Data description paper
10 Jul 2019
Data description paper
| 10 Jul 2019
FROGS: a daily 1° × 1° gridded precipitation database of rain gauge, satellite and reanalysis products
Rémy Roca et al.
Related authors
M. Schröder, R. Roca, L. Picon, A. Kniffka, and H. Brogniez
Atmos. Chem. Phys., 14, 11129–11148, https://doi.org/10.5194/acp-14-11129-2014, https://doi.org/10.5194/acp-14-11129-2014, 2014
B. V. Thampi and R. Roca
Atmos. Chem. Phys., 14, 6739–6758, https://doi.org/10.5194/acp-14-6739-2014, https://doi.org/10.5194/acp-14-6739-2014, 2014
Duane Waliser, Peter J. Gleckler, Robert Ferraro, Karl E. Taylor, Sasha Ames, James Biard, Michael G. Bosilovich, Otis Brown, Helene Chepfer, Luca Cinquini, Paul J. Durack, Veronika Eyring, Pierre-Philippe Mathieu, Tsengdar Lee, Simon Pinnock, Gerald L. Potter, Michel Rixen, Roger Saunders, Jörg Schulz, Jean-Noël Thépaut, and Matthias Tuma
Geosci. Model Dev., 13, 2945–2958, https://doi.org/10.5194/gmd-13-2945-2020, https://doi.org/10.5194/gmd-13-2945-2020, 2020
Short summary
Short summary
This paper provides an update to an international research activity whose objective is to facilitate access to satellite and other types of regional and global datasets for evaluating global models used to produce 21st century climate projections.
Steefan Contractor, Markus G. Donat, Lisa V. Alexander, Markus Ziese, Anja Meyer-Christoffer, Udo Schneider, Elke Rustemeier, Andreas Becker, Imke Durre, and Russell S. Vose
Hydrol. Earth Syst. Sci., 24, 919–943, https://doi.org/10.5194/hess-24-919-2020, https://doi.org/10.5194/hess-24-919-2020, 2020
Short summary
Short summary
This paper provides the documentation of the REGEN dataset, a global land-based daily observational precipitation dataset from 1950 to 2016 at a gridded resolution of 1° × 1°. REGEN is currently the longest-running global dataset of daily precipitation and is expected to facilitate studies looking at changes and variability in several aspects of daily precipitation distributions, extremes and measures of hydrological intensity.
Mia H. Gross, Markus G. Donat, Lisa V. Alexander, and Steven C. Sherwood
Earth Syst. Dynam., 11, 97–111, https://doi.org/10.5194/esd-11-97-2020, https://doi.org/10.5194/esd-11-97-2020, 2020
Short summary
Short summary
This study explores the amplified warming of cold extremes relative to average temperatures for both the recent past and future in the Northern Hemisphere and the possible physical processes that are driving this. We find that decreases in snow cover and
warmer-than-usual winds are driving the disproportionate rates of warming in cold extremes relative to average temperatures. These accelerated warming rates in cold extremes have implications for tourism, insect longevity and human health.
Stephen Blenkinsop, Hayley J. Fowler, Renaud Barbero, Steven C. Chan, Selma B. Guerreiro, Elizabeth Kendon, Geert Lenderink, Elizabeth Lewis, Xiao-Feng Li, Seth Westra, Lisa Alexander, Richard P. Allan, Peter Berg, Robert J. H. Dunn, Marie Ekström, Jason P. Evans, Greg Holland, Richard Jones, Erik Kjellström, Albert Klein-Tank, Dennis Lettenmaier, Vimal Mishra, Andreas F. Prein, Justin Sheffield, and Mari R. Tye
Adv. Sci. Res., 15, 117–126, https://doi.org/10.5194/asr-15-117-2018, https://doi.org/10.5194/asr-15-117-2018, 2018
Short summary
Short summary
Measurements of sub-daily (e.g. hourly) rainfall totals are essential if we are to understand short, intense bursts of rainfall that cause flash floods. We might expect the intensity of such events to increase in a warming climate but these are poorly realised in projections of future climate change. The INTENSE project is collating a global dataset of hourly rainfall measurements and linking with new developments in climate models to understand the characteristics and causes of these events.
Sean M. Davis, Michaela I. Hegglin, Masatomo Fujiwara, Rossana Dragani, Yayoi Harada, Chiaki Kobayashi, Craig Long, Gloria L. Manney, Eric R. Nash, Gerald L. Potter, Susann Tegtmeier, Tao Wang, Krzysztof Wargan, and Jonathon S. Wright
Atmos. Chem. Phys., 17, 12743–12778, https://doi.org/10.5194/acp-17-12743-2017, https://doi.org/10.5194/acp-17-12743-2017, 2017
Short summary
Short summary
Ozone and water vapor in the stratosphere are important gases that affect surface climate and absorb incoming solar ultraviolet radiation. These gases are represented in reanalyses, which create a complete picture of the state of Earth's atmosphere using limited observations. We evaluate reanalysis water vapor and ozone fidelity by intercomparing them, and comparing them to independent observations. Generally reanalyses do a good job at representing ozone, but have problems with water vapor.
R. J. H. Dunn, M. G. Donat, and L. V. Alexander
Clim. Past, 10, 2171–2199, https://doi.org/10.5194/cp-10-2171-2014, https://doi.org/10.5194/cp-10-2171-2014, 2014
Short summary
Short summary
Observational data sets contain uncertainties, e.g. from the instrument accuracy, as well as from the fact that usually only a single method is used in processing. We have performed an assessment of the size of the uncertainties associated with choices in the method used. The largest effects come from changes which affect the station network or the gridding method used. However, for the temperature indices in places with many stations, these changes have little effect on the long-term behaviour.
M. Schröder, R. Roca, L. Picon, A. Kniffka, and H. Brogniez
Atmos. Chem. Phys., 14, 11129–11148, https://doi.org/10.5194/acp-14-11129-2014, https://doi.org/10.5194/acp-14-11129-2014, 2014
K. Willett, C. Williams, I. T. Jolliffe, R. Lund, L. V. Alexander, S. Brönnimann, L. A. Vincent, S. Easterbrook, V. K. C. Venema, D. Berry, R. E. Warren, G. Lopardo, R. Auchmann, E. Aguilar, M. J. Menne, C. Gallagher, Z. Hausfather, T. Thorarinsdottir, and P. W. Thorne
Geosci. Instrum. Method. Data Syst., 3, 187–200, https://doi.org/10.5194/gi-3-187-2014, https://doi.org/10.5194/gi-3-187-2014, 2014
B. V. Thampi and R. Roca
Atmos. Chem. Phys., 14, 6739–6758, https://doi.org/10.5194/acp-14-6739-2014, https://doi.org/10.5194/acp-14-6739-2014, 2014
Related subject area
Atmosphere – Meteorology
C3ONTEXT: a Common Consensus on Convective OrgaNizaTion during the EUREC4A eXperimenT
The Large eddy Observatory, Voitsumra Experiment 2019 (LOVE19) with high-resolution, spatially distributed observations of air temperature, wind speed, and wind direction from fiber-optic distributed sensing, towers, and ground-based remote sensing
Homogenized century-long surface incident solar radiation over Japan
EUREC4A's Maria S. Merian ship-based cloud and micro rain radar observations of clouds and precipitation
Water vapor in cold and clean atmosphere: a 3-year data set in the boundary layer of Dome C, East Antarctic Plateau
Deployment of the C-band radar Poldirad on Barbados during EUREC4A
Remote and autonomous measurements of precipitation for the northwestern Ross Ice Shelf, Antarctica
High-frequency observation during sand and dust storms at the Qingtu Lake Observatory
10 years of temperature and wind observation on a 45 m tower at Dome C, East Antarctic plateau
Global balanced wind derived from SABER temperature and pressure observations and its validations
EUREC4A's HALO
JOANNE: Joint dropsonde Observations of the Atmosphere in tropical North atlaNtic meso-scale Environments
Resilient dataset of rain clusters with life cycle evolution based on observations from the GPM DPR and Himawari-8 AHI
Observations of marine cold-air outbreaks: A comprehensive data set of airborne and dropsonde measurements from the Springtime Atmospheric Boundary Layer Experiment (STABLE)
Ground-based vertical profile observations of atmospheric composition on the Tibetan Plateau (2017–2019)
A dataset of daily near-surface air temperature in China from 1979 to 2018
Presentation and discussion of the high-resolution atmosphere–land-surface–subsurface simulation dataset of the simulated Neckar catchment for the period 2007–2015
EUREC4A
SLOCLIM: a high-resolution daily gridded precipitation and temperature dataset for Slovenia
Turbulence dissipation rate estimated from lidar observations during the LAPSE-RATE field campaign
Long-term variations in actual evapotranspiration over the Tibetan Plateau
The NY-Ålesund TurbulencE Fiber Optic eXperiment (NYTEFOX): investigating the Arctic boundary layer, Svalbard
The EUREC4A turbulence dataset derived from the SAFIRE ATR 42 aircraft
EMDNA: an Ensemble Meteorological Dataset for North America
A mean-sea-level pressure time series for Trieste, Italy (1841–2018)
Observations from the NOAA P-3 aircraft during ATOMIC
The WGLC global gridded lightning climatology and time series
Southern Ocean cloud and aerosol data: a compilation of measurements from the 2018 Southern Ocean Ross Sea Marine Ecosystems and Environment voyage
A high-resolution gridded dataset of daily temperature and precipitation records (1980–2018) for Trentino-South Tyrol (north-eastern Italian Alps)
Hydrometeorological dataset of West Siberian boreal peatland: a 10-year record from the Mukhrino field station
University of Colorado and Black Swift Technologies RPAS-based measurements of the lower atmosphere during LAPSE-RATE
Intercomparisons, error assessments, and technical information on historical upper-air measurements
University of Nebraska unmanned aerial system (UAS) profiling during the LAPSE-RATE field campaign
Integrated water vapour observations in the Caribbean arc from a network of ground-based GNSS receivers during EUREC4A
Sub-seasonal forecasts of demand and wind power and solar power generation for 28 European countries
Construction of homogenized daily surface air temperature for the city of Tianjin during 1887–2019
HydroGFD3.0 (Hydrological Global Forcing Data): a 25 km global precipitation and temperature data set updated in near-real time
Integrated water vapour content retrievals from ship-borne GNSS receivers during EUREC4A
Hydrometeorological data from a Remotely Operated Multi-Parameter Station network in Central Asia
WegenerNet high-resolution weather and climate data from 2007 to 2020
G2DC-PL+: a gridded 2 km daily climate dataset for the union of the Polish territory and the Vistula and Odra basins
Meteorological observations collected during the Storms and Precipitation Across the continental Divide Experiment (SPADE), April–June 2019
High-resolution in situ observations of atmospheric thermodynamics using dropsondes during the Organization of Tropical East Pacific Convection (OTREC) field campaign
Remote-sensing and radiosonde datasets collected in the San Luis Valley during the LAPSE-RATE campaign
Ten-year return levels of sub-daily extreme precipitation over Europe
Antarctic atmospheric boundary layer observations with the Small Unmanned Meteorological Observer (SUMO)
A high-resolution unified observational data product of mesoscale convective systems and isolated deep convection in the United States for 2004–2017
Real-time WRF large-eddy simulations to support uncrewed aircraft system (UAS) flight planning and operations during 2018 LAPSE-RATE
Atmospheric radiative profiles during EUREC4A
Ship- and island-based atmospheric soundings from the 2020 EUREC4A field campaign
Hauke Schulz
Earth Syst. Sci. Data, 14, 1233–1256, https://doi.org/10.5194/essd-14-1233-2022, https://doi.org/10.5194/essd-14-1233-2022, 2022
Short summary
Short summary
Trade wind clouds are often organized on the mesoscale (O(100 km)), forming different cloud patterns. We present C3ONTEXT (a Common Consensus on Convective OrgaNizaTion during the EUREC4A eXperimenT), a dataset that contains information about the mesoscale cloud patterns identified during the EUREC4A (Elucidating the role of clouds–circulation coupling in climate) field campaign in January–February 2020 and thereby provide the mesoscale context for the campaign's measurements.
