Articles | Volume 10, issue 4
https://doi.org/10.5194/essd-10-1783-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-10-1783-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Integrated high-resolution dataset of high-intensity European and Mediterranean flash floods
William Amponsah
CORRESPONDING AUTHOR
Department of Land, Environment, Agriculture and Forestry,
University of Padova, Legnaro, Italy
Department of Agricultural
and Biosystems Engineering, College of Engineering, KNUST, Kumasi, Ghana
Pierre-Alain Ayral
ESPACE, UMR7300 CNRS, “Antenne Cevenole”, Université de
Nice-Sophia-Antipolis, France
LGEI, IMT Mines Ales, Univ
Montpellier, Ales, France
Brice Boudevillain
Univ. Grenoble Alpes, CNRS, IRD,
Grenoble INP, IGE, 38000 Grenoble, France
Christophe Bouvier
Hydrosciences, UMR5569
CNRS, IRD, Univ. Montpellier, Montpellier, France
Isabelle Braud
Irstea, UR
RiverLy, Lyon-Villeurbanne Center, 68626 Villeurbanne, France
Pascal Brunet
Hydrosciences, UMR5569
CNRS, IRD, Univ. Montpellier, Montpellier, France
Guy Delrieu
Univ. Grenoble Alpes, CNRS, IRD,
Grenoble INP, IGE, 38000 Grenoble, France
Jean-François Didon-Lescot
ESPACE, UMR7300 CNRS, “Antenne Cevenole”, Université de
Nice-Sophia-Antipolis, France
Eric Gaume
IFSTTAR, GERS, EE, 44344 Bouguenais, France
Laurent Lebouc
IFSTTAR, GERS, EE, 44344 Bouguenais, France
Lorenzo Marchi
CNR IRPI,
Padua, Italy
Francesco Marra
Institute of Earth Sciences, Hebrew University of
Jerusalem, Jerusalem, Israel
Efrat Morin
Institute of Earth Sciences, Hebrew University of
Jerusalem, Jerusalem, Israel
Guillaume Nord
Univ. Grenoble Alpes, CNRS, IRD,
Grenoble INP, IGE, 38000 Grenoble, France
Olivier Payrastre
IFSTTAR, GERS, EE, 44344 Bouguenais, France
Davide Zoccatelli
Institute of Earth Sciences, Hebrew University of
Jerusalem, Jerusalem, Israel
Marco Borga
Department of Land, Environment, Agriculture and Forestry,
University of Padova, Legnaro, Italy
Related authors
No articles found.
Kevin Kenfack, Francesco Marra, Zéphirin Yepdo Djomou, Lucie Angennes Djiotang Tchotchou, Alain Tchio Tamoffo, and Derbetini Appolinaire Vondou
Weather Clim. Dynam., 5, 1457–1472, https://doi.org/10.5194/wcd-5-1457-2024, https://doi.org/10.5194/wcd-5-1457-2024, 2024
Short summary
Short summary
The results of this study show that moisture advection induced by horizontal wind anomalies and vertical moisture advection induced by vertical velocity anomalies were crucial mechanisms behind the anomalous October 2019 exceptional rainfall increase over western central Africa. The information we derive can be used to support risk assessment and management in the region and to improve our resilience to ongoing climate change.
Talia Rosin, Francesco Marra, and Efrat Morin
Hydrol. Earth Syst. Sci., 28, 3549–3566, https://doi.org/10.5194/hess-28-3549-2024, https://doi.org/10.5194/hess-28-3549-2024, 2024
Short summary
Short summary
Knowledge of extreme precipitation probability at various spatial–temporal scales is crucial. We estimate extreme precipitation return levels at multiple scales (10 min–24 h, 0.25–500 km2) in the eastern Mediterranean using radar data. We show our estimates are comparable to those derived from averaged daily rain gauges. We then explore multi-scale extreme precipitation across coastal, mountainous, and desert regions.
Rajani Kumar Pradhan, Yannis Markonis, Francesco Marra, Efthymios I. Nikolopoulos, Simon Michael Papalexiou, and Vincenzo Levizzani
EGUsphere, https://doi.org/10.5194/egusphere-2024-1626, https://doi.org/10.5194/egusphere-2024-1626, 2024
Short summary
Short summary
This study compared global satellite and one reanalysis precipitation dataset to assess diurnal variability. We found that all datasets capture key diurnal precipitation patterns, with maximum precipitation in the afternoon over land and early morning over the ocean. However, there are differences in the exact timing and amount of precipitation. This suggests that it is better to use a combination of datasets for potential applications rather than relying on a single dataset.
Shai Abir, Hamish A. McGowan, Yonatan Shaked, Hezi Gildor, Efrat Morin, and Nadav G. Lensky
Atmos. Chem. Phys., 24, 6177–6195, https://doi.org/10.5194/acp-24-6177-2024, https://doi.org/10.5194/acp-24-6177-2024, 2024
Short summary
Short summary
Understanding air–sea heat exchange is vital for studying ocean dynamics. Eddy covariance measurements over the Gulf of Eilat revealed a 3.22 m yr-1 evaporation rate, which is inconsistent with bulk formulae estimations in stable atmospheric conditions, requiring bulk formulae to be revisited in these environments. The surface fluxes have a net cooling effect on the gulf water on an annual mean (-79 W m-2), balanced by a strong exchange flux between the Red Sea and the Gulf of Eilat.
Juliette Godet, Eric Gaume, Pierre Javelle, Pierre Nicolle, and Olivier Payrastre
Hydrol. Earth Syst. Sci., 28, 1403–1413, https://doi.org/10.5194/hess-28-1403-2024, https://doi.org/10.5194/hess-28-1403-2024, 2024
Short summary
Short summary
This work was performed in order to precisely address a point that is often neglected by hydrologists: the allocation of points located on a river network to grid cells, which is often a mandatory step for hydrological modelling.
Francesco Marra, Marika Koukoula, Antonio Canale, and Nadav Peleg
Hydrol. Earth Syst. Sci., 28, 375–389, https://doi.org/10.5194/hess-28-375-2024, https://doi.org/10.5194/hess-28-375-2024, 2024
Short summary
Short summary
We present a new physical-based method for estimating extreme sub-hourly precipitation return levels (i.e., intensity–duration–frequency, IDF, curves), which are critical for the estimation of future floods. The proposed model, named TENAX, incorporates temperature as a covariate in a physically consistent manner. It has only a few parameters and can be easily set for any climate station given sub-hourly precipitation and temperature data are available.
Juliette Godet, Olivier Payrastre, Pierre Javelle, and François Bouttier
Nat. Hazards Earth Syst. Sci., 23, 3355–3377, https://doi.org/10.5194/nhess-23-3355-2023, https://doi.org/10.5194/nhess-23-3355-2023, 2023
Short summary
Short summary
This article results from a master's research project which was part of a natural hazards programme developed by the French Ministry of Ecological Transition. The objective of this work was to investigate a possible way to improve the operational flash flood warning service by adding rainfall forecasts upstream of the forecasting chain. The results showed that the tested forecast product, which is new and experimental, has a real added value compared to other classical forecast products.
Maryse Charpentier-Noyer, Daniela Peredo, Axelle Fleury, Hugo Marchal, François Bouttier, Eric Gaume, Pierre Nicolle, Olivier Payrastre, and Maria-Helena Ramos
Nat. Hazards Earth Syst. Sci., 23, 2001–2029, https://doi.org/10.5194/nhess-23-2001-2023, https://doi.org/10.5194/nhess-23-2001-2023, 2023
Short summary
Short summary
This paper proposes a methodological framework designed for event-based evaluation in the context of an intense flash-flood event. The evaluation adopts the point of view of end users, with a focus on the anticipation of exceedances of discharge thresholds. With a study of rainfall forecasts, a discharge evaluation and a detailed look at the forecast hydrographs, the evaluation framework should help in drawing robust conclusions about the usefulness of new rainfall ensemble forecasts.
Stefan Steger, Mateo Moreno, Alice Crespi, Peter James Zellner, Stefano Luigi Gariano, Maria Teresa Brunetti, Massimo Melillo, Silvia Peruccacci, Francesco Marra, Robin Kohrs, Jason Goetz, Volkmar Mair, and Massimiliano Pittore
Nat. Hazards Earth Syst. Sci., 23, 1483–1506, https://doi.org/10.5194/nhess-23-1483-2023, https://doi.org/10.5194/nhess-23-1483-2023, 2023
Short summary
Short summary
We present a novel data-driven modelling approach to determine season-specific critical precipitation conditions for landslide occurrence. It is shown that the amount of precipitation required to trigger a landslide in South Tyrol varies from season to season. In summer, a higher amount of preparatory precipitation is required to trigger a landslide, probably due to denser vegetation and higher temperatures. We derive dynamic thresholds that directly relate to hit rates and false-alarm rates.
Nadav Peleg, Herminia Torelló-Sentelles, Grégoire Mariéthoz, Lionel Benoit, João P. Leitão, and Francesco Marra
Nat. Hazards Earth Syst. Sci., 23, 1233–1240, https://doi.org/10.5194/nhess-23-1233-2023, https://doi.org/10.5194/nhess-23-1233-2023, 2023
Short summary
Short summary
Floods in urban areas are one of the most common natural hazards. Due to climate change enhancing extreme rainfall and cities becoming larger and denser, the impacts of these events are expected to increase. A fast and reliable flood warning system should thus be implemented in flood-prone cities to warn the public of upcoming floods. The purpose of this brief communication is to discuss the potential implementation of low-cost acoustic rainfall sensors in short-term flood warning systems.
Eleonora Dallan, Francesco Marra, Giorgia Fosser, Marco Marani, Giuseppe Formetta, Christoph Schär, and Marco Borga
Hydrol. Earth Syst. Sci., 27, 1133–1149, https://doi.org/10.5194/hess-27-1133-2023, https://doi.org/10.5194/hess-27-1133-2023, 2023
Short summary
Short summary
Convection-permitting climate models could represent future changes in extreme short-duration precipitation, which is critical for risk management. We use a non-asymptotic statistical method to estimate extremes from 10 years of simulations in an orographically complex area. Despite overall good agreement with rain gauges, the observed decrease of hourly extremes with elevation is not fully represented by the model. Climate model adjustment methods should consider the role of orography.
Shalev Siman-Tov and Francesco Marra
Nat. Hazards Earth Syst. Sci., 23, 1079–1093, https://doi.org/10.5194/nhess-23-1079-2023, https://doi.org/10.5194/nhess-23-1079-2023, 2023
Short summary
Short summary
Debris flows represent a threat to infrastructure and the population. In arid areas, they are observed when heavy rainfall hits steep slopes with sediments. Here, we use digital surface models and radar rainfall data to detect and characterize the triggering and non-triggering rainfall conditions. We find that rainfall intensity alone is insufficient to explain the triggering. We suggest that antecedent rainfall could represent a critical factor for debris flow triggering in arid regions.
Sella Nevo, Efrat Morin, Adi Gerzi Rosenthal, Asher Metzger, Chen Barshai, Dana Weitzner, Dafi Voloshin, Frederik Kratzert, Gal Elidan, Gideon Dror, Gregory Begelman, Grey Nearing, Guy Shalev, Hila Noga, Ira Shavitt, Liora Yuklea, Moriah Royz, Niv Giladi, Nofar Peled Levi, Ofir Reich, Oren Gilon, Ronnie Maor, Shahar Timnat, Tal Shechter, Vladimir Anisimov, Yotam Gigi, Yuval Levin, Zach Moshe, Zvika Ben-Haim, Avinatan Hassidim, and Yossi Matias
Hydrol. Earth Syst. Sci., 26, 4013–4032, https://doi.org/10.5194/hess-26-4013-2022, https://doi.org/10.5194/hess-26-4013-2022, 2022
Short summary
Short summary
Early flood warnings are one of the most effective tools to save lives and goods. Machine learning (ML) models can improve flood prediction accuracy but their use in operational frameworks is limited. The paper presents a flood warning system, operational in India and Bangladesh, that uses ML models for forecasting river stage and flood inundation maps and discusses the models' performances. In 2021, more than 100 million flood alerts were sent to people near rivers over an area of 470 000 km2.
Giulia Zuecco, Anam Amin, Jay Frentress, Michael Engel, Chiara Marchina, Tommaso Anfodillo, Marco Borga, Vinicio Carraro, Francesca Scandellari, Massimo Tagliavini, Damiano Zanotelli, Francesco Comiti, and Daniele Penna
Hydrol. Earth Syst. Sci., 26, 3673–3689, https://doi.org/10.5194/hess-26-3673-2022, https://doi.org/10.5194/hess-26-3673-2022, 2022
Short summary
Short summary
We analyzed the variability in the isotopic composition of plant water extracted by two different methods, i.e., cryogenic vacuum distillation (CVD) and Scholander-type pressure chamber (SPC). Our results indicated that the isotopic composition of plant water extracted by CVD and SPC was significantly different. We concluded that plant water extraction by SPC is not an alternative for CVD as SPC mostly extracts the mobile plant water whereas CVD retrieves all water stored in the sampled tissue.
