
tistically significant linear trends, suggesting the vital impor-
tance of homogenizing such PM2.5 concentration records as
the trend estimations at these stations could be prone to large
bias without essential adjustments. Further comparisons of
the percentage of data gaps between homogeneous and inho-
mogeneous records (Fig. S2) as well as the spatial distance
between the base and the reference series (Fig. S3) indicate
that both the frequency of data gaps and lag distance in space
have no obvious impact on the change point detection. In
other words, the detected change points have no linkage with
neither missing value frequency nor spatial distance between
the base and neighboring series, suggesting a high confidence
level of the identified discontinuities in these PM2.5 concen-
tration records.

Given the emergence of obvious discontinuities in more
than half of the selected long-term PM2.5 concentration
records, the QM adjustment method was applied to cor-
rect the discontinuities detected in each PM2.5 concentration
record. Figure 7 shows an example of homogenization on
PM2.5 concentration data series that suffered from evident
drifts from its reference (large drifts shown in Fig. 5d). The
inter-comparisons of PM2.5 concentration data between the
base and reference series indicate that the PM2.5 concentra-
tion level was obviously underestimated by the raw obser-
vations compared with the reference, especially during the

middle of 2016 (Fig. 7a). Such evident drifts were remark-
ably diminished after the homogenization (Fig. 7b), which
shows a good agreement of the mean PM2.5 concentration
level between the homogenized datum and the reference se-
ries.

4.3 Validation with independent dataset

In this study, PM2.5 observations that were collected inde-
pendently at five consulates of the United States distributed
throughout five major Chinese cities between 2015 and 2017
were used to evaluate the consistency of the derived PM2.5
concentration records. Figure 8 shows site-specific compar-
isons of daily PM2.5 concentration between homogenized
and observed data in Beijing, Shanghai, Chengdu, Shenyang,
and Guangzhou. It is indicative of the homogenized daily
PM2.5 concentration data being in good agreement with
PM2.5 observations sampled at US consulates, with a cor-
relation coefficient value of > 0.95 and root mean square er-
ror of < 15 µgm−3. Given the independent measurement of
PM2.5 concentration data at US consulates, we argue that the
homogenized PM2.5 records are accurate enough in charac-
terizing the variability of PM2.5 loadings in China. It is also
noteworthy that the homogenized PM2.5 records are tempo-
rally complete whereas missing values are found in PM2.5
observations sampled at US consulates.

4.4 PM2.5 trends estimated from the homogenized
dataset

A homogenized data record is essential to trend analysis. Fig-
ure 9 presents the annual mean concentration of PM2.5 across
China between 2015 and 2019. As shown, there is a phe-
nomenal reduction of PM2.5 concentration in China in the
past 5 years, especially over the North China Plain (the re-
gion outlined by a red rectangle shown in Fig. 9f), where the
annual mean PM2.5 concentration decreased from more than
100 µgm−3 in 2015 to about 60 µgm−3 in 2019. Such an ev-
ident decrease in PM2.5 concentration clearly demonstrates
the effectiveness of clean air actions that were implemented
in recent years.

To evaluate the benefits of data homogenization on PM2.5
trend estimations, PM2.5 trends estimated from both the raw
observations and homogenized dataset were compared. Prior
to trend analysis, each PM2.5 concentration record was stan-
dardized in reference to its mean annual cycle (i.e., PM2.5
concentration on the same date of the year between 2015
and 2019 was averaged) to reduce the impacts of season-
ality and spatial variations. Figure 10 shows a site-specific
comparison of PM2.5 trend estimations derived from raw
observations and homogenized datasets during 2015–2019.
In general, trend estimations from both datasets showed an
evident decreasing tendency of PM2.5 concentration across
China during the study period. Nevertheless, noteworthy is
that trend estimations derived from raw PM2.5 observations
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Figure 4. Temporal variations of the number of change points detected in (a) each specific month from 2015 to 2019 and (b) each month of
the year. National mean PM2.5 concentration in each month of the year was calculated based on PM2.5 data measured at our selected 1309
sites during 2015–2019.