Karl Lapo, Anita Freundorfer, Antonia Fritz, Johann Schneider, Johannes Olesch, Wolfgang Babel, and Christoph K. Thomas
Earth Syst. Sci. Data, 14, 885–906, https://doi.org/10.5194/essd-14-885-2022, https://doi.org/10.5194/essd-14-885-2022, 2022
Short summary
Short summary
The layer of air near the surface is poorly understood during conditions with weak winds. Further, it is even difficult to observe. In this experiment we used distributed temperature sensing to observe air temperature and wind speed at thousands of points simultaneously every couple of seconds. This incredibly rich data set can be used to examine and understand what drives the mixing between the atmosphere and surface during these weak-wind periods.
Qian Ma, Kaicun Wang, Yanyi He, Liangyuan Su, Qizhong Wu, Han Liu, and Youren Zhang
Earth Syst. Sci. Data, 14, 463–477, https://doi.org/10.5194/essd-14-463-2022, https://doi.org/10.5194/essd-14-463-2022, 2022
Short summary
Short summary
Surface incident solar radiation plays a key role in atmospheric circulation, the water cycle, and ecological equilibrium on Earth. A homogenized century-long surface incident solar radiation dataset was obtained over Japan.
Claudia Acquistapace, Richard Coulter, Susanne Crewell, Albert Garcia-Benadi, Rosa Gierens, Giacomo Labbri, Alexander Myagkov, Nils Risse, and Jan H. Schween
Earth Syst. Sci. Data, 14, 33–55, https://doi.org/10.5194/essd-14-33-2022, https://doi.org/10.5194/essd-14-33-2022, 2022
Short summary
Short summary
This publication describes the unprecedented high-resolution cloud and precipitation dataset collected by two radars deployed on the Maria S. Merian research vessel. The ship operated in the west Atlantic Ocean during the measurement campaign called EUREC4A, between 19 January and 19 February 2020. The data collected are crucial to investigate clouds and precipitation and understand how they form and change over the ocean, where it is so difficult to measure them.
Christophe Genthon, Dana E. Veron, Etienne Vignon, Jean-Baptiste Madeleine, and Luc Piard
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-412, https://doi.org/10.5194/essd-2021-412, 2022
Revised manuscript accepted for ESSD
Short summary
Short summary
The surface atmosphere of the high antarctic plateau is very cold and clean. Such conditions favor water vapor supersaturation. A 3-year quasi continuous series of atmospheric moisture in a ~40-m atmospheric layer at Dome C is reported, which documents time variability, vertical profiles and occurrences of supersaturation. While supersaturation with respect to ice is frequent throughout the column, relative humidity with respect to (supercooled) liquid water reaches close to saturation.
Martin Hagen, Florian Ewald, Silke Groß, Lothar Oswald, David A. Farrell, Marvin Forde, Manuel Gutleben, Johann Heumos, Jens Reimann, Eleni Tetoni, Gregor Köcher, Eleni Marinou, Christoph Kiemle, Qiang Li, Rebecca Chewitt-Lucas, Alton Daley, Delando Grant, and Kashawn Hall
Earth Syst. Sci. Data, 13, 5899–5914, https://doi.org/10.5194/essd-13-5899-2021, https://doi.org/10.5194/essd-13-5899-2021, 2021
Short summary
Short summary
The German polarimetric weather radar Poldirad was deployed for the international campaign EUREC4A on Barbados. The focus was monitoring clouds and precipitation in the trade wind region east of Barbados. Observations were with a temporal sequence of 5 min and a maximum range of 375 km. Examples of mesoscale precipitation patterns, rain rate accumulation, diurnal cycle, and vertical distribution show the potential for further studies on the life cycle of precipitating shallow cumulus clouds.
Mark W. Seefeldt, Taydra M. Low, Scott D. Landolt, and Thomas H. Nylen
Earth Syst. Sci. Data, 13, 5803–5817, https://doi.org/10.5194/essd-13-5803-2021, https://doi.org/10.5194/essd-13-5803-2021, 2021
Short summary
Short summary
The Antarctic Precipitation System project deployed and maintained four sites across Antarctica from November 2017 to November 2019. The goals for the project included the collection of in situ observations of precipitation in Antarctica, an improvement in the understanding of precipitation in Antarctica, and the ability to validate precipitation data from atmospheric numerical models. The collected dataset represents some of the first year-round observations of precipitation in Antarctica.
Xuebo Li, Yongxiang Huang, Guohua Wang, and Xiaojing Zheng
Earth Syst. Sci. Data, 13, 5819–5830, https://doi.org/10.5194/essd-13-5819-2021, https://doi.org/10.5194/essd-13-5819-2021, 2021
Short summary
Short summary
High-frequency observatory data (50 Hz 3D wind velocity, 50 Hz temperature and 1 Hz PM10) for studying the features of the fluid and dust field during sand and dust storms were presented. It is anticipated that data collected in this work will be of utility not only specifically for the boundary layer community in building a model for sand and dust storms but also broadly for communities studying the exchange of the dust and fluid field and energy transfer for the particle-laden two-phase flow.
Christophe Genthon, Dana Veron, Etienne Vignon, Delphine Six, Jean-Louis Dufresne, Jean-Baptiste Madeleine, Emmanuelle Sultan, and François Forget
Earth Syst. Sci. Data, 13, 5731–5746, https://doi.org/10.5194/essd-13-5731-2021, https://doi.org/10.5194/essd-13-5731-2021, 2021
Short summary
Short summary
A 10-year dataset of observation in the atmospheric boundary layer at Dome C on the high Antarctic plateau is presented. This is obtained with sensors at six levels along a tower higher than 40 m. The temperature inversion can reach more than 25 °C along the tower in winter, while full mixing by convection can occur in summer. Different amplitudes of variability for wind and temperature at the different levels reflect different signatures of solar vs. synoptic forcing of the boundary layer.
Xiao Liu, Jiyao Xu, Jia Yue, You Yu, Paulo P. Batista, Vania F. Andrioli, Zhengkuan Liu, Tao Yuan, Chi Wang, Ziming Zou, Guozhu Li, and James M. Russell III
Earth Syst. Sci. Data, 13, 5643–5661, https://doi.org/10.5194/essd-13-5643-2021, https://doi.org/10.5194/essd-13-5643-2021, 2021
Short summary
Short summary
Based on the gradient balance wind theory and the SABER observations, a dataset of monthly mean zonal wind has been developed at heights of 18–100 km and latitudes of 50° Sndash;50° N from 2002 to 2019. The dataset agrees with the zonal wind from models (MERRA2, UARP, HWM14) and observations by meteor radar and lidar at seven stations. The dataset can be used to study seasonal and interannual variations and can serve as a background for wave studies of tides and planetary waves.
Heike Konow, Florian Ewald, Geet George, Marek Jacob, Marcus Klingebiel, Tobias Kölling, Anna E. Luebke, Theresa Mieslinger, Veronika Pörtge, Jule Radtke, Michael Schäfer, Hauke Schulz, Raphaela Vogel, Martin Wirth, Sandrine Bony, Susanne Crewell, André Ehrlich, Linda Forster, Andreas Giez, Felix Gödde, Silke Groß, Manuel Gutleben, Martin Hagen, Lutz Hirsch, Friedhelm Jansen, Theresa Lang, Bernhard Mayer, Mario Mech, Marc Prange, Sabrina Schnitt, Jessica Vial, Andreas Walbröl, Manfred Wendisch, Kevin Wolf, Tobias Zinner, Martin Zöger, Felix Ament, and Bjorn Stevens
Earth Syst. Sci. Data, 13, 5545–5563, https://doi.org/10.5194/essd-13-5545-2021, https://doi.org/10.5194/essd-13-5545-2021, 2021
Short summary
Short summary
The German research aircraft HALO took part in the research campaign EUREC4A in January and February 2020. The focus area was the tropical Atlantic east of the island of Barbados. We describe the characteristics of the 15 research flights, provide auxiliary information, derive combined cloud mask products from all instruments that observe clouds on board the aircraft, and provide code examples that help new users of the data to get started.