Guy Delrieu, Anil Kumar Khanal, Frédéric Cazenave, and Brice Boudevillain
Atmos. Meas. Tech., 15, 3297–3314, https://doi.org/10.5194/amt-15-3297-2022, https://doi.org/10.5194/amt-15-3297-2022, 2022
Short summary
Short summary
The RadAlp experiment aims at improving quantitative precipitation estimation in the Alps thanks to X-band polarimetric radars and in situ measurements deployed in Grenoble, France. We revisit the physics of propagation and attenuation of microwaves in rain. We perform a generalized sensitivity analysis in order to establish useful parameterization for attenuation corrections. Originality lies in the use of otherwise undesired mountain returns for constraining the considered physical model.
Assaf Hochman, Francesco Marra, Gabriele Messori, Joaquim G. Pinto, Shira Raveh-Rubin, Yizhak Yosef, and Georgios Zittis
Earth Syst. Dynam., 13, 749–777, https://doi.org/10.5194/esd-13-749-2022, https://doi.org/10.5194/esd-13-749-2022, 2022
Short summary
Short summary
Gaining a complete understanding of extreme weather, from its physical drivers to its impacts on society, is important in supporting future risk reduction and adaptation measures. Here, we provide a review of the available scientific literature, knowledge gaps and key open questions in the study of extreme weather events over the vulnerable eastern Mediterranean region.
Francesco Marra, Moshe Armon, and Efrat Morin
Hydrol. Earth Syst. Sci., 26, 1439–1458, https://doi.org/10.5194/hess-26-1439-2022, https://doi.org/10.5194/hess-26-1439-2022, 2022
Short summary
Short summary
We present a new method for quantifying the probability of occurrence of extreme rainfall using radar data, and we use it to examine coastal and orographic effects on extremes. We identify three regimes, directly related to precipitation physical processes, which respond differently to these forcings. The methods and results are of interest for researchers and practitioners using radar for the analysis of extremes, risk managers, water resources managers, and climate change impact studies.
Yoav Ben Dor, Francesco Marra, Moshe Armon, Yehouda Enzel, Achim Brauer, Markus Julius Schwab, and Efrat Morin
Clim. Past, 17, 2653–2677, https://doi.org/10.5194/cp-17-2653-2021, https://doi.org/10.5194/cp-17-2653-2021, 2021
Short summary
Short summary
Laminated sediments from the deepest part of the Dead Sea unravel the hydrological response of the eastern Mediterranean to past climate changes. This study demonstrates the importance of geological archives in complementing modern hydrological measurements that do not fully capture natural hydroclimatic variability, which is crucial to configure for understanding the impact of climate change on the hydrological cycle in subtropical regions.
Maxime Gillet, Corinne Le Gal La Salle, Pierre Alain Ayral, Somar Khaska, Philippe Martin, and Patrick Verdoux
Hydrol. Earth Syst. Sci., 25, 6261–6281, https://doi.org/10.5194/hess-25-6261-2021, https://doi.org/10.5194/hess-25-6261-2021, 2021
Short summary
Short summary
This paper aims at identifying the key reservoirs sustaining river low flow during dry summer. The reservoirs are discriminated based on the geological nature of the formations and the geochemical signature of groundwater. Results show the increasing importance to low-flow support of a specific reservoir, showing only a limited outcrop area and becoming preponderant in the heart of the dry season. This finding will contribute to improving the protective measures for preserving low flows.
Elena Mondino, Anna Scolobig, Marco Borga, and Giuliano Di Baldassarre
Nat. Hazards Earth Syst. Sci., 21, 2811–2828, https://doi.org/10.5194/nhess-21-2811-2021, https://doi.org/10.5194/nhess-21-2811-2021, 2021
Short summary
Short summary
Survey data collected over time can provide new insights on how different people respond to floods and can be used in models to study the complex coevolution of human–water systems. We present two methods to collect such data, and we compare the respective results. Risk awareness decreases only for women, while preparedness takes different trajectories depending on the damage suffered. These results support a more diverse representation of society in flood risk modelling and risk management.
Nabil Hocini, Olivier Payrastre, François Bourgin, Eric Gaume, Philippe Davy, Dimitri Lague, Lea Poinsignon, and Frederic Pons
Hydrol. Earth Syst. Sci., 25, 2979–2995, https://doi.org/10.5194/hess-25-2979-2021, https://doi.org/10.5194/hess-25-2979-2021, 2021
Short summary
Short summary
Efficient flood mapping methods are needed for large-scale, comprehensive identification of flash flood inundation hazards caused by small upstream rivers. An evaluation of three automated mapping approaches of increasing complexity, i.e., a digital terrain model (DTM) filling and two 1D–2D hydrodynamic approaches, is presented based on three major flash floods in southeastern France. The results illustrate some limits of the DTM filling method and the value of using a 2D hydrodynamic approach.
Yair Rinat, Francesco Marra, Moshe Armon, Asher Metzger, Yoav Levi, Pavel Khain, Elyakom Vadislavsky, Marcelo Rosensaft, and Efrat Morin
Nat. Hazards Earth Syst. Sci., 21, 917–939, https://doi.org/10.5194/nhess-21-917-2021, https://doi.org/10.5194/nhess-21-917-2021, 2021
Short summary
Short summary
Flash floods are among the most devastating and lethal natural hazards worldwide. The study of such events is important as flash floods are poorly understood and documented processes, especially in deserts. A small portion of the studied basin (1 %–20 %) experienced extreme rainfall intensities resulting in local flash floods of high magnitudes. Flash floods started and reached their peak within tens of minutes. Forecasts poorly predicted the flash floods mostly due to location inaccuracy.
Magdalena Uber, Guillaume Nord, Cédric Legout, and Luis Cea
Earth Surf. Dynam., 9, 123–144, https://doi.org/10.5194/esurf-9-123-2021, https://doi.org/10.5194/esurf-9-123-2021, 2021
Short summary
Short summary
Understanding soil erosion and suspended sediment transport is an important issue in terms of soil and water resources management. This study analyzes the impact of choices made during numerical model setup on the modeled suspended sediment dynamics at the outlet of two mesoscale watersheds. While the modeled liquid and solid discharges were found to be sensitive to these choices, the actual location of sediment sources in each catchment was the most important feature.
O. Perrin, S. Christophe, F. Jacquinod, and O. Payrastre
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2020, 795–801, https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-795-2020, https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-795-2020, 2020
Guy Delrieu, Anil Kumar Khanal, Nan Yu, Frédéric Cazenave, Brice Boudevillain, and Nicolas Gaussiat
Atmos. Meas. Tech., 13, 3731–3749, https://doi.org/10.5194/amt-13-3731-2020, https://doi.org/10.5194/amt-13-3731-2020, 2020
Isabelle Braud, Lilly-Rose Lagadec, Loïc Moulin, Blandine Chazelle, and Pascal Breil
Nat. Hazards Earth Syst. Sci., 20, 947–966, https://doi.org/10.5194/nhess-20-947-2020, https://doi.org/10.5194/nhess-20-947-2020, 2020
Short summary
Short summary
A method for the evaluation of a model that maps the susceptibility of a territory to surface runoff is presented. It is based on proxy data of localized impacts related to runoff. It accounts for the hazard level, the vulnerability of the study area and possible mitigation actions taken to reduce the risk. The evaluation is made on a 80 km railway line in Normandy (north of France), where a comprehensive database of runoff-related impacts on the railway has been gathered over the 20th century.
Guillaume Nord, Yoann Michielin, Romain Biron, Michel Esteves, Guilhem Freche, Thomas Geay, Alexandre Hauet, Cédric Legoût, and Bernard Mercier
Geosci. Instrum. Method. Data Syst., 9, 41–67, https://doi.org/10.5194/gi-9-41-2020, https://doi.org/10.5194/gi-9-41-2020, 2020
Short summary
Short summary
We present the development of the RIPLE platform that is designed for the monitoring at high temporal frequency (~ 10 min) of water discharge, solid fluxes (bedload and suspended load) and properties of fine particles (settling velocity) in mesoscale rivers. Many instruments are integrated into this single centralized device, which is autonomous in energy and connected to the 2G/3G network. A user-friendly interface has been developed enabling us to visualize the data collected by the platform.
Moshe Armon, Francesco Marra, Yehouda Enzel, Dorita Rostkier-Edelstein, and Efrat Morin
Hydrol. Earth Syst. Sci., 24, 1227–1249, https://doi.org/10.5194/hess-24-1227-2020, https://doi.org/10.5194/hess-24-1227-2020, 2020
Short summary
Short summary
Heavy precipitation events (HPEs), occurring around the globe, lead to natural hazards as well as to water resource recharge. Rainfall patterns during HPEs vary from one case to another and govern their effect. Thus, correct prediction of these patterns is crucial for coping with HPEs. However, the ability of weather models to generate such patterns is unclear. Here, we characterise rainfall patterns during HPEs based on weather radar data and evaluate weather model simulations of these events.
Philippe Weyrich, Elena Mondino, Marco Borga, Giuliano Di Baldassarre, Anthony Patt, and Anna Scolobig
Nat. Hazards Earth Syst. Sci., 20, 287–298, https://doi.org/10.5194/nhess-20-287-2020, https://doi.org/10.5194/nhess-20-287-2020, 2020
Mattia Zaramella, Marco Borga, Davide Zoccatelli, and Luca Carturan
Geosci. Model Dev., 12, 5251–5265, https://doi.org/10.5194/gmd-12-5251-2019, https://doi.org/10.5194/gmd-12-5251-2019, 2019
Short summary
Short summary
This paper presents TOPMELT, a parsimonious snowpack simulation model integrated into a basin-scale hydrological model. TOPMELT implements the full spatial distribution of clear-sky potential solar radiation by means of a statistical representation: this approach reduces computational burden, which is a key potential advantage when parameter sensitivity and uncertainty estimation procedures are carried out. The model is assessed by examining different resolutions of its domain.
Davide Zoccatelli, Francesco Marra, Moshe Armon, Yair Rinat, James A. Smith, and Efrat Morin
Hydrol. Earth Syst. Sci., 23, 2665–2678, https://doi.org/10.5194/hess-23-2665-2019, https://doi.org/10.5194/hess-23-2665-2019, 2019
Short summary
Short summary
This study presents a comparison of flood properties over multiple Mediterranean and desert catchments. While in Mediterranean areas floods are related to rainfall amount, in deserts we observed a strong connection with the characteristics of the more intense part of storms. Because of the different mechanisms involved, despite having significantly shorter and more localized storms, deserts are able to produce floods with a magnitude comparable to Mediterranean areas.
Claudio Durán-Alarcón, Brice Boudevillain, Christophe Genthon, Jacopo Grazioli, Niels Souverijns, Nicole P. M. van Lipzig, Irina V. Gorodetskaya, and Alexis Berne
The Cryosphere, 13, 247–264, https://doi.org/10.5194/tc-13-247-2019, https://doi.org/10.5194/tc-13-247-2019, 2019
Short summary
Short summary
Precipitation is the main input in the surface mass balance of the Antarctic ice sheet, but it is still poorly understood due to a lack of observations in this region. We analyzed the vertical structure of the precipitation using multiyear observation of vertically pointing micro rain radars (MRRs) at two stations located in East Antarctica. The use of MRRs showed the potential to study the effect of climatology and hydrometeor microphysics on the vertical structure of Antarctic precipitation.
Niels Souverijns, Alexandra Gossart, Stef Lhermitte, Irina V. Gorodetskaya, Jacopo Grazioli, Alexis Berne, Claudio Duran-Alarcon, Brice Boudevillain, Christophe Genthon, Claudio Scarchilli, and Nicole P. M. van Lipzig
The Cryosphere, 12, 3775–3789, https://doi.org/10.5194/tc-12-3775-2018, https://doi.org/10.5194/tc-12-3775-2018, 2018
Short summary
Short summary
Snowfall observations over Antarctica are scarce and currently limited to information from the CloudSat satellite. Here, a first evaluation of the CloudSat snowfall record is performed using observations of ground-based precipitation radars. Results indicate an accurate representation of the snowfall climatology over Antarctica, despite the low overpass frequency of the satellite, outperforming state-of-the-art model estimates. Individual snowfall events are however not well represented.
Magdalena Uber, Jean-Pierre Vandervaere, Isabella Zin, Isabelle Braud, Maik Heistermann, Cédric Legoût, Gilles Molinié, and Guillaume Nord
Hydrol. Earth Syst. Sci., 22, 6127–6146, https://doi.org/10.5194/hess-22-6127-2018, https://doi.org/10.5194/hess-22-6127-2018, 2018
Short summary
Short summary
We investigate how rivers in a flash-flood-prone region in southern France respond to rainfall depending on initial soil moisture. Therefore, high-resolution data of rainfall, river discharge and soil moisture were used. We find that during dry initial conditions, the rivers hardly respond even for heavy rain events, but for wet initial conditions, the response remains unpredictable: for some rain events almost all rainfall is transformed to discharge, whereas this is not the case for others.
Giuliano Di Baldassarre, Heidi Kreibich, Sergiy Vorogushyn, Jeroen Aerts, Karsten Arnbjerg-Nielsen, Marlies Barendrecht, Paul Bates, Marco Borga, Wouter Botzen, Philip Bubeck, Bruna De Marchi, Carmen Llasat, Maurizio Mazzoleni, Daniela Molinari, Elena Mondino, Johanna Mård, Olga Petrucci, Anna Scolobig, Alberto Viglione, and Philip J. Ward
Hydrol. Earth Syst. Sci., 22, 5629–5637, https://doi.org/10.5194/hess-22-5629-2018, https://doi.org/10.5194/hess-22-5629-2018, 2018
Short summary
Short summary
One common approach to cope with floods is the implementation of structural flood protection measures, such as levees. Numerous scholars have problematized this approach and shown that increasing levels of flood protection can generate a false sense of security and attract more people to the risky areas. We briefly review the literature on this topic and then propose a research agenda to explore the unintended consequences of structural flood protection.