Figure 5. Temporal variations of three typical inhomogeneous PM2.5 concentration records during 2015–2019. (a, d) Significant deviations
during a short time period, (d, e) long-term chronic drifts with statistically significant varying trend detected in the residual series, (c,
f) discontinuity due to site relocation. The left panels compare the base series with the reference and the neighboring series used to compose
the reference while the right panels show the residual series between the base and reference series as well as their mean-shift series.

suffered from obvious inhomogeneity over space, being evi-
denced by antiphase (positive versus negative) trend estima-
tions even at adjacent stations, especially for those that had
positive trends while all adjacent neighbors exhibited nega-
tive trends. These antiphase trend estimations over a small re-
gion also corroborate the existence of obvious inhomogene-
ity in raw observed in situ PM2.5 concentration dataset.

The dotted antiphase trend estimations were substantially
diminished after data homogenization, resulting in a spatially
much more homogeneous decreasing tendency of PM2.5 con-
centration across China (Fig. 10b). It is indicative that after
data homogenization the national mean PM2.5 trend was en-
larged from −7.01 % a−1 to −7.25 % a−1 while the uncer-

tainty was reduced from 0.25 % a−1 to 0.22 % a−1. Also, the
number of PM2.5 records with statistically significant trends
was increased from 1208 to 1248. These results collectively
justify the effectiveness of the QM adjustment method in
mitigating data inhomogeneity in PM2.5 observations, which
also highlight the critical importance of data homogenization
in accounting for discontinuities in this in situ PM2.5 con-
centration dataset. Overall, our results indicate an obvious
decreasing trend of PM2.5 concentration in China in the past
5 years at a mean rate of−7.25± 0.22 % a−1. Table 1 further
compares the regional mean PM2.5 trend between 2015 and
2019. Compared with other regions of interest (ROIs) such
as the Pearl River Delta (PRD; refer to Fig. S4 for the loca-
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Figure 6. Trend estimations for the residual PM2.5 concentration
data series that failed to pass the homogeneity test during 2015–
2019 in the study area. The solid circles indicate trends are statisti-
cally significant at the 95 % confidence level.

Figure 7. Comparison of daily mean PM2.5 concentration before
and after homogenization at one monitoring site in Guangdong
province (24.69◦ N, 113.60◦ E) from November 2015 to December
2016 (large drifts shown in Fig. 5d).

tion) and northern part of Xinjiang (XJ), PM2.5 loading over
Beijing–Tianjin–Hebei (BTH), Heilongjiang–Jilin–Liaoning
(HJL), and central China (CC) decreased even more promi-
nently.

To further assess the improvement of the data quality af-
ter homogenization, the daily in situ PM2.5 concentration
records at a 1◦× 1◦ grid cell resolution were grouped across
China. In each grid cell, the regional mean correlation coef-
ficient among PM2.5 concentration time series and standard
deviation of PM2.5 trends were estimated from the raw ob-
served and homogenized daily PM2.5 concentration time se-
ries, respectively. Their relative differences were then calcu-
lated to show the improvements of data homogeneity within
each grid cell. As shown in Fig. 11, the correlation among
PM2.5 concentration data was enhanced ubiquitously after
homogenization, especially in the southwest of China (e.g.,

Yunnan) where obvious inhomogeneity was observed in the
raw PM2.5 observations (Fig. 10a). Meanwhile, the standard
deviation of PM2.5 trends within each grid cell was also sub-
stantially reduced, even by more than two times in magni-
tude (Fig. 11b). These results also highlight the critical need
to homogenize the observed PM2.5 concentration data from a
large-scale monitoring network to reduce temporal inconsis-
tency and spatial inhomogeneity that were not even noticed
before.

5 Data availability

The raw observations of in situ PM2.5 concentration data in
China used in this study were retrieved via a web crawler
from the National Urban Air Quality Real-time Publishing
Platform (http://106.37.208.233:20035, China National En-
vironmental Monitoring Center, 2020) between 2014 and
2019. Given the deployment of many new monitoring sites
in 2014, we decided to generate a coherent PM2.5 concentra-
tion dataset starting from 2015 to include as many PM2.5 data
records as possible. The homogenized daily in situ PM2.5
concentration dataset developed in this study is publicly ac-
cessible at https://doi.org/10.1594/PANGAEA.917557 (Bai
et al., 2020a). To provide a long-term coherent PM2.5 con-
centration dataset to the scientific community, the homoge-
nized PM2.5 concentration dataset will be regularly updated
for each half a year by including new PM2.5 observations that
are retrieved during the past 6 months.

