Articles | Volume 17, issue 2
https://doi.org/10.5194/essd-17-369-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-369-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An organic matter database (OMD): consolidating global residue data from agriculture, fisheries, forestry and related industries
Gudeta Weldesemayat Sileshi
CORRESPONDING AUTHOR
Plant Production and Protection Division (NSP), Food and Agriculture Organization of the United Nations (FAO), Rome, Italy
Department of Plant Biology and Biodiversity Management, Addis Ababa University, Addis Ababa, Ethiopia
Plant Production and Protection Division (NSP), Food and Agriculture Organization of the United Nations (FAO), Rome, Italy
Johannes Lehmann
Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, NY, USA
Francesco Nicola Tubiello
Statistics Division (ESS), Food and Agriculture Organization of the United Nations (FAO), Rome, Italy
Related authors
No articles found.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
William Lamb, Robbie Andrew, Matthew Jones, Zebedee Nicholls, Glen Peters, Chris Smith, Marielle Saunois, Giacomo Grassi, Julia Pongratz, Steven Smith, Francesco Tubiello, Monica Crippa, Matthew Gidden, Pierre Friedlingstein, Jan Minx, and Piers Forster
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-188, https://doi.org/10.5194/essd-2025-188, 2025
Preprint under review for ESSD
Short summary
Short summary
This study explores why global greenhouse gas (GHG) emissions estimates vary. Key reasons include different coverage of gases and sectors, varying definitions of anthropogenic land use change emissions, and the Paris Agreement not covering all emission sources. The study highlights three main ways emissions data is reported, each with different objectives and resulting in varying global emission totals. It emphasizes the need for transparency in choosing datasets and setting assessment scopes.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Carla F. Berghoff, Henry C. Bittig, Laurent Bopp, Patricia Cadule, Katie Campbell, Matthew A. Chamberlain, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Thomas Colligan, Jeanne Decayeux, Laique M. Djeutchouang, Xinyu Dou, Carolina Duran Rojas, Kazutaka Enyo, Wiley Evans, Amanda R. Fay, Richard A. Feely, Daniel J. Ford, Adrianna Foster, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul K. Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Xin Lan, Siv K. Lauvset, Nathalie Lefèvre, Zhu Liu, Junjie Liu, Lei Ma, Shamil Maksyutov, Gregg Marland, Nicolas Mayot, Patrick C. McGuire, Nicolas Metzl, Natalie M. Monacci, Eric J. Morgan, Shin-Ichiro Nakaoka, Craig Neill, Yosuke Niwa, Tobias Nützel, Lea Olivier, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Zhangcai Qin, Laure Resplandy, Alizée Roobaert, Thais M. Rosan, Christian Rödenbeck, Jörg Schwinger, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Roland Séférian, Shintaro Takao, Hiroaki Tatebe, Hanqin Tian, Bronte Tilbrook, Olivier Torres, Etienne Tourigny, Hiroyuki Tsujino, Francesco Tubiello, Guido van der Werf, Rik Wanninkhof, Xuhui Wang, Dongxu Yang, Xiaojuan Yang, Zhen Yu, Wenping Yuan, Xu Yue, Sönke Zaehle, Ning Zeng, and Jiye Zeng
Earth Syst. Sci. Data, 17, 965–1039, https://doi.org/10.5194/essd-17-965-2025, https://doi.org/10.5194/essd-17-965-2025, 2025
Short summary
Short summary
The Global Carbon Budget 2024 describes the methodology, main results, and datasets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2024). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Ana Maria Roxana Petrescu, Glen P. Peters, Richard Engelen, Sander Houweling, Dominik Brunner, Aki Tsuruta, Bradley Matthews, Prabir K. Patra, Dmitry Belikov, Rona L. Thompson, Lena Höglund-Isaksson, Wenxin Zhang, Arjo J. Segers, Giuseppe Etiope, Giancarlo Ciotoli, Philippe Peylin, Frédéric Chevallier, Tuula Aalto, Robbie M. Andrew, David Bastviken, Antoine Berchet, Grégoire Broquet, Giulia Conchedda, Stijn N. C. Dellaert, Hugo Denier van der Gon, Johannes Gütschow, Jean-Matthieu Haussaire, Ronny Lauerwald, Tiina Markkanen, Jacob C. A. van Peet, Isabelle Pison, Pierre Regnier, Espen Solum, Marko Scholze, Maria Tenkanen, Francesco N. Tubiello, Guido R. van der Werf, and John R. Worden
Earth Syst. Sci. Data, 16, 4325–4350, https://doi.org/10.5194/essd-16-4325-2024, https://doi.org/10.5194/essd-16-4325-2024, 2024
Short summary
Short summary
This study provides an overview of data availability from observation- and inventory-based CH4 emission estimates. It systematically compares them and provides recommendations for robust comparisons, aiming to steadily engage more parties in using observational methods to complement their UNFCCC submissions. Anticipating improvements in atmospheric modelling and observations, future developments need to resolve knowledge gaps in both approaches and to better quantify remaining uncertainty.