Christophe Genthon, Alexis Berne, Jacopo Grazioli, Claudio Durán Alarcón, Christophe Praz, and Brice Boudevillain
Earth Syst. Sci. Data, 10, 1605–1612, https://doi.org/10.5194/essd-10-1605-2018, https://doi.org/10.5194/essd-10-1605-2018, 2018
Short summary
Short summary
Antarctica suffers from a severe shortage of in situ observations of precipitation. The APRES3 program contributes to improving observation from both the surface and from space. A field campaign with various instruments was deployed at the coast of Adélie Land, with an intensive observing period in austral summer 2015–16, then continuous radar monitoring through 2016 and beyond. This paper provides a compact presentation of the APRES3 dataset, which is now made open to the scientific community.
Efthymios I. Nikolopoulos, Elisa Destro, Md Abul Ehsan Bhuiyan, Marco Borga, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 18, 2331–2343, https://doi.org/10.5194/nhess-18-2331-2018, https://doi.org/10.5194/nhess-18-2331-2018, 2018
Short summary
Short summary
Debris flows, following wildfires, constitute a significant threat to downstream populations and infrastructure. Therefore, developing measures to reduce the vulnerability of local communities to debris flows is of paramount importance. This work proposes a new model for predicting post-fire debris flow occurrence on a regional scale and demonstrates that the proposed model has notably higher skill than the currently used approaches.
Mehdi Rahmati, Lutz Weihermüller, Jan Vanderborght, Yakov A. Pachepsky, Lili Mao, Seyed Hamidreza Sadeghi, Niloofar Moosavi, Hossein Kheirfam, Carsten Montzka, Kris Van Looy, Brigitta Toth, Zeinab Hazbavi, Wafa Al Yamani, Ammar A. Albalasmeh, Ma'in Z. Alghzawi, Rafael Angulo-Jaramillo, Antônio Celso Dantas Antonino, George Arampatzis, Robson André Armindo, Hossein Asadi, Yazidhi Bamutaze, Jordi Batlle-Aguilar, Béatrice Béchet, Fabian Becker, Günter Blöschl, Klaus Bohne, Isabelle Braud, Clara Castellano, Artemi Cerdà, Maha Chalhoub, Rogerio Cichota, Milena Císlerová, Brent Clothier, Yves Coquet, Wim Cornelis, Corrado Corradini, Artur Paiva Coutinho, Muriel Bastista de Oliveira, José Ronaldo de Macedo, Matheus Fonseca Durães, Hojat Emami, Iraj Eskandari, Asghar Farajnia, Alessia Flammini, Nándor Fodor, Mamoun Gharaibeh, Mohamad Hossein Ghavimipanah, Teamrat A. Ghezzehei, Simone Giertz, Evangelos G. Hatzigiannakis, Rainer Horn, Juan José Jiménez, Diederik Jacques, Saskia Deborah Keesstra, Hamid Kelishadi, Mahboobeh Kiani-Harchegani, Mehdi Kouselou, Madan Kumar Jha, Laurent Lassabatere, Xiaoyan Li, Mark A. Liebig, Lubomír Lichner, María Victoria López, Deepesh Machiwal, Dirk Mallants, Micael Stolben Mallmann, Jean Dalmo de Oliveira Marques, Miles R. Marshall, Jan Mertens, Félicien Meunier, Mohammad Hossein Mohammadi, Binayak P. Mohanty, Mansonia Pulido-Moncada, Suzana Montenegro, Renato Morbidelli, David Moret-Fernández, Ali Akbar Moosavi, Mohammad Reza Mosaddeghi, Seyed Bahman Mousavi, Hasan Mozaffari, Kamal Nabiollahi, Mohammad Reza Neyshabouri, Marta Vasconcelos Ottoni, Theophilo Benedicto Ottoni Filho, Mohammad Reza Pahlavan-Rad, Andreas Panagopoulos, Stephan Peth, Pierre-Emmanuel Peyneau, Tommaso Picciafuoco, Jean Poesen, Manuel Pulido, Dalvan José Reinert, Sabine Reinsch, Meisam Rezaei, Francis Parry Roberts, David Robinson, Jesús Rodrigo-Comino, Otto Corrêa Rotunno Filho, Tadaomi Saito, Hideki Suganuma, Carla Saltalippi, Renáta Sándor, Brigitta Schütt, Manuel Seeger, Nasrollah Sepehrnia, Ehsan Sharifi Moghaddam, Manoj Shukla, Shiraki Shutaro, Ricardo Sorando, Ajayi Asishana Stanley, Peter Strauss, Zhongbo Su, Ruhollah Taghizadeh-Mehrjardi, Encarnación Taguas, Wenceslau Geraldes Teixeira, Ali Reza Vaezi, Mehdi Vafakhah, Tomas Vogel, Iris Vogeler, Jana Votrubova, Steffen Werner, Thierry Winarski, Deniz Yilmaz, Michael H. Young, Steffen Zacharias, Yijian Zeng, Ying Zhao, Hong Zhao, and Harry Vereecken
Earth Syst. Sci. Data, 10, 1237–1263, https://doi.org/10.5194/essd-10-1237-2018, https://doi.org/10.5194/essd-10-1237-2018, 2018
Short summary
Short summary
This paper presents and analyzes a global database of soil infiltration data, the SWIG database, for the first time. In total, 5023 infiltration curves were collected across all continents in the SWIG database. These data were either provided and quality checked by the scientists or they were digitized from published articles. We are convinced that the SWIG database will allow for a better parameterization of the infiltration process in land surface models and for testing infiltration models.
Roland Baatz, Pamela L. Sullivan, Li Li, Samantha R. Weintraub, Henry W. Loescher, Michael Mirtl, Peter M. Groffman, Diana H. Wall, Michael Young, Tim White, Hang Wen, Steffen Zacharias, Ingolf Kühn, Jianwu Tang, Jérôme Gaillardet, Isabelle Braud, Alejandro N. Flores, Praveen Kumar, Henry Lin, Teamrat Ghezzehei, Julia Jones, Henry L. Gholz, Harry Vereecken, and Kris Van Looy
Earth Syst. Dynam., 9, 593–609, https://doi.org/10.5194/esd-9-593-2018, https://doi.org/10.5194/esd-9-593-2018, 2018
Short summary
Short summary
Focusing on the usage of integrated models and in situ Earth observatory networks, three challenges are identified to advance understanding of ESD, in particular to strengthen links between biotic and abiotic, and above- and below-ground processes. We propose developing a model platform for interdisciplinary usage, to formalize current network infrastructure based on complementarities and operational synergies, and to extend the reanalysis concept to the ecosystem and critical zone.
Guillaume Le Bihan, Olivier Payrastre, Eric Gaume, David Moncoulon, and Frédéric Pons
Hydrol. Earth Syst. Sci., 21, 5911–5928, https://doi.org/10.5194/hess-21-5911-2017, https://doi.org/10.5194/hess-21-5911-2017, 2017
Short summary
Short summary
This paper illustrates how an integrated flash flood monitoring (or forecasting) system may be designed to directly provide information on possibly flooded areas and associated impacts on a very detailed river network and over large territories. The approach is extensively tested in the regions of Alès and Draguignan, located in south-eastern France. Validation results are presented in terms of accuracy of the estimated flood extents and related impacts (based on insurance claim data).
Idit Belachsen, Francesco Marra, Nadav Peleg, and Efrat Morin
Hydrol. Earth Syst. Sci., 21, 5165–5180, https://doi.org/10.5194/hess-21-5165-2017, https://doi.org/10.5194/hess-21-5165-2017, 2017
Short summary
Short summary
Spatiotemporal rainfall patterns in arid environments are not well-known. We derived properties of convective rain cells over the arid Dead Sea region from a long-term radar archive. We found differences in cell properties between synoptic systems and between flash-flood and non-flash-flood events. Large flash floods are associated with slow rain cells, directed downstream with the main catchment axis. Results from this work can be used for hydrological models and stochastic storm simulations.
Francesco Marra, Elisa Destro, Efthymios I. Nikolopoulos, Davide Zoccatelli, Jean Dominique Creutin, Fausto Guzzetti, and Marco Borga
Hydrol. Earth Syst. Sci., 21, 4525–4532, https://doi.org/10.5194/hess-21-4525-2017, https://doi.org/10.5194/hess-21-4525-2017, 2017
Short summary
Short summary
Previous studies have reported a systematic underestimation of debris flow occurrence thresholds, due to the use of sparse networks in non-stationary rain fields. We analysed high-resolution radar data to show that spatially aggregated estimates (e.g. satellite data) largely reduce this issue, in light of a reduced estimation variance. Our findings are transferable to other situations in which lower envelope curves are used to predict point-like events in the presence of non-stationary fields.
Jacopo Grazioli, Christophe Genthon, Brice Boudevillain, Claudio Duran-Alarcon, Massimo Del Guasta, Jean-Baptiste Madeleine, and Alexis Berne
The Cryosphere, 11, 1797–1811, https://doi.org/10.5194/tc-11-1797-2017, https://doi.org/10.5194/tc-11-1797-2017, 2017
Short summary
Short summary
We present medium and long-term measurements of precipitation in a coastal region of Antarctica. These measurements are among the first of their kind on the Antarctic continent and combine remote sensing with in situ observations. The benefits of this synergy are demonstrated and the lessons learned from this measurements, which are still ongoing, are very important for the creation of similar observatories elsewhere on the continent.
Francesco Marra, Efrat Morin, Nadav Peleg, Yiwen Mei, and Emmanouil N. Anagnostou
Hydrol. Earth Syst. Sci., 21, 2389–2404, https://doi.org/10.5194/hess-21-2389-2017, https://doi.org/10.5194/hess-21-2389-2017, 2017
Short summary
Short summary
Rainfall frequency analyses from radar and satellite estimates over the eastern Mediterranean are compared examining different climatic conditions. Correlation between radar and satellite results is high for frequent events and decreases with return period. The uncertainty related to record length is larger for drier climates. The agreement between different sensors instills confidence on their use for rainfall frequency analysis in ungauged areas of the Earth.
Guillaume Nord, Brice Boudevillain, Alexis Berne, Flora Branger, Isabelle Braud, Guillaume Dramais, Simon Gérard, Jérôme Le Coz, Cédric Legoût, Gilles Molinié, Joel Van Baelen, Jean-Pierre Vandervaere, Julien Andrieu, Coralie Aubert, Martin Calianno, Guy Delrieu, Jacopo Grazioli, Sahar Hachani, Ivan Horner, Jessica Huza, Raphaël Le Boursicaud, Timothy H. Raupach, Adriaan J. Teuling, Magdalena Uber, Béatrice Vincendon, and Annette Wijbrans
Earth Syst. Sci. Data, 9, 221–249, https://doi.org/10.5194/essd-9-221-2017, https://doi.org/10.5194/essd-9-221-2017, 2017
Short summary
Short summary
A high space–time resolution dataset linking hydrometeorological forcing and hydro-sedimentary response in a mesoscale catchment (Auzon, 116 km2) of the Ardèche region (France) is presented. This region is subject to precipitating systems of Mediterranean origin, which can result in significant rainfall amount. The data presented cover a period of 4 years (2011–2014) and aim at improving the understanding of processes triggering flash floods.
A. Lucía, F. Comiti, M. Borga, M. Cavalli, and L. Marchi
Nat. Hazards Earth Syst. Sci., 15, 1741–1755, https://doi.org/10.5194/nhess-15-1741-2015, https://doi.org/10.5194/nhess-15-1741-2015, 2015
J. Hall, B. Arheimer, G. T. Aronica, A. Bilibashi, M. Boháč, O. Bonacci, M. Borga, P. Burlando, A. Castellarin, G. B. Chirico, P. Claps, K. Fiala, L. Gaál, L. Gorbachova, A. Gül, J. Hannaford, A. Kiss, T. Kjeldsen, S. Kohnová, J. J. Koskela, N. Macdonald, M. Mavrova-Guirguinova, O. Ledvinka, L. Mediero, B. Merz, R. Merz, P. Molnar, A. Montanari, M. Osuch, J. Parajka, R. A. P. Perdigão, I. Radevski, B. Renard, M. Rogger, J. L. Salinas, E. Sauquet, M. Šraj, J. Szolgay, A. Viglione, E. Volpi, D. Wilson, K. Zaimi, and G. Blöschl
Proc. IAHS, 370, 89–95, https://doi.org/10.5194/piahs-370-89-2015, https://doi.org/10.5194/piahs-370-89-2015, 2015
M. Adamovic, I. Braud, F. Branger, and J. W. Kirchner
Hydrol. Earth Syst. Sci., 19, 2427–2449, https://doi.org/10.5194/hess-19-2427-2015, https://doi.org/10.5194/hess-19-2427-2015, 2015
Short summary
Short summary
This study explores how catchment heterogeneity and variability can be summarized in simplified models, representing the dominant hydrological processes. We apply simple dynamical system approach (Kirchner, 2009) in the Ardèche catchment (south-east France). The simple dynamical system hypothesis works especially well in wet conditions (peaks and recessions are well modelled) and for granite catchments, which are likely to be characterized by shallow subsurface flow.