Geet George, Bjorn Stevens, Sandrine Bony, Robert Pincus, Chris Fairall, Hauke Schulz, Tobias Kölling, Quinn T. Kalen, Marcus Klingebiel, Heike Konow, Ashley Lundry, Marc Prange, and Jule Radtke
Earth Syst. Sci. Data, 13, 5253–5272, https://doi.org/10.5194/essd-13-5253-2021, https://doi.org/10.5194/essd-13-5253-2021, 2021
Short summary
Short summary
Dropsondes measure atmospheric parameters such as temperature, pressure, humidity and horizontal winds. The EUREC4A field campaign deployed 1215 dropsondes during January–February 2020 in the north Atlantic trade-wind region in order to characterize the thermodynamic and the dynamic structure of the atmosphere, primarily at horizontal scales of ~ 200 km. We present JOANNE, the dataset that provides these dropsonde measurements and thereby a rich characterization of the trade-wind atmosphere.
Aoqi Zhang, Chen Chen, Yilun Chen, Weibiao Li, Shumin Chen, and Yunfei Fu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-298, https://doi.org/10.5194/essd-2021-298, 2021
Revised manuscript accepted for ESSD
Short summary
Short summary
We constructed an event-based precipitation dataset with life cycle evolution based on coordinated application of observations from space-borne active precipitation radar and geostationary satellites. The dataset provides both three-dimensional structures of precipitation system and its corresponding life cycle evolution. The dataset greatly reduces the data size and avoids complex data processing algorithms for studying the life cycle evolution of precipitation microphysics.
Janosch Michaelis, Amelie U. Schmitt, Christof Lüpkes, Jörg Hartmann, Gerit Birnbaum, and Timo Vihma
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-341, https://doi.org/10.5194/essd-2021-341, 2021
Revised manuscript accepted for ESSD
Short summary
Short summary
A major goal of the aircraft campaign Springtime Atmospheric Boundary Layer Experiment (STABLE) was to observe atmospheric conditions during marine cold-air outbreaks (MCAOs) originating from the sea ice covered Arctic ocean. Quality-controlled measurements of several meteorological variables collected during 15 vertical aircraft profiles and by 22 dropsondes are presented. The comprehensive data set may be used for validating model results to improve the understanding of future trends of MCAOs.
Chengzhi Xing, Cheng Liu, Hongyu Wu, Jinan Lin, Fan Wang, Shuntian Wang, and Meng Gao
Earth Syst. Sci. Data, 13, 4897–4912, https://doi.org/10.5194/essd-13-4897-2021, https://doi.org/10.5194/essd-13-4897-2021, 2021
Short summary
Short summary
Observations of atmospheric composition, especially vertical profile observations, remain sparse and rare on the Tibetan Plateau (TP), due to extremely high altitude, topographical heterogeneity and the grinding environment. This paper introduces a high-time-resolution (~ 15 min) vertical profile observational dataset of atmospheric composition (aerosols, NO2, HCHO and HONO) on the TP for more than 1 year (2017–2019) using a passive remote sensing technique.
Shu Fang, Kebiao Mao, Xueqi Xia, Ping Wang, Jiancheng Shi, Sayed M. Bateni, Tongren Xu, Mengmeng Cao, and Essam Heggy
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-309, https://doi.org/10.5194/essd-2021-309, 2021
Revised manuscript accepted for ESSD
Short summary
Short summary
Air temperature is an important parameter reflecting climate change, and the current method of obtaining daily temperature is affected by many factors. In this study, we constructed a temperature model based on weather conditions and established a correction equation. The dataset of daily air temperature (Tmax, Tmin, and Tavg) in China from 1979 to 2018 was obtained with a spatial resolution of 0.1°. Accuracy verification shows that the data set has reliable accuracy and high spatial resolution.
Bernd Schalge, Gabriele Baroni, Barbara Haese, Daniel Erdal, Gernot Geppert, Pablo Saavedra, Vincent Haefliger, Harry Vereecken, Sabine Attinger, Harald Kunstmann, Olaf A. Cirpka, Felix Ament, Stefan Kollet, Insa Neuweiler, Harrie-Jan Hendricks Franssen, and Clemens Simmer
Earth Syst. Sci. Data, 13, 4437–4464, https://doi.org/10.5194/essd-13-4437-2021, https://doi.org/10.5194/essd-13-4437-2021, 2021
Short summary
Short summary
In this study, a 9-year simulation of complete model output of a coupled atmosphere–land-surface–subsurface model on the catchment scale is discussed. We used the Neckar catchment in SW Germany as the basis of this simulation. Since the dataset includes the full model output, it is not only possible to investigate model behavior and interactions between the component models but also use it as a virtual truth for comparison of, for example, data assimilation experiments.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Nina Škrk, Roberto Serrano-Notivoli, Katarina Čufar, Maks Merela, Zalika Črepinšek, Lučka Kajfež Bogataj, and Martín de Luis
Earth Syst. Sci. Data, 13, 3577–3592, https://doi.org/10.5194/essd-13-3577-2021, https://doi.org/10.5194/essd-13-3577-2021, 2021
Short summary
Short summary
SLOCLIM is the first climatic reconstruction for Slovenia with a spatial resolution of 1 × 1 km, providing daily data of maximum and minimum temperature and precipitation from 1950 to 2018. This new daily gridded dataset contributes significantly to the climate description of the country and is expected to facilitate research activities in numerous scientific disciplines dealing with climate trends, environment, human and animal populations, agriculture, and forestry.
Miguel Sanchez Gomez, Julie K. Lundquist, Petra M. Klein, and Tyler M. Bell
Earth Syst. Sci. Data, 13, 3539–3549, https://doi.org/10.5194/essd-13-3539-2021, https://doi.org/10.5194/essd-13-3539-2021, 2021
Short summary
Short summary
In July 2018, the International Society for Atmospheric Research using Remotely-piloted Aircraft (ISARRA) hosted a flight week to demonstrate unmanned aircraft systems' capabilities in sampling the atmospheric boundary layer. Three Doppler lidars were deployed during this week-long experiment. We use data from these lidars to estimate turbulence dissipation rate. We observe large temporal variability and significant differences in dissipation for lidars with different sampling techniques.
Cunbo Han, Yaoming Ma, Binbin Wang, Lei Zhong, Weiqiang Ma, Xuelong Chen, and Zhongbo Su
Earth Syst. Sci. Data, 13, 3513–3524, https://doi.org/10.5194/essd-13-3513-2021, https://doi.org/10.5194/essd-13-3513-2021, 2021
Short summary
Short summary
Actual terrestrial evapotranspiration (ETa) is a key parameter controlling the land–atmosphere interaction processes and water cycle. However, the spatial distribution and temporal changes in ETa over the Tibetan Plateau (TP) remain very uncertain. Here we estimate the multiyear (2001–2018) monthly ETa and its spatial distribution on the TP by a combination of meteorological data and satellite products. Results have been validated at six eddy-covariance monitoring sites and show high accuracy.
Marie-Louise Zeller, Jannis-Michael Huss, Lena Pfister, Karl E. Lapo, Daniela Littmann, Johann Schneider, Alexander Schulz, and Christoph K. Thomas
Earth Syst. Sci. Data, 13, 3439–3452, https://doi.org/10.5194/essd-13-3439-2021, https://doi.org/10.5194/essd-13-3439-2021, 2021
Short summary
Short summary
The boundary layer (BL) is well understood when convectively mixed, yet we lack this understanding when it becomes stable and no longer follows classic similarity theories. The NYTEFOX campaign collected a unique meteorological data set in the Arctic BL of Svalbard during polar night, where it tends to be highly stable. Using innovative fiber-optic distributed sensing, we are able to provide unique insight into atmospheric motions across large distances resolved continuously in space and time.
Pierre-Etienne Brilouet, Marie Lothon, Jean-Claude Etienne, Pascal Richard, Sandrine Bony, Julien Lernoult, Hubert Bellec, Gilles Vergez, Thierry Perrin, Julien Delanoë, Tetyana Jiang, Frédéric Pouvesle, Claude Lainard, Michel Cluzeau, Laurent Guiraud, Patrice Medina, and Theotime Charoy
Earth Syst. Sci. Data, 13, 3379–3398, https://doi.org/10.5194/essd-13-3379-2021, https://doi.org/10.5194/essd-13-3379-2021, 2021
Short summary
Short summary
During the EUREC4A field experiment that took place over the tropical Atlantic Ocean east of Barbados, the French ATR 42 environment research aircraft of SAFIRE aimed to characterize the shallow cloud properties near cloud base and the turbulent structure of the subcloud layer. The high-frequency measurements of wind, temperature and humidity as well as their translation in terms of turbulent fluctuations, turbulent moments and characteristic length scales of turbulence are presented.
Guoqiang Tang, Martyn P. Clark, Simon Michael Papalexiou, Andrew J. Newman, Andrew W. Wood, Dominique Brunet, and Paul H. Whitfield
Earth Syst. Sci. Data, 13, 3337–3362, https://doi.org/10.5194/essd-13-3337-2021, https://doi.org/10.5194/essd-13-3337-2021, 2021
Short summary
Short summary
Probabilistic estimates are useful to quantify the uncertainties in meteorological datasets. This study develops the Ensemble Meteorological Dataset for North America (EMDNA). EMDNA has 100 members with daily precipitation amount, mean daily temperature, and daily temperature range at 0.1° spatial resolution from 1979 to 2018. It is expected to be useful for hydrological and meteorological applications in North America.