Hanqin Tian, Naiqing Pan, Rona L. Thompson, Josep G. Canadell, Parvadha Suntharalingam, Pierre Regnier, Eric A. Davidson, Michael Prather, Philippe Ciais, Marilena Muntean, Shufen Pan, Wilfried Winiwarter, Sönke Zaehle, Feng Zhou, Robert B. Jackson, Hermann W. Bange, Sarah Berthet, Zihao Bian, Daniele Bianchi, Alexander F. Bouwman, Erik T. Buitenhuis, Geoffrey Dutton, Minpeng Hu, Akihiko Ito, Atul K. Jain, Aurich Jeltsch-Thömmes, Fortunat Joos, Sian Kou-Giesbrecht, Paul B. Krummel, Xin Lan, Angela Landolfi, Ronny Lauerwald, Ya Li, Chaoqun Lu, Taylor Maavara, Manfredi Manizza, Dylan B. Millet, Jens Mühle, Prabir K. Patra, Glen P. Peters, Xiaoyu Qin, Peter Raymond, Laure Resplandy, Judith A. Rosentreter, Hao Shi, Qing Sun, Daniele Tonina, Francesco N. Tubiello, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Kelley C. Wells, Luke M. Western, Chris Wilson, Jia Yang, Yuanzhi Yao, Yongfa You, and Qing Zhu
Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, https://doi.org/10.5194/essd-16-2543-2024, 2024
Short summary
Short summary
Atmospheric concentrations of nitrous oxide (N2O), a greenhouse gas 273 times more potent than carbon dioxide, have increased by 25 % since the preindustrial period, with the highest observed growth rate in 2020 and 2021. This rapid growth rate has primarily been due to a 40 % increase in anthropogenic emissions since 1980. Observed atmospheric N2O concentrations in recent years have exceeded the worst-case climate scenario, underscoring the importance of reducing anthropogenic N2O emissions.
Wolfgang Alexander Obermeier, Clemens Schwingshackl, Ana Bastos, Giulia Conchedda, Thomas Gasser, Giacomo Grassi, Richard A. Houghton, Francesco Nicola Tubiello, Stephen Sitch, and Julia Pongratz
Earth Syst. Sci. Data, 16, 605–645, https://doi.org/10.5194/essd-16-605-2024, https://doi.org/10.5194/essd-16-605-2024, 2024
Short summary
Short summary
We provide and compare country-level estimates of land-use CO2 fluxes from a variety and large number of models, bottom-up estimates, and country reports for the period 1950–2021. Although net fluxes are small in many countries, they are often composed of large compensating emissions and removals. In many countries, the estimates agree well once their individual characteristics are accounted for, but in other countries, including some of the largest emitters, substantial uncertainties exist.
Cameron I. Ludemann, Nathan Wanner, Pauline Chivenge, Achim Dobermann, Rasmus Einarsson, Patricio Grassini, Armelle Gruere, Kevin Jackson, Luis Lassaletta, Federico Maggi, Griffiths Obli-Laryea, Martin K. van Ittersum, Srishti Vishwakarma, Xin Zhang, and Francesco N. Tubiello
Earth Syst. Sci. Data, 16, 525–541, https://doi.org/10.5194/essd-16-525-2024, https://doi.org/10.5194/essd-16-525-2024, 2024
Short summary
Short summary
Nutrient budgets help identify the excess or insufficient use of fertilizers and other nutrient sources in agriculture. They allow the calculation of indicators, such as the nutrient balance (surplus or deficit) and nutrient use efficiency, that help to monitor agricultural productivity and sustainability. This article describes a global cropland nutrient budget that provides data on 205 countries and territories from 1961 to 2020 (data available at https://www.fao.org/faostat/en/#data/ESB).