E. I. Nikolopoulos, M. Borga, F. Marra, S. Crema, and L. Marchi
Nat. Hazards Earth Syst. Sci., 15, 647–656, https://doi.org/10.5194/nhess-15-647-2015, https://doi.org/10.5194/nhess-15-647-2015, 2015
Short summary
Short summary
This study examines the seasonal and synoptic forcing patterns linked to debris flows occurring in the eastern Italian Alps. Results highlight that seasonal and synoptic pattern dependence is pronounced in both the debris-flow occurrence and the properties of triggering rainfall. Therefore, considering classification of debris flow events according to season and atmospheric circulation patterns can be used to improve existing warning systems that are operating on the basis of rainfall thresholds
A.-J. Tinet, A. Chanzy, I. Braud, D. Crevoisier, and F. Lafolie
Hydrol. Earth Syst. Sci., 19, 969–980, https://doi.org/10.5194/hess-19-969-2015, https://doi.org/10.5194/hess-19-969-2015, 2015
Short summary
Short summary
In agricultural management, a good timing in operations is essential to enhance economical and environmental performance. To improve such timing, predictive software is of particular interest. The objective of this study is to assess the accuracy of a physically based model with high efficiency. Compared to a more complex software (TEC) under bare soil conditions, a coupled model shows mostly improved efficiency and balance and a good capacity to predict water content thresholds.
N. Peleg, E. Shamir, K. P. Georgakakos, and E. Morin
Hydrol. Earth Syst. Sci., 19, 567–581, https://doi.org/10.5194/hess-19-567-2015, https://doi.org/10.5194/hess-19-567-2015, 2015
C. Velluet, J. Demarty, B. Cappelaere, I. Braud, H. B.-A. Issoufou, N. Boulain, D. Ramier, I. Mainassara, G. Charvet, M. Boucher, J.-P. Chazarin, M. Oï, H. Yahou, B. Maidaji, F. Arpin-Pont, N. Benarrosh, A. Mahamane, Y. Nazoumou, G. Favreau, and J. Seghieri
Hydrol. Earth Syst. Sci., 18, 5001–5024, https://doi.org/10.5194/hess-18-5001-2014, https://doi.org/10.5194/hess-18-5001-2014, 2014
Short summary
Short summary
Long-term average water and energy cycles are described for two main land cover types in the cultivated Sahel (millet crop and fallow bush). Mean seasonal cycles and annual budgets for all component variables were estimated from detailed field and model analysis. Evapotranspiration totals over 80% of rainfall for both covers, but with different time distribution and soil/plant contributions. The remainder is shared between runoff and deep drainage for the crop, but is only runoff for the fallow.
O. Laganier, P. A. Ayral, D. Salze, and S. Sauvagnargues
Nat. Hazards Earth Syst. Sci., 14, 2899–2920, https://doi.org/10.5194/nhess-14-2899-2014, https://doi.org/10.5194/nhess-14-2899-2014, 2014
I. Braud, P.-A. Ayral, C. Bouvier, F. Branger, G. Delrieu, J. Le Coz, G. Nord, J.-P. Vandervaere, S. Anquetin, M. Adamovic, J. Andrieu, C. Batiot, B. Boudevillain, P. Brunet, J. Carreau, A. Confoland, J.-F. Didon-Lescot, J.-M. Domergue, J. Douvinet, G. Dramais, R. Freydier, S. Gérard, J. Huza, E. Leblois, O. Le Bourgeois, R. Le Boursicaud, P. Marchand, P. Martin, L. Nottale, N. Patris, B. Renard, J.-L. Seidel, J.-D. Taupin, O. Vannier, B. Vincendon, and A. Wijbrans
Hydrol. Earth Syst. Sci., 18, 3733–3761, https://doi.org/10.5194/hess-18-3733-2014, https://doi.org/10.5194/hess-18-3733-2014, 2014
J. Hall, B. Arheimer, M. Borga, R. Brázdil, P. Claps, A. Kiss, T. R. Kjeldsen, J. Kriaučiūnienė, Z. W. Kundzewicz, M. Lang, M. C. Llasat, N. Macdonald, N. McIntyre, L. Mediero, B. Merz, R. Merz, P. Molnar, A. Montanari, C. Neuhold, J. Parajka, R. A. P. Perdigão, L. Plavcová, M. Rogger, J. L. Salinas, E. Sauquet, C. Schär, J. Szolgay, A. Viglione, and G. Blöschl
Hydrol. Earth Syst. Sci., 18, 2735–2772, https://doi.org/10.5194/hess-18-2735-2014, https://doi.org/10.5194/hess-18-2735-2014, 2014
D. Penna, M. Borga, G. T. Aronica, G. Brigandì, and P. Tarolli
Hydrol. Earth Syst. Sci., 18, 2127–2139, https://doi.org/10.5194/hess-18-2127-2014, https://doi.org/10.5194/hess-18-2127-2014, 2014
N. Peleg, M. Ben-Asher, and E. Morin
Hydrol. Earth Syst. Sci., 17, 2195–2208, https://doi.org/10.5194/hess-17-2195-2013, https://doi.org/10.5194/hess-17-2195-2013, 2013
E. Shamir, L. Ben-Moshe, A. Ronen, T. Grodek, Y. Enzel, K. P. Georgakakos, and E. Morin
Hydrol. Earth Syst. Sci., 17, 1021–1034, https://doi.org/10.5194/hess-17-1021-2013, https://doi.org/10.5194/hess-17-1021-2013, 2013
Related subject area
Meteorology
A database of deep convective systems derived from the intercalibrated meteorological geostationary satellite fleet and the TOOCAN algorithm (2012–2020)
Generation of global 1 km all-weather instantaneous and daily mean land surface temperatures from MODIS data
Global tropical cyclone size and intensity reconstruction dataset for 1959–2022 based on IBTrACS and ERA5 data
Special Observing Period (SOP) data for the Year of Polar Prediction site Model Intercomparison Project (YOPPsiteMIP)
Dataset of spatially extensive long-term quality-assured land–atmosphere interactions over the Tibetan Plateau
Multifrequency radar observations of marine clouds during the EPCAPE campaign
The PAZ Polarimetric Radio Occultation Research Dataset for Scientific Applications
Data collected using small uncrewed aircraft systems during the TRacking Aerosol Convection interactions ExpeRiment (TRACER)
GloUTCI-M: a global monthly 1 km Universal Thermal Climate Index dataset from 2000 to 2022
LGHAP v2: a global gap-free aerosol optical depth and PM2.5 concentration dataset since 2000 derived via big Earth data analytics
Water vapor Raman-lidar observations from multiple sites in the framework of WaLiNeAs
Reanalysis of multi-year high-resolution X-band weather radar observations in Hamburg
Earth Virtualization Engines (EVE)
The 2023 National Offshore Wind data set (NOW-23)
SARAH-3 – satellite-based climate data records of surface solar radiation
Dataset of stable isotopes of precipitation in the Eurasian continent
A global gridded dataset for cloud vertical structure from combined CloudSat and CALIPSO observations
Global datasets of hourly carbon and water fluxes simulated using a satellite-based process model with dynamic parameterizations
A 7-year record of vertical profiles of radar measurements and precipitation estimates at Dumont d'Urville, Adélie Land, East Antarctica
Long-term monthly 0.05° terrestrial evapotranspiration dataset (1982–2018) for the Tibetan Plateau
High-resolution (1 km) all-sky net radiation over Europe enabled by the merging of land surface temperature retrievals from geostationary and polar-orbiting satellites
Atmospheric and surface observations during the Saint John River Experiment on Cold Season Storms (SAJESS)
Year-long buoy-based observations of the air–sea transition zone off the US west coast
The historical Greenland Climate Network (GC-Net) curated and augmented level-1 dataset
Low-level mixed-phase clouds at the high Arctic site of Ny-Ålesund: a comprehensive long-term dataset of remote sensing observations
Global high-resolution drought indices for 1981–2022
CHESS-SCAPE: high-resolution future projections of multiple climate scenarios for the United Kingdom derived from downscaled United Kingdom Climate Projections 2018 regional climate model output
Quality-controlled meteorological datasets from SIGMA automatic weather stations in northwest Greenland, 2012–2020
A dataset of energy, water vapor, and carbon exchange observations in oasis–desert areas from 2012 to 2021 in a typical endorheic basin
Derivation and compilation of lower-atmospheric properties relating to temperature, wind, stability, moisture, and surface radiation budget over the central Arctic sea ice during MOSAiC
CLARA-A3: The third edition of the AVHRR-based CM SAF climate data record on clouds, radiation and surface albedo covering the period 1979 to 2023
ET-WB: water-balance-based estimations of terrestrial evaporation over global land and major global basins
An integrated and homogenized global surface solar radiation dataset and its reconstruction based on a convolutional neural network approach
IWIN: the Isfjorden Weather Information Network
A new daily gridded precipitation dataset for the Chinese mainland based on gauge observations
A 16-year global climate data record of total column water vapour generated from OMI observations in the visible blue spectral range
The EUPPBench postprocessing benchmark dataset v1.0
MOPREDAScentury: a long-term monthly precipitation grid for the Spanish mainland
CHELSA-W5E5: daily 1 km meteorological forcing data for climate impact studies
Database of the Italian disdrometer network
East Asia Reanalysis System (EARS)
Data rescue of historical wind observations in Sweden since the 1920s
LegacyClimate 1.0: a dataset of pollen-based climate reconstructions from 2594 Northern Hemisphere sites covering the last 30 kyr and beyond
EURADCLIM: the European climatological high-resolution gauge-adjusted radar precipitation dataset
Radar and ground-level measurements of clouds and precipitation collected during the POPE 2020 campaign at Princess Elisabeth Antarctica
Combined wind lidar and cloud radar for high-resolution wind profiling
An enhanced integrated water vapour dataset from more than 10 000 global ground-based GPS stations in 2020
TPHiPr: a long-term (1979–2020) high-accuracy precipitation dataset (1∕30°, daily) for the Third Pole region based on high-resolution atmospheric modeling and dense observations
The AntAWS dataset: a compilation of Antarctic automatic weather station observations
HiTIC-Monthly: a monthly high spatial resolution (1 km) human thermal index collection over China during 2003–2020
Thomas Fiolleau and Rémy Roca
Earth Syst. Sci. Data, 16, 4021–4050, https://doi.org/10.5194/essd-16-4021-2024, https://doi.org/10.5194/essd-16-4021-2024, 2024
Short summary
Short summary
This paper presents a database of tropical deep convective systems over the 2012–2020 period, built from a cloud-tracking algorithm called TOOCAN, which has been applied to homogenized infrared observations from a fleet of geostationary satellites. This database aims to analyze the tropical deep convective systems, the evolution of their associated characteristics over their life cycle, their organization, and their importance in the hydrological and energy cycle.
Bing Li, Shunlin Liang, Han Ma, Guanpeng Dong, Xiaobang Liu, Tao He, and Yufang Zhang
Earth Syst. Sci. Data, 16, 3795–3819, https://doi.org/10.5194/essd-16-3795-2024, https://doi.org/10.5194/essd-16-3795-2024, 2024
Short summary
Short summary
This study describes 1 km all-weather instantaneous and daily mean land surface temperature (LST) datasets on the global scale during 2000–2020. It is the first attempt to synergistically estimate all-weather instantaneous and daily mean LST data on a long global-scale time series. The generated datasets were evaluated by the observations from in situ stations and other LST datasets, and the evaluation indicated that the dataset is sufficiently reliable.
Zhiqi Xu, Jianping Guo, Guwei Zhang, Yuchen Ye, Haikun Zhao, and Haishan Chen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-329, https://doi.org/10.5194/essd-2024-329, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Tropical cyclones (TCs) are powerful weather systems that can cause extreme disasters. Here we generate a global long-term TC size and intensity reconstruction dataset, covering a time period from 1959 to 2022, with a 3-hour temporal resolution, using machine learning model. These can be valuable for filling observational data gaps, advancing our understanding of TC climatology, thereby facilitating risk assessments and defenses against TC-related disasters.
Zen Mariani, Sara M. Morris, Taneil Uttal, Elena Akish, Robert Crawford, Laura Huang, Jonathan Day, Johanna Tjernström, Øystein Godøy, Lara Ferrighi, Leslie M. Hartten, Jareth Holt, Christopher J. Cox, Ewan O'Connor, Roberta Pirazzini, Marion Maturilli, Giri Prakash, James Mather, Kimberly Strong, Pierre Fogal, Vasily Kustov, Gunilla Svensson, Michael Gallagher, and Brian Vasel
Earth Syst. Sci. Data, 16, 3083–3124, https://doi.org/10.5194/essd-16-3083-2024, https://doi.org/10.5194/essd-16-3083-2024, 2024
Short summary
Short summary
During the Year of Polar Prediction (YOPP), we increased measurements in the polar regions and have made dedicated efforts to centralize and standardize all of the different types of datasets that have been collected to facilitate user uptake and model–observation comparisons. This paper is an overview of those efforts and a description of the novel standardized Merged Observation Data Files (MODFs), including a description of the sites, data format, and instruments.