Fabio Raicich and Renato R. Colucci
Earth Syst. Sci. Data, 13, 3363–3377, https://doi.org/10.5194/essd-13-3363-2021, https://doi.org/10.5194/essd-13-3363-2021, 2021
Short summary
Short summary
To understand climate change, it is essential to analyse long time series of atmospheric data. Here we studied the atmospheric pressure observed at Trieste (Italy) from 1841 to 2018. We examined the available information on the characteristics and elevations of the barometers and on the data sampling. A basic data quality control was also applied. As a result, we built a homogeneous time series of daily mean pressures at mean sea level, from which a trend of 0.5 hPa per century was estimated.
Robert Pincus, Chris W. Fairall, Adriana Bailey, Haonan Chen, Patrick Y. Chuang, Gijs de Boer, Graham Feingold, Dean Henze, Quinn T. Kalen, Jan Kazil, Mason Leandro, Ashley Lundry, Ken Moran, Dana A. Naeher, David Noone, Akshar J. Patel, Sergio Pezoa, Ivan PopStefanija, Elizabeth J. Thompson, James Warnecke, and Paquita Zuidema
Earth Syst. Sci. Data, 13, 3281–3296, https://doi.org/10.5194/essd-13-3281-2021, https://doi.org/10.5194/essd-13-3281-2021, 2021
Short summary
Short summary
This paper describes observations taken from a research aircraft during a field experiment in the western Atlantic Ocean during January and February 2020. The plane made 11 flights, most 8-9 h long, and measured the properties of the atmosphere and ocean with a combination of direct measurements, sensors falling from the plane to profile the atmosphere and ocean, and remote sensing measurements of clouds and the ocean surface.
Jed O. Kaplan and Katie Hong-Kiu Lau
Earth Syst. Sci. Data, 13, 3219–3237, https://doi.org/10.5194/essd-13-3219-2021, https://doi.org/10.5194/essd-13-3219-2021, 2021
Short summary
Short summary
Lightning is an important atmospheric phenomenon and natural hazard, but few long-term data are freely available on lightning stroke location, timing, and power. Here, we present a new, open-access dataset of lightning strokes covering 2010–2020, based on a network of low-frequency radio detectors. The dataset is comprised of GIS maps and is intended for researchers, government, industry, and anyone for whom knowing when and where lightning is likely to strike is useful information.
Stefanie Kremser, Mike Harvey, Peter Kuma, Sean Hartery, Alexia Saint-Macary, John McGregor, Alex Schuddeboom, Marc von Hobe, Sinikka T. Lennartz, Alex Geddes, Richard Querel, Adrian McDonald, Maija Peltola, Karine Sellegri, Israel Silber, Cliff S. Law, Connor J. Flynn, Andrew Marriner, Thomas C. J. Hill, Paul J. DeMott, Carson C. Hume, Graeme Plank, Geoffrey Graham, and Simon Parsons
Earth Syst. Sci. Data, 13, 3115–3153, https://doi.org/10.5194/essd-13-3115-2021, https://doi.org/10.5194/essd-13-3115-2021, 2021
Short summary
Short summary
Aerosol–cloud interactions over the Southern Ocean are poorly understood and remain a major source of uncertainty in climate models. This study presents ship-borne measurements, collected during a 6-week voyage into the Southern Ocean in 2018, that are an important supplement to satellite-based measurements. For example, these measurements include data on low-level clouds and aerosol composition in the marine boundary layer, which can be used in climate model evaluation efforts.
Alice Crespi, Michael Matiu, Giacomo Bertoldi, Marcello Petitta, and Marc Zebisch
Earth Syst. Sci. Data, 13, 2801–2818, https://doi.org/10.5194/essd-13-2801-2021, https://doi.org/10.5194/essd-13-2801-2021, 2021
Short summary
Short summary
A 250 m gridded dataset of 1980–2018 daily mean temperature and precipitation records for Trentino–South Tyrol (north-eastern Italian Alps) was derived from a quality-controlled and homogenized archive of station observations. The errors associated with the final interpolated fields were assessed and thoroughly discussed. The product will be regularly updated and is meant to support regional climate studies and local monitoring and applications in integration with other fine-resolution data.
Egor Dyukarev, Nina Filippova, Dmitriy Karpov, Nikolay Shnyrev, Evgeny Zarov, Ilya Filippov, Nadezhda Voropay, Vitaly Avilov, Arseniy Artamonov, and Elena Lapshina
Earth Syst. Sci. Data, 13, 2595–2605, https://doi.org/10.5194/essd-13-2595-2021, https://doi.org/10.5194/essd-13-2595-2021, 2021
Short summary
Short summary
A hydrological and meteorological dataset collected at the Mukhrino peatland, Khanty–Mansi Autonomous Okrug – Yugra, Russia, over the period of 8 May 2010 to 31 December 2019 is presented. Northern peatlands represent one of the largest carbon pools in the biosphere. The carbon they store is increasingly vulnerable to perturbation. Meteorological observations directly at peatland areas in Siberia are rare, while peatlands are characterized by a specific local climate.
Gijs de Boer, Cory Dixon, Steven Borenstein, Dale A. Lawrence, Jack Elston, Daniel Hesselius, Maciej Stachura, Roger Laurence III, Sara Swenson, Christopher M. Choate, Abhiram Doddi, Aiden Sesnic, Katherine Glasheen, Zakariya Laouar, Flora Quinby, Eric Frew, and Brian M. Argrow
Earth Syst. Sci. Data, 13, 2515–2528, https://doi.org/10.5194/essd-13-2515-2021, https://doi.org/10.5194/essd-13-2515-2021, 2021
Short summary
Short summary
This paper describes data collected by uncrewed aircraft operated by the University of Colorado Boulder and Black Swift Technologies during the Lower Atmospheric Profiling Studies at Elevation – A Remotely-piloted Aircraft Team Experiment (LAPSE-RATE) field campaign. This effort was conducted in the San Luis Valley of Colorado in July 2018 and included intensive observing of the atmospheric boundary layer. This paper describes data collected by four aircraft operated by these entities.
Noemi Imfeld, Leopold Haimberger, Alexander Sterin, Yuri Brugnara, and Stefan Brönnimann
Earth Syst. Sci. Data, 13, 2471–2485, https://doi.org/10.5194/essd-13-2471-2021, https://doi.org/10.5194/essd-13-2471-2021, 2021
Short summary
Short summary
Upper-air data form the backbone of reanalysis products, particularly in the pre-satellite era. However, historical upper-air data are error-prone because measurements at high altitude were especially challenging. Here, we present a collection of data from historical intercomparisons of radiosondes and error assessments reaching back to the 1930s that may allow us to better characterize such errors. The full database, including digitized data, images, and metadata, is made publicly available.
Ashraful Islam, Ajay Shankar, Adam Houston, and Carrick Detweiler
Earth Syst. Sci. Data, 13, 2457–2470, https://doi.org/10.5194/essd-13-2457-2021, https://doi.org/10.5194/essd-13-2457-2021, 2021
Short summary
Short summary
This paper describes the dataset containing thermodynamic measurements (pressure, temperature, humidity) from the University of Nebraska-Lincoln unmanned aerial system multirotors during the LAPSE-RATE campaign from 14–19 July 2018. The paper describes the placements, shielding, and aspiration of the sensors. The paper also describes the research objective for data collected each day. The dataset contains 171 files from two multirotors recording the vertical atmospheric boundary layer profile.
Olivier Bock, Pierre Bosser, Cyrille Flamant, Erik Doerflinger, Friedhelm Jansen, Romain Fages, Sandrine Bony, and Sabrina Schnitt
Earth Syst. Sci. Data, 13, 2407–2436, https://doi.org/10.5194/essd-13-2407-2021, https://doi.org/10.5194/essd-13-2407-2021, 2021
Short summary
Short summary
Measurements from a network of Global Navigation Satellite System (GNSS) receivers operated from the eastern Caribbean islands are used to monitor the total water vapour content in the atmosphere during the EUREC4A field campaign. These data help describe the moisture environment of mesoscale cloud patterns in the trade winds with high temporal sampling. They are also useful to assess the accuracy of collocated radiosonde measurements and numerical weather model reanalyses.
Hannah C. Bloomfield, David J. Brayshaw, Paula L. M. Gonzalez, and Andrew Charlton-Perez
Earth Syst. Sci. Data, 13, 2259–2274, https://doi.org/10.5194/essd-13-2259-2021, https://doi.org/10.5194/essd-13-2259-2021, 2021
Short summary
Short summary
Energy systems are becoming more exposed to weather as more renewable generation is built. This means access to high-quality weather forecasts is becoming more important. This paper showcases past forecasts of electricity demand and wind power and solar power generation across 28 European countries. The timescale of interest is from 5 d out to 1 month ahead. This paper highlights the recent improvements in forecast skill and hopes to promote collaboration in the energy–meteorology community.
Peng Si, Qingxiang Li, and Phil Jones
Earth Syst. Sci. Data, 13, 2211–2226, https://doi.org/10.5194/essd-13-2211-2021, https://doi.org/10.5194/essd-13-2211-2021, 2021
Short summary
Short summary
This paper documents the various procedures necessary to construct a homogenized daily maximum and minimum temperature series starting in 1887 for Tianjin. The newly constructed temperature series provides a set of new baseline data for the field of extreme climate change at the century-long scale and a reference for construction of other long-term reliable daily time series in the region.