6 Conclusions

In this study, a homogenized yet temporally complete daily
in situ PM2.5 concentration dataset was generated based on
the discrete hourly PM2.5 concentration records that were re-
trieved from the China National Urban Air Quality Real-time
Publishing Platform using a web crawler during the period
of 2015–2019. To create such a long-term coherent dataset,
a set of analytic methods were geared up seamlessly and ap-
plied sequentially to the retrieved raw PM2.5 concentration
records, involving quality control, gap filling, data merging,
change point detection, and bias correction. This new dataset
could help the scientific community better elucidate the tem-
poral and spatial variability of haze pollution in China in re-
cent years, which is expected to improve the understanding
of underlying causes.

The raw PM2.5 concentration records were found to be
suffering from phenomenal inhomogeneity caused by data
inconsistency and temporal discontinuity as well as the relo-
cation and repeal of a number of monitoring stations. More
than half of the long-term PM2.5 concentration records were
found to fail the homogeneity test due to the presence of
significant change points. Further investigation confirms that
large yet short-term mean shifts and chronic drifts are two
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Figure 8. Comparisons of the homogenized PM2.5 concentration (red) against PM2.5 observations (blue) measured at five consulates of the
United States in China from January 2015 to June 2017. (a–e) Temporal variations of daily PM2.5 concentration and (f–j) the associated
scatter plots.

Table 1. Regional mean trend for PM2.5 concentrations over eight major ROIs in China during 2015–2019 before and after the data homog-
enization. Uncertainties in trend estimations were characterized at the 95 % confidence interval. Locations of these ROIs can be found in
Fig. S4.

ROI Raw observation Homogenized record
(% a−1) (% a−1)

Beijing–Tianjin–Hebei (BTH) −9.03± 0.78 −9.19± 0.69
Yangtze River Delta (YRD) −7.07± 0.54 −7.33± 0.40
Central China (CC) −8.47± 0.51 −8.58± 0.41
Sichuan Basin (SCB) −7.39± 1.02 −7.84± 0.89
Pearl River Delta (PRD) −4.30± 0.51 −4.60± 0.39
Heilongjiang–Jilin–Liaoning (HJL) −8.89± 0.73 −9.15± 0.63
Shaanxi–Gansu–Ningxia (SGN) −4.85± 0.95 −5.30± 0.69
North Xinjiang (XJ) −4.61± 1.96 −4.67± 1.60
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Figure 9. Annual mean PM2.5 concentration derived from the homogenized daily PM2.5 concentration dataset at 1309 monitoring stations
between 2015 and 2019. The North China Plain is outlined by the red rectangle in panel (f).

Figure 10. Linear trends for (a) raw observed and (b) homogenized daily PM2.5 concentration data during 2015–2019 in the study area. Solid
circles indicate trends are statistically significant at the 95 % confidence interval. Numbers shown in the lower left of each panel indicate the
overall trend derived from (top) all available stations and (bottom) the stations with significant trends at the 95 % confidence interval while
the numbers shown in brackets are the corresponding number of data records. Each PM2.5 time series was standardized by its mean annual
cycle during the study period to account for spatial variations of PM2.5.

primary reasons for the detected discontinuities in raw PM2.5
concentration records.

Based on the homogenized dataset, the long-term trends of
PM2.5 concentration in China were estimated. In contrast to
the inhomogeneous trend estimations that were derived from

raw PM2.5 concentration records, the homogenized dataset
yielded a spatially much more homogeneous decreasing ten-
dency of PM2.5 concentration across China at a mean rate of
about –7.3 % per year. Such an improvement of homogeneity
was also evidenced by the enhanced correlation and reduced
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Figure 11. Spatial distributions of (a) the improvements of mean correlation coefficient among PM2.5 concentration records before and after
homogenization at a 1◦× 1◦ grid cell resolution in the study area, and (b) their corresponding standard deviations of PM2.5 trends.

standard deviation of trend estimations between homoge-
nized PM2.5 concentration time series in the surroundings.
These results clearly demonstrate the benefits of data homog-
enization on the improvement of the quality of this PM2.5
concentration dataset as evident discontinuities have been re-
moved after homogenization. Overall, our results clearly in-
dicate the presence of discontinuities in the raw in situ PM2.5
concentration observations that were measured in China, and
the homogenization actions are essential to the acquisition of
a long-term coherent PM2.5 concentration dataset that can be
used to advance PM2.5 pollution related policy making and
public health risk assessment.
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