Yaoming Ma, Zhipeng Xie, Yingying Chen, Shaomin Liu, Tao Che, Ziwei Xu, Lunyu Shang, Xiaobo He, Xianhong Meng, Weiqiang Ma, Baiqing Xu, Huabiao Zhao, Junbo Wang, Guangjian Wu, and Xin Li
Earth Syst. Sci. Data, 16, 3017–3043, https://doi.org/10.5194/essd-16-3017-2024, https://doi.org/10.5194/essd-16-3017-2024, 2024
Short summary
Short summary
Current models and satellites struggle to accurately represent the land–atmosphere (L–A) interactions over the Tibetan Plateau. We present the most extensive compilation of in situ observations to date, comprising 17 years of data on L–A interactions across 12 sites. This quality-assured benchmark dataset provides independent validation to improve models and remote sensing for the region, and it enables new investigations of fine-scale L–A processes and their mechanistic drivers.
Juan M. Socuellamos, Raquel Rodriguez Monje, Matthew D. Lebsock, Ken B. Cooper, Robert M. Beauchamp, and Arturo Umeyama
Earth Syst. Sci. Data, 16, 2701–2715, https://doi.org/10.5194/essd-16-2701-2024, https://doi.org/10.5194/essd-16-2701-2024, 2024
Short summary
Short summary
This paper describes multifrequency radar observations of clouds and precipitation during the EPCAPE campaign. The data sets were obtained from CloudCube, a Ka-, W-, and G-band atmospheric profiling radar, to demonstrate synergies between multifrequency retrievals. This data collection provides a unique opportunity to study hydrometeors with diameters in the millimeter and submillimeter size range that can be used to better understand the drop size distribution within clouds and precipitation.
Ramon Padullés, Estel Cardellach, Antía Paz, Santi Oliveras, Douglas C. Hunt, Sergey Sokolovskiy, Jan P. Weiss, Kuo-Nung Wang, F. Joe Turk, Chi O. Ao, and Manuel de la Torre Juárez
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-150, https://doi.org/10.5194/essd-2024-150, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
This dataset provides, for the first time, combined observations of clouds and precipitation with coincident retrievals of atmospheric thermodynamics obtained from the same space based instrument. Furthermore, it provides the locations of the ray-trajectories of the observations, along various precipitation-related products interpolated into them, with the aim to foster the use of such dataset in scientific and operational applications.
Francesca Lappin, Gijs de Boer, Petra Klein, Jonathan Hamilton, Michelle Spencer, Radiance Calmer, Antonio R. Segales, Michael Rhodes, Tyler M. Bell, Justin Buchli, Kelsey Britt, Elizabeth Asher, Isaac Medina, Brian Butterworth, Leia Otterstatter, Madison Ritsch, Bryony Puxley, Angelina Miller, Arianna Jordan, Ceu Gomez-Faulk, Elizabeth Smith, Steven Borenstein, Troy Thornberry, Brian Argrow, and Elizabeth Pillar-Little
Earth Syst. Sci. Data, 16, 2525–2541, https://doi.org/10.5194/essd-16-2525-2024, https://doi.org/10.5194/essd-16-2525-2024, 2024
Short summary
Short summary
This article provides an overview of the lower-atmospheric dataset collected by two uncrewed aerial systems near the Gulf of Mexico coastline south of Houston, TX, USA, as part of the TRacking Aerosol Convection interactions ExpeRiment (TRACER) campaign. The data were collected through boundary layer transitions, through sea breeze circulations, and in the pre- and near-storm environment to understand how these processes influence the coastal environment.
Zhiwei Yang, Jian Peng, Yanxu Liu, Song Jiang, Xueyan Cheng, Xuebang Liu, Jianquan Dong, Tiantian Hua, and Xiaoyu Yu
Earth Syst. Sci. Data, 16, 2407–2424, https://doi.org/10.5194/essd-16-2407-2024, https://doi.org/10.5194/essd-16-2407-2024, 2024
Short summary
Short summary
We produced a monthly Universal Thermal Climate Index dataset (GloUTCI-M) boasting global coverage and an extensive time series spanning March 2000 to October 2022 with a high spatial resolution of 1 km. This dataset is the product of a comprehensive approach leveraging multiple data sources and advanced machine learning models. GloUTCI-M can enhance our capacity to evaluate thermal stress experienced by the human, offering substantial prospects across a wide array of applications.
Kaixu Bai, Ke Li, Liuqing Shao, Xinran Li, Chaoshun Liu, Zhengqiang Li, Mingliang Ma, Di Han, Yibing Sun, Zhe Zheng, Ruijie Li, Ni-Bin Chang, and Jianping Guo
Earth Syst. Sci. Data, 16, 2425–2448, https://doi.org/10.5194/essd-16-2425-2024, https://doi.org/10.5194/essd-16-2425-2024, 2024
Short summary
Short summary
A global gap-free high-resolution air pollutant dataset (LGHAP v2) was generated to provide spatially contiguous AOD and PM2.5 concentration maps with daily 1 km resolution from 2000 to 2021. This gap-free dataset has good data accuracies compared to ground-based AOD and PM2.5 concentration observations, which is a reliable database to advance aerosol-related studies and trigger multidisciplinary applications for environmental management, health risk assessment, and climate change analysis.
Frédéric Laly, Patrick Chazette, Julien Totems, Jérémy Lagarrigue, Laurent Forges, and Cyrille Flamant
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-73, https://doi.org/10.5194/essd-2024-73, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
We present a dataset of water vapor mixing ratio profiles acquired during the WaLiNeAs campaign in fall and winter 2022 and summer 2023, using 3 lidar systems deployed on the Western Mediterranean coastline. This innovative campaign gives access to low tropospheric water vapor variability to constrain meteorological forecasting models. The scientific objective is to improve forecasting of heavy precipation events that lead to severe flash floods.
Finn Burgemeister, Marco Clemens, and Felix Ament
Earth Syst. Sci. Data, 16, 2317–2332, https://doi.org/10.5194/essd-16-2317-2024, https://doi.org/10.5194/essd-16-2317-2024, 2024
Short summary
Short summary
Knowledge of small-scale rainfall variability is needed for hydro-meteorological applications in urban areas. Therefore, we present an open-access data set covering reanalyzed radar reflectivities and rainfall estimates measured by a weather radar at high spatio-temporal resolution in the urban environment of Hamburg between 2013 and 2021. We describe the data reanalysis, outline the measurement’s performance for long time periods, and discuss open issues and limitations of the data set.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Nicola Bodini, Mike Optis, Stephanie Redfern, David Rosencrans, Alex Rybchuk, Julie K. Lundquist, Vincent Pronk, Simon Castagneri, Avi Purkayastha, Caroline Draxl, Raghavendra Krishnamurthy, Ethan Young, Billy Roberts, Evan Rosenlieb, and Walter Musial
Earth Syst. Sci. Data, 16, 1965–2006, https://doi.org/10.5194/essd-16-1965-2024, https://doi.org/10.5194/essd-16-1965-2024, 2024
Short summary
Short summary
This article presents the 2023 National Offshore Wind data set (NOW-23), an updated resource for offshore wind information in the US. It replaces the Wind Integration National Dataset (WIND) Toolkit, offering improved accuracy through advanced weather prediction models. The data underwent regional tuning and validation and can be accessed at no cost.
Uwe Pfeifroth, Jaqueline Drücke, Steffen Kothe, Jörg Trentmann, Marc Schröder, and Rainer Hollmann
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-91, https://doi.org/10.5194/essd-2024-91, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
The energy reaching the Earth’s surface from the sun is a quantity of high importance for the climate system and for many applications. SARAH-3 is a satellite-based climate data record of surface solar radiation parameters. It is generated and distributed by the EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF). SARAH-3 covers more than 4 decades, provides a high spatial and temporal resolution and its validation shows a good accuracy and stability.
Longhu Chen, Qinqin Wang, Guofeng Zhu, Xinrui Lin, Dongdong Qiu, Yinying Jiao, Siyu Lu, Rui Li, Gaojia Meng, and Yuhao Wang
Earth Syst. Sci. Data, 16, 1543–1557, https://doi.org/10.5194/essd-16-1543-2024, https://doi.org/10.5194/essd-16-1543-2024, 2024
Short summary
Short summary
We have compiled data regarding stable precipitation isotopes from 842 sampling points throughout the Eurasian continent since 1961, accumulating a total of 51 753 data records. The collected data have undergone pre-processing and statistical analysis. We also analysed the spatiotemporal distribution of stable precipitation isotopes across the Eurasian continent and their interrelationships with meteorological elements.
Leah Bertrand, Jennifer E. Kay, John Haynes, and Gijs de Boer
Earth Syst. Sci. Data, 16, 1301–1316, https://doi.org/10.5194/essd-16-1301-2024, https://doi.org/10.5194/essd-16-1301-2024, 2024
Short summary
Short summary
The vertical structure of clouds has a major impact on global energy flows, air circulation, and the hydrologic cycle. Two satellite instruments, CloudSat radar and CALIPSO lidar, have taken complementary measurements of cloud vertical structure for over a decade. Here, we present the 3S-GEOPROF-COMB product, a globally gridded satellite data product combining CloudSat and CALIPSO observations of cloud vertical structure.
Jiye Leng, Jing M. Chen, Wenyu Li, Xiangzhong Luo, Mingzhu Xu, Jane Liu, Rong Wang, Cheryl Rogers, Bolun Li, and Yulin Yan
Earth Syst. Sci. Data, 16, 1283–1300, https://doi.org/10.5194/essd-16-1283-2024, https://doi.org/10.5194/essd-16-1283-2024, 2024
Short summary
Short summary
We produced a long-term global two-leaf gross primary productivity (GPP) and evapotranspiration (ET) dataset at the hourly time step by integrating a diagnostic process-based model with dynamic parameterizations. The new dataset provides us with a unique opportunity to study carbon and water fluxes at sub-daily time scales and advance our understanding of ecosystem functions in response to transient environmental changes.
Valentin Wiener, Marie-Laure Roussel, Christophe Genthon, Étienne Vignon, Jacopo Grazioli, and Alexis Berne
Earth Syst. Sci. Data, 16, 821–836, https://doi.org/10.5194/essd-16-821-2024, https://doi.org/10.5194/essd-16-821-2024, 2024
Short summary
Short summary
This paper presents 7 years of data from a precipitation radar deployed at the Dumont d'Urville station in East Antarctica. The main characteristics of the dataset are outlined in a short statistical study. Interannual and seasonal variability are also investigated. Then, we extensively describe the processing method to retrieve snowfall profiles from the radar data. Lastly, a brief comparison is made with two climate models as an application example of the dataset.
Ling Yuan, Xuelong Chen, Yaoming Ma, Cunbo Han, Binbin Wang, and Weiqiang Ma
Earth Syst. Sci. Data, 16, 775–801, https://doi.org/10.5194/essd-16-775-2024, https://doi.org/10.5194/essd-16-775-2024, 2024
Short summary
Short summary
Accurately monitoring and understanding the spatial–temporal variability of evapotranspiration (ET) components over the Tibetan Plateau (TP) remains difficult. Here, 37 years (1982–2018) of monthly ET component data for the TP was produced, and the data are consistent with measurements. The annual average ET for the TP was about 0.93 (± 0.037) × 103 Gt yr−1. The rate of increase of the ET was around 0.96 mm yr−1. The increase in the ET can be explained by warming and wetting of the climate.
Dominik Rains, Isabel Trigo, Emanuel Dutra, Sofia Ermida, Darren Ghent, Petra Hulsman, Jose Gómez-Dans, and Diego G. Miralles
Earth Syst. Sci. Data, 16, 567–593, https://doi.org/10.5194/essd-16-567-2024, https://doi.org/10.5194/essd-16-567-2024, 2024
Short summary
Short summary
Land surface temperature and surface net radiation are vital inputs for many land surface and hydrological models. However, current remote sensing datasets of these variables come mostly at coarse resolutions, and the few high-resolution datasets available have large gaps due to cloud cover. Here, we present a continuous daily product for both variables across Europe for 2018–2019 obtained by combining observations from geostationary as well as polar-orbiting satellites.
Hadleigh D. Thompson, Julie M. Thériault, Stephen J. Déry, Ronald E. Stewart, Dominique Boisvert, Lisa Rickard, Nicolas R. Leroux, Matteo Colli, and Vincent Vionnet
Earth Syst. Sci. Data, 15, 5785–5806, https://doi.org/10.5194/essd-15-5785-2023, https://doi.org/10.5194/essd-15-5785-2023, 2023
Short summary
Short summary
The Saint John River experiment on Cold Season Storms was conducted in northwest New Brunswick, Canada, to investigate the types of precipitation that can lead to ice jams and flooding along the river. We deployed meteorological instruments, took precipitation measurements and photographs of snowflakes, and launched weather balloons. These data will help us to better understand the atmospheric conditions that can affect local communities and townships downstream during the spring melt season.