Peter Berg, Fredrik Almén, and Denica Bozhinova
Earth Syst. Sci. Data, 13, 1531–1545, https://doi.org/10.5194/essd-13-1531-2021, https://doi.org/10.5194/essd-13-1531-2021, 2021
Short summary
Short summary
HydroGFD3.0 (Hydrological Global Forcing Data) is a data set of daily precipitation and temperature intended for use in hydrological modelling. The method uses different observational data sources to correct the variables from a model estimation of precipitation and temperature. An openly available data set covers the years 1979–2019, and times after this are available by request.
Pierre Bosser, Olivier Bock, Cyrille Flamant, Sandrine Bony, and Sabrina Speich
Earth Syst. Sci. Data, 13, 1499–1517, https://doi.org/10.5194/essd-13-1499-2021, https://doi.org/10.5194/essd-13-1499-2021, 2021
Short summary
Short summary
In the framework of the EUREC4A campaign, water vapour measurements were retrieved over the tropical west Atlantic Ocean from GNSS data acquired from three research vessels (R/Vs Atalante, Maria S. Merian and Meteor). The retrievals from R/Vs Atalante and Meteor are shown to be of high quality unlike the results for the R/V Maria S. Merian. These ship-borne retrievals are intended to be used for the description and understanding of meteorological phenomena that occurred during the campaign.
Cornelia Zech, Tilo Schöne, Julia Illigner, Nico Stolarczuk, Torsten Queißer, Matthias Köppl, Heiko Thoss, Alexander Zubovich, Azamat Sharshebaev, Kakhramon Zakhidov, Khurshid Toshpulatov, Yusufjon Tillayev, Sukhrob Olimov, Zabihullah Paiman, Katy Unger-Shayesteh, Abror Gafurov, and Bolot Moldobekov
Earth Syst. Sci. Data, 13, 1289–1306, https://doi.org/10.5194/essd-13-1289-2021, https://doi.org/10.5194/essd-13-1289-2021, 2021
Short summary
Short summary
The regional research network Water in Central Asia (CAWa) funded by the German Federal Foreign Office consists of 18 remotely operated multi-parameter stations (ROMPSs) in Central Asia, and they are operated by German and Central Asian institutes and national hydrometeorological services. They provide up to 10 years of raw meteorological and hydrological data, especially in remote areas with extreme climate conditions, for applications in climate and water monitoring in Central Asia.
Jürgen Fuchsberger, Gottfried Kirchengast, and Thomas Kabas
Earth Syst. Sci. Data, 13, 1307–1334, https://doi.org/10.5194/essd-13-1307-2021, https://doi.org/10.5194/essd-13-1307-2021, 2021
Short summary
Short summary
The paper describes the most recent weather and climate data from the WegenerNet station networks, providing hydrometeorological measurements since 2007 at very high spatial and temporal resolution for long-term observation in two regions in southeastern Austria: the WegenerNet Feldbach Region, in the Alpine forelands, comprising 155 stations with 1 station about every 2 km2, and the WegenerNet Johnsbachtal, in a mountainous region, with 14 stations at altitudes from about 600 m to 2200 m.
Mikołaj Piniewski, Mateusz Szcześniak, Ignacy Kardel, Somsubhra Chattopadhyay, and Tomasz Berezowski
Earth Syst. Sci. Data, 13, 1273–1288, https://doi.org/10.5194/essd-13-1273-2021, https://doi.org/10.5194/essd-13-1273-2021, 2021
Short summary
Short summary
High-resolution gridded climate data are a key component of earth-system and hydrology models. Here we have described how we updated and extended the previous version of the climate dataset covering Poland and parts of neighbouring countries. The new dataset includes new variables (wind speed and relative humidity), has a higher spatial resolution (2 km) and has been updated to cover the most recent years 2014–2019. Interpolation errors exhibited large spatial and temporal variability.
Julie M. Thériault, Stephen J. Déry, John W. Pomeroy, Hilary M. Smith, Juris Almonte, André Bertoncini, Robert W. Crawford, Aurélie Desroches-Lapointe, Mathieu Lachapelle, Zen Mariani, Selina Mitchell, Jeremy E. Morris, Charlie Hébert-Pinard, Peter Rodriguez, and Hadleigh D. Thompson
Earth Syst. Sci. Data, 13, 1233–1249, https://doi.org/10.5194/essd-13-1233-2021, https://doi.org/10.5194/essd-13-1233-2021, 2021
Short summary
Short summary
This article discusses the data that were collected during the Storms and Precipitation Across the continental Divide (SPADE) field campaign in spring 2019 in the Canadian Rockies, along the Alberta and British Columbia border. Various instruments were installed at five field sites to gather information about atmospheric conditions focussing on precipitation. Details about the field sites, the instrumentation used, the variables collected, and the collection methods and intervals are presented.
Holger Vömel, Mack Goodstein, Laura Tudor, Jacquelyn Witte, Željka Fuchs-Stone, Stipo Sentić, David Raymond, Jose Martinez-Claros, Ana Juračić, Vijit Maithel, and Justin W. Whitaker
Earth Syst. Sci. Data, 13, 1107–1117, https://doi.org/10.5194/essd-13-1107-2021, https://doi.org/10.5194/essd-13-1107-2021, 2021
Short summary
Short summary
We provide an extensive data set of in situ vertical profile observations for pressure, temperature, humidity, and winds from 648 NCAR NRD41 dropsondes during the Organization of Tropical East Pacific Convection (OTREC) field campaign. The measurements were taken during 22 flights of the NSF/NCAR G-V research aircraft in August and September 2019 over the eastern Pacific Ocean and the Caribbean Sea. The data allow a detailed study of atmospheric dynamics and convection over the tropical ocean.
Tyler M. Bell, Petra M. Klein, Julie K. Lundquist, and Sean Waugh
Earth Syst. Sci. Data, 13, 1041–1051, https://doi.org/10.5194/essd-13-1041-2021, https://doi.org/10.5194/essd-13-1041-2021, 2021
Short summary
Short summary
In July 2018, numerous weather sensing remotely piloted aircraft systems (RPASs) were flown in a flight week called Lower Atmospheric Process Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE). As part of LAPSE-RATE, ground-based remote and in situ systems were also deployed to supplement and enhance observations from the RPASs. These instruments include multiple Doppler lidars, thermodynamic profilers, and radiosondes. This paper describes data from these systems.
Benjamin Poschlod, Ralf Ludwig, and Jana Sillmann
Earth Syst. Sci. Data, 13, 983–1003, https://doi.org/10.5194/essd-13-983-2021, https://doi.org/10.5194/essd-13-983-2021, 2021
Short summary
Short summary
This study provides a homogeneous data set of 10-year rainfall return levels based on 50 simulations of the Canadian Regional Climate Model v5 (CRCM5). In order to evaluate its quality, the return levels are compared to those of observation-based rainfall of 16 European countries from 32 different sources. The CRCM5 is able to capture the general spatial pattern of observed extreme precipitation, and also the intensity is reproduced in 77 % of the area for rainfall durations of 3 h and longer.
John J. Cassano, Melissa A. Nigro, Mark W. Seefeldt, Marwan Katurji, Kelly Guinn, Guy Williams, and Alice DuVivier
Earth Syst. Sci. Data, 13, 969–982, https://doi.org/10.5194/essd-13-969-2021, https://doi.org/10.5194/essd-13-969-2021, 2021
Short summary
Short summary
Between January 2012 and June 2017, a small unmanned aerial system (sUAS), or drone, known as the Small Unmanned Meteorological Observer (SUMO), was used to observe the lowest 1000 m of the Antarctic atmosphere. During six Antarctic field campaigns, 116 SUMO flights were completed. These flights took place during all seasons over both permanent ice and ice-free locations on the Antarctic continent and over sea ice in the western Ross Sea providing unique observations of the Antarctic atmosphere.
Jianfeng Li, Zhe Feng, Yun Qian, and L. Ruby Leung
Earth Syst. Sci. Data, 13, 827–856, https://doi.org/10.5194/essd-13-827-2021, https://doi.org/10.5194/essd-13-827-2021, 2021
Short summary
Short summary
Deep convection has different properties at different scales. We develop a 4 km h−1 observational data product of mesoscale convective systems and isolated deep convection in the United States from 2004–2017. We find that both types of convective systems contribute significantly to precipitation east of the Rocky Mountains but with distinct spatiotemporal characteristics. The data product will be useful for observational analyses and model evaluations of convection events at different scales.
James O. Pinto, Anders A. Jensen, Pedro A. Jiménez, Tracy Hertneky, Domingo Muñoz-Esparza, Arnaud Dumont, and Matthias Steiner
Earth Syst. Sci. Data, 13, 697–711, https://doi.org/10.5194/essd-13-697-2021, https://doi.org/10.5194/essd-13-697-2021, 2021
Short summary
Short summary
The dataset produced here was generated as part of a real-time demonstration of a new capability to provide fine-scale weather guidance to support small UAS operations. The nested model configuration enabled us to resolve large turbulent eddies that developed in response to daytime heating and demonstrated the current state of the science in coupling mesoscale forcing with a large eddy simulation (LES) model. Output from these real-time simulations was used for planning IOPs during LAPSE-RATE.
Anna Lea Albright, Benjamin Fildier, Ludovic Touzé-Peiffer, Robert Pincus, Jessica Vial, and Caroline Muller
Earth Syst. Sci. Data, 13, 617–630, https://doi.org/10.5194/essd-13-617-2021, https://doi.org/10.5194/essd-13-617-2021, 2021
Short summary
Short summary
A number of climate mysteries are rooted in uncertainties in how clouds respond to their environment in the trades, the global belt of easterly winds. Differences in radiative heating play a role in the couplings between clouds and their environment. We calculate radiative profiles from 2580 dropsondes and radiosondes from the EUREC4A field campaign (downstream Atlantic trades, winter 2020). We describe the method, assess uncertainty, and discuss radiative heating variability on multiple scales.
Claudia Christine Stephan, Sabrina Schnitt, Hauke Schulz, Hugo Bellenger, Simon P. de Szoeke, Claudia Acquistapace, Katharina Baier, Thibaut Dauhut, Rémi Laxenaire, Yanmichel Morfa-Avalos, Renaud Person, Estefanía Quiñones Meléndez, Gholamhossein Bagheri, Tobias Böck, Alton Daley, Johannes Güttler, Kevin C. Helfer, Sebastian A. Los, Almuth Neuberger, Johannes Röttenbacher, Andreas Raeke, Maximilian Ringel, Markus Ritschel, Pauline Sadoulet, Imke Schirmacher, M. Katharina Stolla, Ethan Wright, Benjamin Charpentier, Alexis Doerenbecher, Richard Wilson, Friedhelm Jansen, Stefan Kinne, Gilles Reverdin, Sabrina Speich, Sandrine Bony, and Bjorn Stevens
Earth Syst. Sci. Data, 13, 491–514, https://doi.org/10.5194/essd-13-491-2021, https://doi.org/10.5194/essd-13-491-2021, 2021
Short summary
Short summary
The EUREC4A field campaign took place in the western tropical Atlantic during January and February 2020. A total of 811 radiosondes, launched regularly (usually 4-hourly) from Barbados, and 4 ships measured wind, temperature, and relative humidity. They sampled atmospheric variability associated with different ocean surface conditions, synoptic variability, and mesoscale convective organization. The methods of data collection and post-processing for the radiosonde data are described here.
Cited articles
Adler, R. F., Gu, G., Sapiano, M., Wang, J. J., and Huffman, G. J.: Global
Precipitation: Means, Variations and Trends During the Satellite Era
(1979–2014), Surv. Geophys., 38, 679–699,
https://doi.org/10.1007/s10712-017-9416-4, 2017.
Alexander, L., Roca, R., Seneviratne, S., Becker, A., Behrangi, A., Contractor, S., Dietzsch, F., Donat, M., Dunn, R., Fowler, H., Funk, C., Guérou, A., Hollmann, R., Kirstetter, P., Lengfeld, K., Lockhoff, M., Masunanga, H., Moon, H., Muller, C., Schroeder, M., Schneider, U., Takayabu, Y., Venugopal, V., and Werscheck, M.: Joint
WCRP Grand Challenge on Weather and Climate Extremes, GEWEX GDAP Workshop on
Precipitation Extremes,
9–11 July 2018, Offenbach, Germany, GEWEX Newsl., 11–11, 2018.
Andersson, A., Fennig, K., Klepp, C., Bakan, S., Graßl, H., and Schulz, J.: The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data – HOAPS-3, Earth Syst. Sci. Data, 2, 215–234, https://doi.org/10.5194/essd-2-215-2010, 2010.
Andersson, A., Graw, K., Marc, S., Fennig, K., Liman, J., Bakan, S.,
Hollmann, R., and Klepp, C.: Hamburg Ocean Atmosphere Parameters and Fluxes
from Satellite Data – HOAPS 4.0, Satellite Application Facility on Climate
Monitoring, https://doi.org/10.5676/EUM_SAF_CM/HOAPS/V002, 2017.
Aonashi, K., Awaka, J., Hirose, M., Kozu, T., Kubota, T., Liu, G., Shige, S., Kida, S., Seto, S., Takahashi, N., and Takayabu, Y.: GSMaP Passive Microwave Precipitation Retrieval Algorithm: Algorithm Description and Validation, J. Meteorol.
Soc. Jpn. 87A, 119–136, https://doi.org/10.2151/jmsj.87A.119, 2009.
Ashouri, H., Hsu, K. L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R.,
Cecil, L. D., Nelson, B. R., and Prat, O. P.: PERSIANN-CDR: Daily
precipitation climate data record from multisatellite observations for
hydrological and climate studies, B. Am. Meteorol. Soc., 96, 69–83,
https://doi.org/10.1175/BAMS-D-13-00068.1, 2015.
Beck, H. E., Wood, E. F., Pan, M., Fisher, C. K., Miralles, D. G., van Dijk,
A. I. J. M., McVicar, T. R., and Adler, R. F.: MSWEP V2 global 3-hourly
0.1∘ precipitation: methodology and quantitative assessment, B.
Am. Meteorol. Soc., 100, 473–500, https://doi.org/10.1175/BAMS-D-17-0138.1, 2019.
Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., Schamm, K., Schneider, U., and Ziese, M.: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present, Earth Syst. Sci. Data, 5, 71–99, https://doi.org/10.5194/essd-5-71-2013, 2013.
Bellerby, T. J.: Searchlight: Precipitation advection tracking using
multiplatform low-earth-orbiting satellite data, IEEE T. Geosci. Remote, 51, 2177–2187, https://doi.org/10.1109/TGRS.2012.2211604, 2013.
Bosilovich, M. G., Chen, J., Robertson, F. R., Adler, R. F., Bosilovich, M.
G., Chen, J., Robertson, F. R., and Adler, R. F.: Evaluation of Global
Precipitation in Reanalyses, J. Appl. Meteorol. Clim., 47,
2279–2299, https://doi.org/10.1175/2008JAMC1921.1, 2008.
Bosilovich, M. G., Mocko, D., Roads, J. O., Ruane, A., Bosilovich, M. G.,
Mocko, D., Roads, J. O., and Ruane, A.: A Multimodel Analysis for the
Coordinated Enhanced Observing Period (CEOP), J. Hydrometeorol., 10,
912–934, https://doi.org/10.1175/2009JHM1090.1, 2009.
Bosilovich, M. G., Akella, S., Coy, L., Cullather, R., Draper, C., Gelaro, R., Kovach, R., Liu, Q., Molod, A., Norris, P., Wargan, K., Chao, W., Reichle, R., Takacs, L., Vikhliaev, Y., Bloom, S., Collow, A., Firth, S., Labow, G., Partyka, G., Pawson, S., Reale, O., Schubert, S. D., and Suarez, M.: MERRA-2: Initial evaluation of the climate. NASA Tech. Rep. NASA/TM-2015-104606, Vol. 43, 136 pp., available at: https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich803.pdf (last access: 8 July 2019), 2015.
Brocca, L., Moramarco, T., Melone, F., and Wagner, W.: A new method for
rainfall estimation through soil moisture observations, Geophys. Res. Lett.,
40, 853–858, https://doi.org/10.1002/grl.50173, 2013.
Chambon, P., Jobard, I., Roca, R., and Viltard, N.: An investigation of the
error budget of tropical rainfall accumulation derived from merged passive
microwave and infrared satellite measurements, Q. J. Roy. Meteor. Soc.,
139, 879–893, https://doi.org/10.1002/qj.1907, 2012.
Chen, M., Shi, W., Xie, P., Silva, V. B. S., Kousky, V. E., Higgins, R. W.,
and Janowiak, J. E.: Assessing objective techniques for gauge-based analyses
of global daily precipitation, J. Geophys. Res.-Atmos., 113, 1–13, https://doi.org/10.1029/2007JD009132, 2008.
Ciabatta, L., Massari, C., Brocca, L., Gruber, A., Reimer, C., Hahn, S., Paulik, C., Dorigo, W., Kidd, R., and Wagner, W.: SM2RAIN-CCI: a new global long-term rainfall data set derived from ESA CCI soil moisture, Earth Syst. Sci. Data, 10, 267–280, https://doi.org/10.5194/essd-10-267-2018, 2018.
Contractor, S., Donat, M. G., Alexander, L. V., Ziese, M., Meyer-Christoffer, A., Schneider, U., Rustemeier, E., Becker, A., Durre, I., and Vose, R. S.: Rainfall Estimates on a Gridded Network (REGEN) – A global land-based gridded dataset of daily precipitation from 1950–2013, Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-595, in review, 2019.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C.,
Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration
and performance of the data assimilation system, Q. J. Roy. Meteor. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Dunn, R. J. H., Donat, M. G., and Alexander, L. V.: Investigating uncertainties in global gridded datasets of climate extremes, Clim. Past, 10, 2171–2199, https://doi.org/10.5194/cp-10-2171-2014, 2014.
Fennig, K., Schröder, M., and Hollmann, R.: Fundamental Climate Data
Record of Microwave Imager Radiances, https://doi.org/10.5676/EUM_SAF_CM/FCDR_MWI/V003, 2017.
Ferraro, R. R., Weng, F., Grody, N. C., Zhao, L., Meng, H., Kongoli, C.,
Pellegrino, P., Qiu, S., and Dean, C.: NOAA operational hydrological products
derived from the advanced microwave sounding unit, IEEE T. Geosci.
Remote, 43, 1036–1048, https://doi.org/10.1109/TGRS.2004.843249, 2005.
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S.,
Husak, G., Rowland, J., Harrison, L., Hoell, A., and Michaelsen, J.: The
climate hazards infrared precipitation with stations – A new environmental
record for monitoring extremes, Sci. Data, 2, 1–21,
https://doi.org/10.1038/sdata.2015.66, 2015.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan,
K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., Zhao, B., Gelaro, R., McCarty, W.,
Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A.,
Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L.,
Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., Silva, A. M.
da, Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J.
E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D.,
Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis for
Research and Applications, Version 2 (MERRA-2), J. Climate, 30,
5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Gopalan, K., Wang, N. Y., Ferraro, R., and Liu, C.: Status of the TRMM 2A12
land precipitation algorithm, J. Atmos. Ocean. Tech., 27, 1343–1354,
https://doi.org/10.1175/2010JTECHA1454.1, 2010.
Gosset, M., Alcoba, M., Roca, R., Cloché, S., and Urbani, G.: Evaluation
of TAPEER daily estimates and other GPM-era products against dense gauge
networks in West Africa, analysing ground reference uncertainty, Q. J. Roy. Meteor. Soc, 144, 255–269, https://doi.org/10.1002/qj.3335, 2018.