Raghavendra Krishnamurthy, Gabriel García Medina, Brian Gaudet, William I. Gustafson Jr., Evgueni I. Kassianov, Jinliang Liu, Rob K. Newsom, Lindsay M. Sheridan, and Alicia M. Mahon
Earth Syst. Sci. Data, 15, 5667–5699, https://doi.org/10.5194/essd-15-5667-2023, https://doi.org/10.5194/essd-15-5667-2023, 2023
Short summary
Short summary
Our understanding and ability to observe and model air–sea processes has been identified as a principal limitation to our ability to predict future weather. Few observations exist offshore along the coast of California. To improve our understanding of the air–sea transition zone and support the wind energy industry, two buoys with state-of-the-art equipment were deployed for 1 year. In this article, we present details of the post-processing, algorithms, and analyses.
Baptiste Vandecrux, Jason E. Box, Andreas P. Ahlstrøm, Signe B. Andersen, Nicolas Bayou, William T. Colgan, Nicolas J. Cullen, Robert S. Fausto, Dominik Haas-Artho, Achim Heilig, Derek A. Houtz, Penelope How, Ionut Iosifescu Enescu, Nanna B. Karlsson, Rebecca Kurup Buchholz, Kenneth D. Mankoff, Daniel McGrath, Noah P. Molotch, Bianca Perren, Maiken K. Revheim, Anja Rutishauser, Kevin Sampson, Martin Schneebeli, Sandy Starkweather, Simon Steffen, Jeff Weber, Patrick J. Wright, Henry Jay Zwally, and Konrad Steffen
Earth Syst. Sci. Data, 15, 5467–5489, https://doi.org/10.5194/essd-15-5467-2023, https://doi.org/10.5194/essd-15-5467-2023, 2023
Short summary
Short summary
The Greenland Climate Network (GC-Net) comprises stations that have been monitoring the weather on the Greenland Ice Sheet for over 30 years. These stations are being replaced by newer ones maintained by the Geological Survey of Denmark and Greenland (GEUS). The historical data were reprocessed to improve their quality, and key information about the weather stations has been compiled. This augmented dataset is available at https://doi.org/10.22008/FK2/VVXGUT (Steffen et al., 2022).
Giovanni Chellini, Rosa Gierens, Kerstin Ebell, Theresa Kiszler, Pavel Krobot, Alexander Myagkov, Vera Schemann, and Stefan Kneifel
Earth Syst. Sci. Data, 15, 5427–5448, https://doi.org/10.5194/essd-15-5427-2023, https://doi.org/10.5194/essd-15-5427-2023, 2023
Short summary
Short summary
We present a comprehensive quality-controlled dataset of remote sensing observations of low-level mixed-phase clouds (LLMPCs) taken at the high Arctic site of Ny-Ålesund, Svalbard, Norway. LLMPCs occur frequently in the Arctic region, and substantially warm the surface. However, our understanding of microphysical processes in these clouds is incomplete. This dataset includes a comprehensive set of variables which allow for extensive investigation of such processes in LLMPCs at the site.
Solomon H. Gebrechorkos, Jian Peng, Ellen Dyer, Diego G. Miralles, Sergio M. Vicente-Serrano, Chris Funk, Hylke E. Beck, Dagmawi T. Asfaw, Michael B. Singer, and Simon J. Dadson
Earth Syst. Sci. Data, 15, 5449–5466, https://doi.org/10.5194/essd-15-5449-2023, https://doi.org/10.5194/essd-15-5449-2023, 2023
Short summary
Short summary
Drought is undeniably one of the most intricate and significant natural hazards with far-reaching consequences for the environment, economy, water resources, agriculture, and societies across the globe. In response to this challenge, we have devised high-resolution drought indices. These indices serve as invaluable indicators for assessing shifts in drought patterns and their associated impacts on a global, regional, and local level facilitating the development of tailored adaptation strategies.
Emma L. Robinson, Chris Huntingford, Valyaveetil Shamsudheen Semeena, and James M. Bullock
Earth Syst. Sci. Data, 15, 5371–5401, https://doi.org/10.5194/essd-15-5371-2023, https://doi.org/10.5194/essd-15-5371-2023, 2023
Short summary
Short summary
CHESS-SCAPE is a suite of high-resolution climate projections for the UK to 2080, derived from United Kingdom Climate Projections 2018 (UKCP18), designed to support climate impact modelling. It contains four realisations of four scenarios of future greenhouse gas levels (RCP2.6, 4.5, 6.0 and 8.5), with and without bias correction to historical data. The variables are available at 1 km resolution and a daily time step, with monthly, seasonal and annual means and 20-year mean-monthly time slices.
Motoshi Nishimura, Teruo Aoki, Masashi Niwano, Sumito Matoba, Tomonori Tanikawa, Tetsuhide Yamasaki, Satoru Yamaguchi, and Koji Fujita
Earth Syst. Sci. Data, 15, 5207–5226, https://doi.org/10.5194/essd-15-5207-2023, https://doi.org/10.5194/essd-15-5207-2023, 2023
Short summary
Short summary
We presented the method of data quality checks and the dataset for two ground weather observations in northwest Greenland. We found that the warm and clear weather conditions in the 2015, 2019, and 2020 summers caused the snowmelt and the decline in surface reflectance of solar radiation at a low-elevated site (SIGMA-B; 944 m), but those were not seen at the high-elevated site (SIGMA-A; 1490 m). We hope that our data management method and findings will help climate scientists.
Shaomin Liu, Ziwei Xu, Tao Che, Xin Li, Tongren Xu, Zhiguo Ren, Yang Zhang, Junlei Tan, Lisheng Song, Ji Zhou, Zhongli Zhu, Xiaofan Yang, Rui Liu, and Yanfei Ma
Earth Syst. Sci. Data, 15, 4959–4981, https://doi.org/10.5194/essd-15-4959-2023, https://doi.org/10.5194/essd-15-4959-2023, 2023
Short summary
Short summary
We present a suite of observational datasets from artificial and natural oases–desert systems that consist of long-term turbulent flux and auxiliary data, including hydrometeorological, vegetation, and soil parameters, from 2012 to 2021. We confirm that the 10-year, long-term dataset presented in this study is of high quality with few missing data, and we believe that the data will support ecological security and sustainable development in oasis–desert areas.
Gina C. Jozef, Robert Klingel, John J. Cassano, Björn Maronga, Gijs de Boer, Sandro Dahlke, and Christopher J. Cox
Earth Syst. Sci. Data, 15, 4983–4995, https://doi.org/10.5194/essd-15-4983-2023, https://doi.org/10.5194/essd-15-4983-2023, 2023
Short summary
Short summary
Observations from the MOSAiC expedition relating to lower-atmospheric temperature, wind, stability, moisture, and surface radiation budget from radiosondes, a meteorological tower, radiation station, and ceilometer were compiled to create a dataset which describes the thermodynamic and kinematic state of the central Arctic lower atmosphere between October 2019 and September 2020. This paper describes the methods used to develop this lower-atmospheric properties dataset.
Karl-Göran Karlsson, Martin Stengel, Jan Fokke Meirink, Aku Riihelä, Jörg Trentmann, Tom Akkermans, Diana Stein, Abhay Devasthale, Salomon Eliasson, Erik Johansson, Nina Håkansson, Irina Solodovnik, Nikos Benas, Nicolas Clerbaux, Nathalie Selbach, Marc Schröder, and Rainer Hollmann
Earth Syst. Sci. Data, 15, 4901–4926, https://doi.org/10.5194/essd-15-4901-2023, https://doi.org/10.5194/essd-15-4901-2023, 2023
Short summary
Short summary
This paper presents a global climate data record on cloud parameters, radiation at the surface and at the top of atmosphere, and surface albedo. The temporal coverage is 1979–2020 (42 years) and the data record is also continuously updated until present time. Thus, more than four decades of climate parameters are provided. Based on CLARA-A3, studies on distribution of clouds and radiation parameters can be made and, especially, investigations of climate trends and evaluation of climate models.
Jinghua Xiong, Abhishek, Li Xu, Hrishikesh A. Chandanpurkar, James S. Famiglietti, Chong Zhang, Gionata Ghiggi, Shenglian Guo, Yun Pan, and Bramha Dutt Vishwakarma
Earth Syst. Sci. Data, 15, 4571–4597, https://doi.org/10.5194/essd-15-4571-2023, https://doi.org/10.5194/essd-15-4571-2023, 2023
Short summary
Short summary
To overcome the shortcomings associated with limited spatiotemporal coverage, input data quality, and model simplifications in prevailing evaporation (ET) estimates, we developed an ensemble of 4669 unique terrestrial ET subsets using an independent mass balance approach. Long-term mean annual ET is within 500–600 mm yr−1 with a unimodal seasonal cycle and several piecewise trends during 2002–2021. The uncertainty-constrained results underpin the notion of increasing ET in a warming climate.
Boyang Jiao, Yucheng Su, Qingxiang Li, Veronica Manara, and Martin Wild
Earth Syst. Sci. Data, 15, 4519–4535, https://doi.org/10.5194/essd-15-4519-2023, https://doi.org/10.5194/essd-15-4519-2023, 2023
Short summary
Short summary
This paper develops an observational integrated and homogenized global-terrestrial (except for Antarctica) SSRIH station. This is interpolated into a 5° × 5° SSRIH grid and reconstructed into a long-term (1955–2018) global land (except for Antarctica) 5° × 2.5° SSR anomaly dataset (SSRIH20CR) by an improved partial convolutional neural network deep-learning method. SSRIH20CR yields trends of −1.276 W m−2 per decade over the dimming period and 0.697 W m−2 per decade over the brightening period.
Lukas Frank, Marius Opsanger Jonassen, Teresa Remes, Florina Roana Schalamon, and Agnes Stenlund
Earth Syst. Sci. Data, 15, 4219–4234, https://doi.org/10.5194/essd-15-4219-2023, https://doi.org/10.5194/essd-15-4219-2023, 2023
Short summary
Short summary
The Isfjorden Weather Information Network (IWIN) provides continuous meteorological near-surface observations from Isfjorden in Svalbard. The network combines permanent automatic weather stations on lighthouses along the coast line with mobile stations on board small tourist cruise ships regularly trafficking the fjord during spring to autumn. All data are available online in near-real time. Besides their scientific value, IWIN data crucially enhance the safety of field activities in the region.
Jingya Han, Chiyuan Miao, Jiaojiao Gou, Haiyan Zheng, Qi Zhang, and Xiaoying Guo
Earth Syst. Sci. Data, 15, 3147–3161, https://doi.org/10.5194/essd-15-3147-2023, https://doi.org/10.5194/essd-15-3147-2023, 2023
Short summary
Short summary
Constructing a high-quality, long-term daily precipitation dataset is essential to current hydrometeorology research. This study aims to construct a long-term daily precipitation dataset with different spatial resolutions based on 2839 gauge observations. The constructed precipitation dataset shows reliable quality compared with the other available precipitation products and is expected to facilitate the advancement of drought monitoring, flood forecasting, and hydrological modeling.
Christian Borger, Steffen Beirle, and Thomas Wagner
Earth Syst. Sci. Data, 15, 3023–3049, https://doi.org/10.5194/essd-15-3023-2023, https://doi.org/10.5194/essd-15-3023-2023, 2023
Short summary
Short summary
This study presents a long-term data set of monthly mean total column water vapour (TCWV) based on measurements of the Ozone Monitoring Instrument (OMI) covering the time range from January 2005 to December 2020. We describe how the TCWV values are retrieved from UV–Vis satellite spectra and demonstrate that the OMI TCWV data set is in good agreement with various different reference data sets. Moreover, we also show that it fulfills typical stability requirements for climate data records.
Jonathan Demaeyer, Jonas Bhend, Sebastian Lerch, Cristina Primo, Bert Van Schaeybroeck, Aitor Atencia, Zied Ben Bouallègue, Jieyu Chen, Markus Dabernig, Gavin Evans, Jana Faganeli Pucer, Ben Hooper, Nina Horat, David Jobst, Janko Merše, Peter Mlakar, Annette Möller, Olivier Mestre, Maxime Taillardat, and Stéphane Vannitsem
Earth Syst. Sci. Data, 15, 2635–2653, https://doi.org/10.5194/essd-15-2635-2023, https://doi.org/10.5194/essd-15-2635-2023, 2023
Short summary
Short summary
A benchmark dataset is proposed to compare different statistical postprocessing methods used in forecasting centers to properly calibrate ensemble weather forecasts. This dataset is based on ensemble forecasts covering a portion of central Europe and includes the corresponding observations. Examples on how to download and use the data are provided, a set of evaluation methods is proposed, and a first benchmark of several methods for the correction of 2 m temperature forecasts is performed.
Santiago Beguería, Dhais Peña-Angulo, Víctor Trullenque-Blanco, and Carlos González-Hidalgo
Earth Syst. Sci. Data, 15, 2547–2575, https://doi.org/10.5194/essd-15-2547-2023, https://doi.org/10.5194/essd-15-2547-2023, 2023
Short summary
Short summary
A gridded dataset on monthly precipitation over mainland Spain between spans 1916–2020. The dataset combines ground observations from the Spanish National Climate Data Bank and new data rescued from meteorological yearbooks published prior to 1951, which almost doubled the number of weather stations available during the first decades of the 20th century. Geostatistical techniques were used to interpolate a regular 10 x 10 km grid.