Guilloteau, C., Roca, R., and Gosset, M.: A Multiscale Evaluation of the
Detection Capabilities of High-Resolution Satellite Precipitation Products
in West Africa, J. Hydrometeorol., 17, 2041–2059,
https://doi.org/10.1175/jhm-d-15-0148.1, 2016.
Haddad, Z. S. and Roca, R.: Toward a Broad Scope Assessment of Global
Precipitation Products, available at:
http://www.isac.cnr.it/~ipwg/reports/IPWG-GEWEX-Assessment2017-21_Report_1.pdf (last access: 8 July 2019), 2017.
Haddad, Z. S., Smith, E. A., Kummerow, C. D., Iguchi, T., Farrar, M. R., Durden, S. L., Alves, M., and Olson, W. S.: The TRMM `Day-1' Radar/Radiometer Combined
Rain-Profiling Algorithm, J. Meteorol. Soc. Jpn., 75, 799–809, 1997.
Herold, N., Behrangi, A., and Alexander, L. V.: Large uncertainties in observed daily precipitation extremes over land: Uncertainties in Precipitation Extremes, J. Geophys. Res.-Atmos., 122, 668–681, https://doi.org/10.1002/2016JD025842, 2017.
Huffman, G. J., Adler, R. F., Morrissey, M. M., Bolvin, D. T.,
Curtis, S., Joyce, R., McGavock, B., and Susskind, J.: Global
Precipitation at One-Degree Daily Resolution from Multisatellite
Observations, J. Hydrometeorol., 2, 36–50,
https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2, 2001.
Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G., Hong, Y., Bowman, K. P., and Stocker, E. F.: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales, J. Hydrometeorol., 8, 38–55, https://doi.org/10.1175/JHM560.1, 2007.
Huffman, G. J., Bolvin, D. T., and Nelkin, E. J.: Integrated MultisatellitE
Retrievals for GPM (IMERG) technical documentation, available at:
https://pmm.nasa.gov/sites/default/files/document_files/IMERG_doc.pdf (last access: 8 July 2019), 2017.
Joyce, R. J. and Xie, P.: Kalman Filter–Based CMORPH, J. Hydrometeorol.,
12, 1547–1563, https://doi.org/10.1175/JHM-D-11-022.1, 2011.
Joyce, R. J., Janowiak, J. E., Arkin, P. A., and Xie, P.: CMORPH: A Method
that Produces Global Precipitation Estimates from Passive Microwave and
Infrared Data at High Spatial and Temporal Resolution, J. Hydrometeorol.,
5, 487–503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2, 2004.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A.,
Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.
C., Ropelewski, C., Wang, J., Jenne, R., Joseph, D., Kalnay, E., Kanamitsu,
M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S.,
White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W.,
Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds,
R., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-Year Reanalysis Project,
B. Am. Meteorol. Soc., 77, 437–471,
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2,
1996.
Kidd, C., Kniveton, D. R., Todd, M. C., and Bellerby, T. J.: Satellite
Rainfall Estimation Using Combined Passive Microwave and Infrared
Algorithms, J. Hydrometeorol., 4, 1088–1104,
https://doi.org/10.1175/1525-7541(2003)004<1088:sreucp>2.0.co;2,
2003.
Klepp, C., Bumke, K., Bakan, S., and Bauer, P.: Ground validation of oceanic
snowfall detection in satellite climatologies during LOFZY, Tellus A, 62, 469–480,
https://doi.org/10.1111/j.1600-0870.2010.00459.x, 2010.
Kobayashi S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.: The JRA-55 Reanalysis: General Specifications
and Basic Characteristics, J. Meteorol. Soc. Jpn. Ser. II, 93, 5–48,
https://doi.org/10.2151/jmsj.2015-001, 2015.
Kubota, T., Shige, S., Hashizume, H., Aonashi, K., Takahashi, N., Seto, S.,
Hirose, M., Takayabu, Y. N., Ushio, T., Nakagawa, K., Iwanami, K., Kachi, M.,
and Okamoto, K.: Global Precipitation Map Using Satellite-Borne Microwave
Radiometers by the GSMaP Project: Production and Validation, IEEE T.
Geosci. Remote, 45, 2259–2275, https://doi.org/10.1109/tgrs.2007.895337, 2007.
Kummerow, C., Olson, W. S., and Giglio, L.: A simplified scheme for obtaining
precipitation and vertical hydrometeor profiles from passive microwave
sensors, IEEE T. Geosci. Remote, 34, 1213–1232,
https://doi.org/10.1109/36.536538, 1996.
Kummerow, C., Hong, Y., Olson, W. S., Yang, S., Adler, R. F., McCollum, J.,
Ferraro, R., Petty, G., Shin, D.-B., Wilheit, T. T., Kummerow, C., Hong, Y.,
Olson, W. S., Yang, S., Adler, R. F., McCollum, J., Ferraro, R., Petty, G.,
Shin, D.-B., and Wilheit, T. T.: The Evolution of the Goddard Profiling
Algorithm (GPROF) for Rainfall Estimation from Passive Microwave Sensors, J.
Appl. Meteorol., 40, 1801–1820, https://doi.org/10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2, 2001.
Levizzani, V., Kidd, C., Aonashi, K., Bennartz, R., Ferraro, R. R., Huffman,
G. J., Roca, R., Turk, F. J., and Wang, N.-Y.: The activities of the
International Precipitation Working Group, Q. J. Roy. Meteor. Soc., 144, 3–15, https://doi.org/10.1002/qj.3214, 2018.
Maggioni, V., Meyers, P. C., and Robinson, M. D.: A Review of Merged
High-Resolution Satellite Precipitation Product Accuracy during the Tropical
Rainfall Measuring Mission (TRMM) Era, J. Hydrometeorol., 17, 1101–1117,
https://doi.org/10.1175/jhm-d-15-0190.1, 2016.
Maidment, R. I., Grimes, D., Black, E., Tarnavsky, E., Young, M., Greatrex,
H., Allan, R. P., Stein, T., Nkonde, E., Senkunda, S., and Alcántara, E.
M. U.: A new, long-term daily satellite-based rainfall dataset for
operational monitoring in Africa, Sci. Data, 4, 1–19,
https://doi.org/10.1038/sdata.2017.63, 2017.
Miao, C., Ashouri, H., Hsu, K.-L., Sorooshian, S., and Duan, Q.: Evaluation
of the PERSIANN-CDR Daily Rainfall Estimates in Capturing the Behavior of
Extreme Precipitation Events over China, J. Hydrometeorol., 16,
1387–1396, https://doi.org/10.1175/JHM-D-14-0174.1, 2015.
Molod, A., Takacs, L., Suarez, M., and Bacmeister, J.: Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2, Geosci. Model Dev., 8, 1339–1356, https://doi.org/10.5194/gmd-8-1339-2015, 2015.
Nguyen, P., Shearer, E. J., Tran, H., Ombadi, M., Hayatbini, N., Palacios,
T., Huynh, P., Braithwaite, D., Updegraff, G., Hsu, K., Kuligowski, B.,
Logan, W. S., and Sorooshian, S.: The CHRS data portal, an easily accessible
public repository for PERSIANN global satellite precipitation data, Sci.
Data, 6, 1–10, https://doi.org/10.1038/sdata.2018.296, 2019.
Novella, N. S. and Thiaw, W. M.: African rainfall climatology version 2 for
famine early warning systems, J. Appl. Meteorol. Clim., 52, 588–606,
https://doi.org/10.1175/JAMC-D-11-0238.1, 2013.
Park, K. J., Yoshimura, K., Kim, H., and Oki, T.: Chronological development
of terrestrial mean precipitation, B. Am. Meteorol. Soc., 98, 2411–2428, https://doi.org/10.1175/BAMS-D-16-0005.1, 2017.
Potter, G. L., Carriere, L., Hertz, J. D., Bosilovich, M., Duffy, D., Lee,
T., and Williams, D. N.: Enabling reanalysis research using the collaborative
reanalysis technical environment (CREATE), B. Am. Meteorol. Soc., 99,
677–687, https://doi.org/10.1175/BAMS-D-17-0174.1, 2018.
Pricope, N. G., Husak, G., Lopez-Carr, D., Funk, C., and Michaelsen, J.: The
climate-population nexus in the East African Horn: Emerging degradation
trends in rangeland and pastoral livelihood zones, Global Environ. Chang.,
23, 1525–1541, https://doi.org/10.1016/j.gloenvcha.2013.10.002, 2013.
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J.,
Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.-K., Bloom,
S., Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J.,
Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P.,
Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz,
M., Woollen, J., Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R.,
Julio Bacmeister, Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L.,
Kim, G.-K., Bloom, S., Chen, J., Collins, D., Conaty, A., Silva, A. da, Gu,
W., Joiner, J., Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson,
S., Pegion, P., Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A.
G., Sienkiewicz, M., and Woollen, J.: MERRA: NASA's Modern-Era Retrospective
Analysis for Research and Applications, J. Climate, 24, 3624–3648,
https://doi.org/10.1175/JCLI-D-11-00015.1, 2011.
Roca, R., Chambon, P., Jobard, I., Kirstetter, P. E., Gosset, M., and
Bergés, J. C.: Comparing satellite and surface rainfall products over
West Africa at meteorologically relevant scales during the AMMA campaign
using error estimates, J. Appl. Meteorol. Clim., 49, 715–731,
https://doi.org/10.1175/2009JAMC2318.1, 2010.
Roca, R., Brogniez, H., Chambon, P., Chomette, O., Cloché,
S., Gosset, M. E., Mahfouf, J.-F., Raberanto, P., and Viltard, N.: The
Megha-Tropiques mission: a review after three years in orbit, Front. Earth
Sci., 3, 17 pp., https://doi.org/10.3389/feart.2015.00017, 2015.
Roca, R., Taburet, N., Lorant, E., Chambon, P., Gosset, M., Alcoba, M.,
Cloché, S., Dufour, C., and Guilloteau, C.: Quantifying the contribution
of the Megha-Tropiques mission to the estimation of daily accumulated
rainfall in the Tropics, 144, 49–63, https://doi.org/10.1002/qj.3327,
2018.
Roca, R., Alexander, L. V., Potter, G., Bador, M., Jucá, R., Contractor,
S., Bosilovich, M. G., and Cloché, S.: FROGs: a daily gridded precipitation database of rain gauge,
satellite and reanalysis products, https://doi.org/10.14768/06337394-73A9-407C-9997-0E380DAC5598, 2019.
Schamm, K., Ziese, M., Becker, A., Finger, P., Meyer-Christoffer, A., Schneider, U., Schröder, M., and Stender, P.: Global gridded precipitation over land: a description of the new GPCC First Guess Daily product, Earth Syst. Sci. Data, 6, 49–60, https://doi.org/10.5194/essd-6-49-2014, 2014.
Schröder, M., Lockhoff, M., Forsythe, J. M., Cronk, H. Q., Haar, T. H.
V., and Bennartz, R.: The GEWEX water vapor assessment: Results from
intercomparison, trend, and homogeneity analysis of total column water
vapor, J. Appl. Meteorol. Clim., 55, 1633–1649,
https://doi.org/10.1175/jamc-d-15-0304.1, 2016.
Schröder, M., Lockhoff, M., Fell, F., Forsythe, J., Trent, T., Bennartz, R., Borbas, E., Bosilovich, M. G., Castelli, E., Hersbach, H., Kachi, M., Kobayashi, S., Kursinski, E. R., Loyola, D., Mears, C., Preusker, R., Rossow, W. B., and Saha, S.: The GEWEX Water Vapor Assessment archive of water vapour products from satellite observations and reanalyses, Earth Syst. Sci. Data, 10, 1093–1117, https://doi.org/10.5194/essd-10-1093-2018, 2018.
Schröder, M., Lockhoff, M., Shi, L., August, T., Bennartz, R., Brogniez,
H., Calbet, X., Fell, F., Forsythe, J., Gambacorta, A., Ho, S., Kursinski,
E., Reale, A., Trent, T., and Yang, Q.: The GEWEX Water Vapor Assessment:
Overview and Introduction to Results and Recommendations, Remote Sens.,
11, 251, https://doi.org/10.3390/rs11030251, 2019.
Shiu, C.-J., Liu, S. C., Fu, C., Dai, A., and Sun, Y.: How much do
precipitation extremes change in a warming climate?, Geophys. Res. Lett.,
39, L17707, https://doi.org/10.1029/2012GL052762, 2012.
Simmons, A. J., Willett, K. M., Jones, P. D., Thorne, P. W., and Dee, D. P.:
Low-frequency variations in surface atmospheric humidity, temperature, and
precipitation: Inferences from reanalyses and monthly gridded observational
data sets, J. Geophys. Res., 115, D01110, https://doi.org/10.1029/2009JD012442,
2010.
Sorooshian, S., Hsu, K., Braithwaite, D., Ashouri, H., and NOAA CDR Program: NOAA Climate Data Record (CDR) of Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN-CDR), Version 1 Revision 1. NOAA's National C enters for Environmental Information, https://doi.org/10.7289/V51V5BWQ, 2014.
Stubenrauch, C. J., Rossow, W. B., Kinne, S., Ackerman, S., Cesana, G.,
Chepfer, H., Di Girolamo, L., Getzewich, B., Guignard, A., Heidinger, A.,
Maddux, B. C., Menzel, W. P., Minnis, P., Pearl, C., Platnick, S., Poulsen,
C., Riedi, J., Sun-Mack, S., Walther, A., Winker, D., Zeng, S., and Zhao, G.:
Assessment of global cloud datasets from satellites: Project and database
initiated by the GEWEX radiation panel, B. Am. Meteorol. Soc., 94,
1031–1049, https://doi.org/10.1175/BAMS-D-12-00117.1, 2013.
Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., and Hsu, K.-L.: A
review of global precipitation datasets: data sources, estimation, and
intercomparisons, Rev. Geophys., 56, 79–107, https://doi.org/10.1002/2017RG000574, 2018.
Takacs, L. L., Suárez, M. J., and Todling, R.: Maintaining atmospheric
mass and water balance in reanalyses, Q. J. Roy. Meteor. Soc., 142,
1565–1573, https://doi.org/10.1002/qj.2763, 2016.
Tan, M. L. and Santo, H.: Comparison of GPM IMERG, TMPA 3B42 and
PERSIANN-CDR satellite precipitation products over Malaysia, Atmos. Res.,
202, 63–76, https://doi.org/10.1016/j.atmosres.2017.11.006, 2018.
Tapiador, F. J., Navarro, A., Levizzani, V., García-Ortega, E.,
Huffman, G. J., Kidd, C., Kucera, P. A., Kummerow, C. D., Masunaga, H.,
Petersen, W. A., Roca, R., Sánchez, J. L., Tao, W. K., and Turk, F. J.:
Global precipitation measurements for validating climate models, Atmos.
Res., 197, 1–20, https://doi.org/10.1016/j.atmosres.2017.06.021, 2017.
Tapiador, F. J., Roca, R., Genio, A. Del, Dewitte, B., Petersen, W., and
Zhang, F.: Is precipitation a good metric for model performance?, B. Am.
Meteorol. Soc., 100, 223–233, https://doi.org/10.1175/BAMS-D-17-0218.1, 2019.
Uppala, S. M., KÅllberg, P. W., Simmons, A. J., Andrae, U., Bechtold, V.
D. C., Fiorino, M., Gibson, J. K., Haseler, J., Hernandez, A., Kelly, G. A.,
Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R. P., Andersson, E.,
Arpe, K., Balmaseda, M. A., Beljaars, A. C. M., Berg, L. Van De, Bidlot, J.,
Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher,
M., Fuentes, M., Hagemann, S., Hólm, E., Hoskins, B. J., Isaksen, L.,
Janssen, P. A. E. M., Jenne, R., Mcnally, A. P., Mahfouf, J.-F., Morcrette,
J.-J., Rayner, N. A., Saunders, R. W., Simon, P., Sterl, A., Trenberth, K.
E., Untch, A., Vasiljevic, D., Viterbo, P., and Woollen, J.: The ERA-40
re-analysis, Q. J. Roy. Meteor. Soc., 131, 2961–3012,
https://doi.org/10.1256/qj.04.176, 2005.
Ushio, T., Kubota, T., Shige, S., Okamoto, K., Aonashi, K., Inoue, T., Takahashi, N., Iguchi, T., Kachi, M., Oki, R., Morimoto, T., and Kawasaki, Z.: A Kalman Filter Approach to the Global Satellite
Mapping of Precipitation (GSMaP) from Combined Passive Microwave and
Infrared Radiometric Data, J. Meteorol. Soc. Jpn., 87A, 137–151,
https://doi.org/10.2151/jmsj.87a.137, 2009.
Viltard, N., Burlaud, C., and Kummerow, C. D.: Rain Retrieval from TMI
Brightness Temperature Measurements Using a TRMM PR–Based Database, J.
Appl. Meteorol. Clim., 45, 455–466, https://doi.org/10.1175/jam2346.1, 2006.
Westra, S., Alexander, L. V., and Zwiers, F. W.: Global increasing trends in
annual maximum daily precipitation, J. Climate, 26, 3904–3918,
https://doi.org/10.1175/JCLI-D-12-00502.1, 2013.
Xie, P., Janowiak, J. E., Arkin, P. A., Adler, R., Gruber, A., Ferraro, R.,
Huffman, G. J., and Curtis, S.: GPCP pentad precipitation analyses: An
experimental dataset based on gauge observations and satellite estimates, J.
Climate, 16, 2197–2214, https://doi.org/10.1175/2769.1, 2003.
Xie, P., Chen, M., Yang, S., Yatagai, A., Hayasaka, T., Fukushima, Y., and Liu, C.: A Gauge-Based Analysis of Daily Precipitation over
East Asia, J. Hydrometeor., 8, 607–626, 2007.
Xie, P.-P., Chen, M., and Shi, W.: CPC unified gauge-based analysis of global daily precipitation.
24th Conf. on Hydrology, 17–21 January 2010, Atlanta, GA, USA, Amer. Meteor. Soc., 2.3A., available at: https://ams.confex.com/ams/90annual/techprogram/paper_163676.htm (last access: 8 July 2019), 2010.
Xu, L., Gao, X., Sorooshian, S., Arkin, P. A., and Imam, B.: A Microwave
Infrared Threshold Technique to Improve the GOES Precipitation Index, J. Appl. Meteorol., 38,
569–579, 1999.
Zhang, L., Kumar, A., and Wang, W.: Influence of changes in observations on
precipitation: A case study for the Climate Forecast System Reanalysis
(CFSR), J. Geophys. Res.-Atmos., 117, D08105, https://doi.org/10.1029/2011JD017347,
2012.
Ziese, M., Rauthe-Schöch, A., Becker, A., Finger, P., Meyer-Christoffer,
A., and Schneider, U.: GPCC Full Data Daily Version.2018 at 1.0∘:
Daily Land-Surface Precipitation from Rain-Gauges built on GTS-based and
Historic Data, https://doi.org/10.5676/DWD_GPCC/FD_D_V2018_100, 2018.
Short summary
This paper presents a database that is a collection of datasets of gridded 1° × 1° daily precipitation estimates from a variety of sources. It includes observations from in situ networks, satellite-based estimations and outputs from atmospheric reanalysis. All the datasets have been formatted in the same way to ease their manipulation. This database aims at facilitating intercomparisons and validation exercises performed by the scientific community.
This paper presents a database that is a collection of datasets of gridded 1° × 1° daily...