Dirk Nikolaus Karger, Stefan Lange, Chantal Hari, Christopher P. O. Reyer, Olaf Conrad, Niklaus E. Zimmermann, and Katja Frieler
Earth Syst. Sci. Data, 15, 2445–2464, https://doi.org/10.5194/essd-15-2445-2023, https://doi.org/10.5194/essd-15-2445-2023, 2023
Short summary
Short summary
We present the first 1 km, daily, global climate dataset for climate impact studies. We show that the high-resolution data have a decreased bias and higher correlation with measurements from meteorological stations than coarser data. The dataset will be of value for a wide range of climate change impact studies both at global and regional level that benefit from using a consistent global dataset.
Elisa Adirosi, Federico Porcù, Mario Montopoli, Luca Baldini, Alessandro Bracci, Vincenzo Capozzi, Clizia Annella, Giorgio Budillon, Edoardo Bucchignani, Alessandra Lucia Zollo, Orietta Cazzuli, Giulio Camisani, Renzo Bechini, Roberto Cremonini, Andrea Antonini, Alberto Ortolani, Samantha Melani, Paolo Valisa, and Simone Scapin
Earth Syst. Sci. Data, 15, 2417–2429, https://doi.org/10.5194/essd-15-2417-2023, https://doi.org/10.5194/essd-15-2417-2023, 2023
Short summary
Short summary
The paper describes the database of 1 min drop size distribution (DSD) of atmospheric precipitation collected by the Italian disdrometer network over the last 10 years. These data are useful for several applications that range from climatological, meteorological and hydrological uses to telecommunications, agriculture and conservation of cultural heritage exposed to precipitation. Descriptions of the processing and of the database organization, along with some examples, are provided.
Jinfang Yin, Xudong Liang, Yanxin Xie, Feng Li, Kaixi Hu, Lijuan Cao, Feng Chen, Haibo Zou, Feng Zhu, Xin Sun, Jianjun Xu, Geli Wang, Ying Zhao, and Juanjuan Liu
Earth Syst. Sci. Data, 15, 2329–2346, https://doi.org/10.5194/essd-15-2329-2023, https://doi.org/10.5194/essd-15-2329-2023, 2023
Short summary
Short summary
A collection of regional reanalysis datasets has been produced. However, little attention has been paid to East Asia, and there are no long-term, physically consistent regional reanalysis data available. The East Asia Reanalysis System was developed using the WRF model and GSI data assimilation system. A 39-year (1980–2018) reanalysis dataset is available for the East Asia region, at a high temporal (of 3 h) and spatial resolution (of 12 km), for mesoscale weather and regional climate studies.
John Erik Engström, Lennart Wern, Sverker Hellström, Erik Kjellström, Chunlüe Zhou, Deliang Chen, and Cesar Azorin-Molina
Earth Syst. Sci. Data, 15, 2259–2277, https://doi.org/10.5194/essd-15-2259-2023, https://doi.org/10.5194/essd-15-2259-2023, 2023
Short summary
Short summary
Newly digitized wind speed observations provide data from the time period from around 1920 to the present, enveloping one full century of wind measurements. The results of this work enable the investigation of the historical variability and trends in surface wind speed in Sweden for
the last century.
Ulrike Herzschuh, Thomas Böhmer, Chenzhi Li, Manuel Chevalier, Raphaël Hébert, Anne Dallmeyer, Xianyong Cao, Nancy H. Bigelow, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Odile Peyron, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng
Earth Syst. Sci. Data, 15, 2235–2258, https://doi.org/10.5194/essd-15-2235-2023, https://doi.org/10.5194/essd-15-2235-2023, 2023
Short summary
Short summary
Climate reconstruction from proxy data can help evaluate climate models. We present pollen-based reconstructions of mean July temperature, mean annual temperature, and annual precipitation from 2594 pollen records from the Northern Hemisphere, using three reconstruction methods (WA-PLS, WA-PLS_tailored, and MAT). Since no global or hemispheric synthesis of quantitative precipitation changes are available for the Holocene so far, this dataset will be of great value to the geoscientific community.
Aart Overeem, Else van den Besselaar, Gerard van der Schrier, Jan Fokke Meirink, Emiel van der Plas, and Hidde Leijnse
Earth Syst. Sci. Data, 15, 1441–1464, https://doi.org/10.5194/essd-15-1441-2023, https://doi.org/10.5194/essd-15-1441-2023, 2023
Short summary
Short summary
EURADCLIM is a new precipitation dataset covering a large part of Europe. It is based on weather radar data to provide local precipitation information every hour and combined with rain gauge data to obtain good precipitation estimates. EURADCLIM provides a much better reference for validation of weather model output and satellite precipitation datasets. It also allows for climate monitoring and better evaluation of extreme precipitation events and their impact (landslides, flooding).
Alfonso Ferrone and Alexis Berne
Earth Syst. Sci. Data, 15, 1115–1132, https://doi.org/10.5194/essd-15-1115-2023, https://doi.org/10.5194/essd-15-1115-2023, 2023
Short summary
Short summary
This article presents the datasets collected between November 2019 and February 2020 in the vicinity of the Belgian research base Princess Elisabeth Antarctica. Five meteorological radars, a multi-angle snowflake camera, three weather stations, and two radiometers have been deployed at five sites, up to a maximum distance of 30 km from the base. Their varied locations allow the study of spatial variability in snowfall and its interaction with the complex terrain in the region.
José Dias Neto, Louise Nuijens, Christine Unal, and Steven Knoop
Earth Syst. Sci. Data, 15, 769–789, https://doi.org/10.5194/essd-15-769-2023, https://doi.org/10.5194/essd-15-769-2023, 2023
Short summary
Short summary
This paper describes a dataset from a novel experimental setup to retrieve wind speed and direction profiles, combining cloud radars and wind lidar. This setup allows retrieving profiles from near the surface to the top of clouds. The field campaign occurred in Cabauw, the Netherlands, between September 13th and October 3rd 2021. This paper also provides examples of applications of this dataset (e.g. studying atmospheric turbulence, validating numerical atmospheric models).
Peng Yuan, Geoffrey Blewitt, Corné Kreemer, William C. Hammond, Donald Argus, Xungang Yin, Roeland Van Malderen, Michael Mayer, Weiping Jiang, Joseph Awange, and Hansjörg Kutterer
Earth Syst. Sci. Data, 15, 723–743, https://doi.org/10.5194/essd-15-723-2023, https://doi.org/10.5194/essd-15-723-2023, 2023
Short summary
Short summary
We developed a 5 min global integrated water vapour (IWV) product from 12 552 ground-based GPS stations in 2020. It contains more than 1 billion IWV estimates. The dataset is an enhanced version of the existing operational GPS IWV dataset from the Nevada Geodetic Laboratory. The enhancement is reached by using accurate meteorological information from ERA5 for the GPS IWV retrieval with a significantly higher spatiotemporal resolution. The dataset is recommended for high-accuracy applications.
Yaozhi Jiang, Kun Yang, Youcun Qi, Xu Zhou, Jie He, Hui Lu, Xin Li, Yingying Chen, Xiaodong Li, Bingrong Zhou, Ali Mamtimin, Changkun Shao, Xiaogang Ma, Jiaxin Tian, and Jianhong Zhou
Earth Syst. Sci. Data, 15, 621–638, https://doi.org/10.5194/essd-15-621-2023, https://doi.org/10.5194/essd-15-621-2023, 2023
Short summary
Short summary
Our work produces a long-term (1979–2020) high-resolution (1/30°, daily) precipitation dataset for the Third Pole (TP) region by merging an advanced atmospheric simulation with high-density rain gauge (more than 9000) observations. Validation shows that the produced dataset performs better than the currently widely used precipitation datasets in the TP. This dataset can be used for hydrological, meteorological and ecological studies in the TP.
Yetang Wang, Xueying Zhang, Wentao Ning, Matthew A. Lazzara, Minghu Ding, Carleen H. Reijmer, Paul C. J. P. Smeets, Paolo Grigioni, Petra Heil, Elizabeth R. Thomas, David Mikolajczyk, Lee J. Welhouse, Linda M. Keller, Zhaosheng Zhai, Yuqi Sun, and Shugui Hou
Earth Syst. Sci. Data, 15, 411–429, https://doi.org/10.5194/essd-15-411-2023, https://doi.org/10.5194/essd-15-411-2023, 2023
Short summary
Short summary
Here we construct a new database of Antarctic automatic weather station (AWS) meteorological records, which is quality-controlled by restrictive criteria. This dataset compiled all available Antarctic AWS observations, and its resolutions are 3-hourly, daily and monthly, which is very useful for quantifying spatiotemporal variability in weather conditions. Furthermore, this compilation will be used to estimate the performance of the regional climate models or meteorological reanalysis products.
Hui Zhang, Ming Luo, Yongquan Zhao, Lijie Lin, Erjia Ge, Yuanjian Yang, Guicai Ning, Jing Cong, Zhaoliang Zeng, Ke Gui, Jing Li, Ting On Chan, Xiang Li, Sijia Wu, Peng Wang, and Xiaoyu Wang
Earth Syst. Sci. Data, 15, 359–381, https://doi.org/10.5194/essd-15-359-2023, https://doi.org/10.5194/essd-15-359-2023, 2023
Short summary
Short summary
We generate the first monthly high-resolution (1 km) human thermal index collection (HiTIC-Monthly) in China over 2003–2020, in which 12 human-perceived temperature indices are generated by LightGBM. The HiTIC-Monthly dataset has a high accuracy (R2 = 0.996, RMSE = 0.693 °C, MAE = 0.512 °C) and describes explicit spatial variations for fine-scale studies. It is freely available at https://zenodo.org/record/6895533 and https://data.tpdc.ac.cn/disallow/036e67b7-7a3a-4229-956f-40b8cd11871d.
Cited articles
Adamovic, M., Branger, F., Braud, I., and Kralisch, S.: Development of a data-driven semi-distributed hydrological model for regional scale catchments prone to Mediterranean flash floods, J. Hydrol., 541, 173–189, https://doi.org/10.1016/j.jhydrol.2016.03.032, 2016.
Amponsah, W., Marchi, L., Zoccatelli, D., Boni, G., Cavalli, M., Comiti, F., Crema, S., Lucía, A., Marra, F., and Borga, M.: Hydrometeorological characterisation of a flash flood associated with major geomorphic effects: Assessment of peak discharge uncertainties and analysis of the runoff response, J. Hydrometeor., 17, 3063–3077, https://doi.org/10.1175/JHM-D-16-0081.1, 2016.
Amponsah, W., Ayral, P. A., Boudevillain, B., Bouvier, C., Braud, I., Brunet, P., Delrieu, G., Didon-Lescot, J.F., Gaume, E., Lebouc, L., Marchi, L., Marra, F., Morin, E., Nord, G., Payrastre, O., Zoccatelli, D., and Borga, M.: “EuroMedeFF” SEDOO OMP, https://doi.org/10.6096/mistrals-hymex.1493,, 2018.
Borga, M., Boscolo, P., Zanon, F., and Sangati, M.: Hydrometeorological Analysis of the 29 August 2003 Flash Flood in the Eastern Italian Alps, J. Hydrometeor., 8, 1049–1067, 2007.
Borga, M., Gaume, E., Creutin, J. D., and Marchi, L.: Surveying flash flood response: gauging the ungauged extremes, Hydrol. Proc., 22, 3883–3885, 2008.
Borga, M., Stoffel, M., Marchi, L., Marra, F., and Jacob, M.: Hydrogeomorphic response to extreme rainfall in headwater systems: flash floods and debris flows, J. Hydrol., 518, 194–205, https://doi.org/10.1016/j.jhydrol.2014.05.022, 2014.
Boudevillain, B., Delrieu, G., Wijbrans, A., and Confoland, A.: A high-resolution rainfall re-analysis based on radar–raingauge merging in the Cévennes-Vivarais region, France, J. Hydrol., 541, 14–23, 2016.
Bouilloud, L., Delrieu, G., Boudevillain, B., Borga, M., and Zanon, F.: Radar rainfall estimation for the post-event analysis of a Slovenian flash-flood case: application of the Mountain Reference Technique at C-band frequency, Hydrol. Earth Syst. Sci., 13, 1349–1360, https://doi.org/10.5194/hess-13-1349-2009, 2009.
Bouilloud, L., Delrieu, G., Boudevillain, B., and Kirstetter, P.-E.: Radar rainfall estimation in the context of post-event analysis of flash-flood events, J. Hydrol., 394, 17–27, 2010.
Braud, I., Ayral, P.-A., Bouvier, C., Branger, F., Delrieu, G., Le Coz, J., Nord, G., Vandervaere, J.-P., Anquetin, S., Adamovic, M., Andrieu, J., Batiot, C., Boudevillain, B., Brunet, P., Carreau, J., Confoland, A., Didon-Lescot, J.-F., Domergue, J.-M., Douvinet, J., Dramais, G., Freydier, R., Gérard, S., Huza, J., Leblois, E., Le Bourgeois, O., Le Boursicaud, R., Marchand, P., Martin, P., Nottale, L., Patris, N., Renard, B., Seidel, J.-L., Taupin, J.-D., Vannier, O., Vincendon, B., and Wijbrans, A.: Multi-scale hydrometeorological observation and modelling for flash flood understanding, Hydrol. Earth Syst. Sci., 18, 3733–3761, https://doi.org/10.5194/hess-18-3733-2014, 2014.
Braud, I., Borga, M., Gourley, J., Hürlimann, M., Zappa, M., and Gallart, F.: Flash floods, hydro-geomorphic response and risk management, J. Hydrol., 541, 1–5, 2016.
Brunet, P. and Bouvier, C.: Analysis of the September 12th 2015 Lodève (France) flash flood: influence of karsts on flood characteristics, La Houille Blanche, no. 3, 39–46, 2017.
Brunet, P., Bouvier, C., and Neppel, L.: Retour d'expérience sur les crues des 6 et 7 octobre 2014 à Montpellier-Grabels (Hérault, France): caractéristiques hydro-météorologiques et contexte historique de l'épisode, Physio-Géo Géographie physique et environnement Volume 12,Varia, https://journals.openedition.org/physio-geo/5710, last access: 3 September 2018.
Budyko, M. I.: Climate and Life, Academic Press, New York, 1974.
Calianno, M., Ruin, I., and Gourley, J. J.: Supplementing flash flood reports with impact classifications, J. Hydrol., 477, 1–16, 2013.
Collier, C.: Flash flood forecasting: What are the limits of predictability? Q. J. Roy. Meteor. Soc., 133, 3–23, 2007.
Dayan, U., Nissen, K., and Ulbrich, U.: Review Article: Atmospheric conditions inducing extreme precipitation over the eastern and western Mediterranean, Nat. Hazards Earth Syst. Sci., 15, 2525–2544, https://doi.org/10.5194/nhess-15-2525-2015, 2015.
Delrieu, G, Ducrocq, V., Gaume, E., Nicol, J., Payrastre, O., Yates, E., Kirstetter, P. E., Andrieu, H., Ayral, P. A., Bouvier, C., Creutin, J. D., Livet, M., Anquetin, A., Lang, M., Neppel, L., Obled, C., Parent-du-Chatelet, J., Saulnier, G. M., Walpersdorf, A., and Wobrock, W.: The catastrophic flash-flood event of 8–9 September 2002 in the Gard region, France: a first case study for the Cévennes-Vivarais Mediterranean Hydro-meteorological Observatory, J. Hydrometeor., 6, 34–52, 2005.
Delrieu, G., Wijbrans, A., Boudevillain, B., Faure, D., Bonnifait, L., and Kirstetter, P.-E.: Geostatistical radar–raingauge merging: A novel method for the quantification of rain estimation accuracy, Adv. Water Resour., 71, 110–124, 2014.
Destro, E., Marchi, L., Amponsah, W., Tarolli, P., Crema, S., Zoccatelli, D., Marra, F., and Borga, M.: Hydrological analysis of the flash flood event of August 2, 2014 in a small basin of the Venetian Prealps, Quaderni di Idronomia Montana, 34, 307–316, 2016.
Destro, E., Amponsah, W., Nikolopoulos, E. I., Marchi, L., Marra, F., Zoccatelli, D., and Borga, M.: Coupled prediction of flash flood response and debris flow occurrence: Application on an alpine extreme flood event, J. Hydrol., 558, 225–237, 2018.
Gaume, E., Livet, M., Desbordes, M., and Villeneuve, J. P.: Hydrological analysis of the river Aude, France, flash flood on 12 and 13 November 1999, J. Hydrol., 286, 135–154, 2004.
Gaume, E. and Borga, M.: Post-flood field investigations in upland catchments after major flash floods: proposal of a methodology and illustrations, J. Flood Risk Manag., 1, 175–189, 2008.
Gaume, E., Bain, V., Bernardara, P., Newinger, O., Barbuc, M., Bateman, A., Blaškovičová, L., Blöschl, G., Borga, M., Dumitrescu, A., Daliakopoulos, I., Garcia, J., Irimescu, A., Kohnová, S., Koutroulis, A., Marchi, L., Matreata, S., Medina, V., Preciso, E., Sempere-Torres, D., Stancalie, G., Szolgay, J., Tsanis, I., Velasco, D., and Viglione, A.: A collation of data on European flash floods, J. Hydrol., 367, 70–78, 2009.
Germann, U., Galli, G., Boscacci, M., and Bolliger, M.: Radar Precipitation Measurement in a Mountainous Region, Q. J. Roy. Meteorol. Soc., 132, 1669–1692, https://doi.org/10.1256/qj.05.190, 2006.
Greenbaum, N., Margalit, A., Schick, A. P., Sharon, D., and Baker, V. R.: A high magnitude storm and flood in a hyperarid catchment, Nahal Zin, Negev Desert, Israel, Hydrol. Proc., 12, 1–23, 1998.
Grodek, T., Jacoby, Y., Morin, E., and Katz, O.: Effectiveness of exceptional rainstorms on a small Mediterranean basin, Geomorphology, 159–160, 156–168, 2012.
Hardy, J., Gourley, J. J., Kirstetter, P.-E., Hong, Y., Kong, F., and Flamig, Z. L.: A method for probabilistic flash flood forecasting, J. Hydrol., 541, 480–494, 2016.
Le Bihan, G., Payrastre, O., Gaume, E., Moncoulon, D., and Pons, F.: The challenge of forecasting impacts of flash floods: test of a simplified hydraulic approach and validation based on insurance claim data, Hydrol. Earth Syst. Sci., 21, 5911–5928, https://doi.org/10.5194/hess-21-5911-2017, 2017.
Lange, J., Leibundgut, C., Greenbaum, N., and Schick, A. P.: A noncalibrated rainfall-runoff model for large, arid catchments, Water Resour. Res., 35, 2161–2172, 1999.
Lumbroso, D. and Gaume, E.: Reducing the uncertainty in indirect estimates of extreme flash flood discharges, J. Hydrol., 414–415, 16–30, 2012.
Marchi, L., Borga, M., Preciso, E., Sangati, M., Gaume, E., Bain, V., Delrieu, G., Bonnifait, L., and Pogačnik, N.: Comprehensive post-event survey of a flash flood in Western Slovenia: observation strategy and lessons learned, Hydrol. Proc., 23, 3761–3770, 2009.
Marchi, L., Borga, M., Preciso, E., and Gaume, E.: Characterisation of selected extreme flash floods in Europe and implications for flood risk management, J. Hydrol., 394, 118–133, 2010.
Marchi, L., Cavalli, M., Amponsah, W., Borga, M., and Crema, S.: Upper limits of flash flood stream power in Europe, Geomorphology, 272, 68–77, 2016.
Marra, F. and Morin, E.: Use of radar QPE for the derivation of Intensity–Duration–Frequency curves in a range of climatic regimes, J. Hydrol., 531, 427–440, 2015.
Marra, F., Nikolopoulos, E. I., Creutin, J. D., and Borga, M.: Radar rainfall estimation for the identification of debris-flow occurrence thresholds, J. Hydrol., 519, 1607–1619, 2014.
Morin, E., Harats, N., Jacoby, Y., Arbel, S., Getker, M., Arazi, A., Grodek, T., Ziv, B., and Dayan, U.: Studying the extremes: Hydrometeorological investigation of a flood-causing rainstorm over Israel, Adv. Geosci., 12, 107–114, 2007.
Morin, E., Jacoby, Y., Navon, S., and Bet-Halachmi, E.: Towards flash flood prediction in the dry Dead Sea region utilizing radar rainfall information, Adv. Water Resour., 32, 1066–1076, 2009.
Naulin, J. P., Gaume E., and Payrastre O.: Distributed flood forecasting for the management of the road network in the Gard Region (France), Weather Radar and Hydrology, IAHS Publication, 351, 544–549, 2012.
Naulin, J. P, Payrastre, O., and Gaume, E.: Spatially distributed flood forecasting in flash flood prone areas: Application to road network supervision in Southern France, J. Hydrol., 486, 88–99, https://doi.org/10.1016/j.jhydrol.2013.01.044, 2013.
Niedda, M., Amponsah, W., Marchi, L., Zoccatelli, D., Marra, F., Crema, S., Pirastru, M., Marrosu, R., and Borga, M.: The cyclone Cleopatra of November 18, 2013 in Sardinia, event management, measurement and modelling, Quaderni di Idronomia Montana, 32/1, 47–58, 2015.
Norbiato, D., Borga, M., and Dinale, R.: Flash flood warning in ungauged basins by use of the Flash Flood Guidance and model-based runoff thresholds, Meteorol. Appl., 16, 65–75, 2009.
Parajka, J., Kohnová, S., Bálint, G., Barbuc, M., Borga, M., Claps, P., Cheval, S., Dumitrescu, A., Gaume, E., Hlavčová, K., Merz, R., Pfaundler, M., Stancalie, G., Szolgay, J., and Blöschl, G.: Seasonal characteristics of flood regimes across the Alpine-Carpathian range, J. Hydrol., 394, 78–89, 2010.
Payrastre, O., Gaume, E., Javelle, P., Janet, B., Fourmigué, P., Lefort, Ph., Martin, A., Boudevillain, B., Brunet, P., Delrieu, G., Marchi, L., Aubert, Y., Dautrey, E., Durand, L., Lang, M., Boissier, L., Douvinet, J., Martin, C., and Ruin, I.: Hydrological analysis of the catastrophic flash flood of 15th June 2010 in the area of Draguignan (Var, France)-TTO2D d'HYMEX, SHF conference “Evénements extremes Fluviaux et Maritimes”, Paris, 1–2 February, 2012.
Righini, M., Surian, N., Wohl, E. E., Marchi, L., Comiti, F., Amponsah, W., and Borga, M.: Geomorphic response to an extreme flood in two Mediterranean rivers (northeastern Sardinia, Italy): Analysis of controlling factors, Geomorphology, 290, 184–199, 2017.
Rozalis, S., Morin, E., Yair, Y., and Price, C.: Flash flood prediction using an uncalibrated hydrological model and radar rainfall data in a Mediterranean watershed under changing hydrological conditions, J. Hydrol., 394, 245–255, 2010.
Ruin, I., Lutoff, C., Boudevillain, B., Creutin, J.-D., Anquetin, S., Rojo, M. B., Boissier, L., Bonnifait, L., Borga, M., Colbeau-Justin, L., Creton-Cazanave, L., Delrieu, G., Douvinet, J., Gaume, E., Gruntfest, E., Naulin, J.-P., Payrestre, O., and Vannier, O.: Social and hydrological responses to extreme precipitations: An interdisciplinary strategy for postflood investigation, Weather Clim. Soc., 6, 135–153, 2014.
Ruiz-Villanueva, V., Borga, M., Zoccatelli, D., Marchi, L., Gaume, E., and Ehret, U.: Extreme flood response to short-duration convective rainfall in South-West Germany, Hydrol. Earth Syst. Sci., 16, 1543–1559, https://doi.org/10.5194/hess-16-1543-2012, 2012.
Saharia, M., Kirstetter, P.-E., Vergara, H., Gourley, J. J., and Hong, Y.: Characterization of floods in the United States, J. Hydrol., 548, 524–535, 2017.
Smith, B. K. and Smith, J. A.: The flashiest watersheds in the contiguous United States, J. Hydrometeor., 16, 2365–2381, 2015.
Tarolli, P., Borga, M., Morin, E., and Delrieu, G.: Analysis of flash flood regimes in the North-Western and South-Eastern Mediterranean regions, Nat. Hazards Earth Syst. Sci., 12, 1255–1265, https://doi.org/10.5194/nhess-12-1255-2012, 2012.
Tramblay, Y., Bouvier, C., Martin, C., Didon-Lescot, J. F., Todorovik, D., and Domergue, J. M.: Assessment of initial soil moisture conditions for event-based rainfall–runoff modelling, J. Hydrol., 387, 176–187, 2010.
Vannier, O., Anquetin, S., and Braud, I.: Investigating the role of geology in the hydrological response of Mediterranean catchments prone to flash-floods: Regional modelling study and process understanding, J. Hydrol., 541, 158–172, https://doi.org/10.1016/j.jhydrol.2016.04.001, 2016.
Villarini, G. and Krajewski, W. F.: Review of the Different Sources of Uncertainty in Single Polarization Radar-Based Estimates of Rainfall, Surv. Geophys., 31, 107–29, 2010.
Yatheendradas, S., Wagener, T., Gupta, H., Unkrich, C., Goodrich, D., Schaffner, M., and Stewart, A.: Understanding uncertainty in distributed flash flood forecasting for semiarid regions, Water Resour. Res., 44, W05S19, https://doi.org/10.1029/2007WR005940, 2008.
Zanon, F., Borga, M., Zoccatelli, D., Marchi, L., Gaume, E., Bonnifait, L., and Delrieu, G.: Hydrological analysis of a flash flood across a climatic and geologic gradient: the September 18, 2007 event in Western Slovenia, J. Hydrol., 394, 182–197, 2010.
Zoccatelli, D., Borga, M., Zanon, F., Antonescu, B., and Stancalie, G.: Which rainfall spatial information for flash flood response modelling? A numerical investigation based on data from the Carpathian range, Romania, J. Hydrol., 394, 148–161, 2010.
Short summary
The EuroMedeFF database comprises 49 events that occurred in France, Israel, Germany, Slovenia, Romania, and Italy. The dataset may be of help to hydrologists as well as other scientific communities because it offers benchmark data for the verification of flash flood hydrological models and for hydro-meteorological forecast systems. It provides, moreover, a sample of rainfall and flood discharge extremes in different climates.
The EuroMedeFF database comprises 49 events that occurred in France, Israel, Germany, Slovenia,...
Altmetrics
Final-revised paper
Preprint