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Francesco N. Tubiello, Giulia Conchedda, Leon Casse, Pengyu Hao, Giorgia De Santis, and Zhongxin Chen
Earth Syst. Sci. Data, 15, 4997–5015, https://doi.org/10.5194/essd-15-4997-2023, https://doi.org/10.5194/essd-15-4997-2023, 2023
Short summary
Short summary
We describe a new dataset of cropland area circa the year 2020, with global coverage and country detail. Data are generated from geospatial information on the agreement characteristics of six high-resolution cropland maps. By helping to highlight features of cropland characteristics and underlying causes for agreement across land cover products, the dataset can be used as a tool to help guide future mapping efforts towards improved agricultural monitoring.
Matthew J. McGrath, Ana Maria Roxana Petrescu, Philippe Peylin, Robbie M. Andrew, Bradley Matthews, Frank Dentener, Juraj Balkovič, Vladislav Bastrikov, Meike Becker, Gregoire Broquet, Philippe Ciais, Audrey Fortems-Cheiney, Raphael Ganzenmüller, Giacomo Grassi, Ian Harris, Matthew Jones, Jürgen Knauer, Matthias Kuhnert, Guillaume Monteil, Saqr Munassar, Paul I. Palmer, Glen P. Peters, Chunjing Qiu, Mart-Jan Schelhaas, Oksana Tarasova, Matteo Vizzarri, Karina Winkler, Gianpaolo Balsamo, Antoine Berchet, Peter Briggs, Patrick Brockmann, Frédéric Chevallier, Giulia Conchedda, Monica Crippa, Stijn N. C. Dellaert, Hugo A. C. Denier van der Gon, Sara Filipek, Pierre Friedlingstein, Richard Fuchs, Michael Gauss, Christoph Gerbig, Diego Guizzardi, Dirk Günther, Richard A. Houghton, Greet Janssens-Maenhout, Ronny Lauerwald, Bas Lerink, Ingrid T. Luijkx, Géraud Moulas, Marilena Muntean, Gert-Jan Nabuurs, Aurélie Paquirissamy, Lucia Perugini, Wouter Peters, Roberto Pilli, Julia Pongratz, Pierre Regnier, Marko Scholze, Yusuf Serengil, Pete Smith, Efisio Solazzo, Rona L. Thompson, Francesco N. Tubiello, Timo Vesala, and Sophia Walther
Earth Syst. Sci. Data, 15, 4295–4370, https://doi.org/10.5194/essd-15-4295-2023, https://doi.org/10.5194/essd-15-4295-2023, 2023
Short summary
Short summary
Accurate estimation of fluxes of carbon dioxide from the land surface is essential for understanding future impacts of greenhouse gas emissions on the climate system. A wide variety of methods currently exist to estimate these sources and sinks. We are continuing work to develop annual comparisons of these diverse methods in order to clarify what they all actually calculate and to resolve apparent disagreement, in addition to highlighting opportunities for increased understanding.
Alessandro Flammini, Hanif Adzmir, Kevin Karl, and Francesco Nicola Tubiello
Earth Syst. Sci. Data, 15, 2179–2187, https://doi.org/10.5194/essd-15-2179-2023, https://doi.org/10.5194/essd-15-2179-2023, 2023
Short summary
Short summary
This paper estimates the share of greenhouse gas (GHG) emissions attributable to non-renewable wood fuel harvesting for use in residential food-related activities. It adds to a growing research base estimating GHG emissions from across the entire agri-food value chain and contributes to the development of the FAOSTAT climate change domain.
Fiona H. M. Tang, Thu Ha Nguyen, Giulia Conchedda, Leon Casse, Francesco N. Tubiello, and Federico Maggi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-130, https://doi.org/10.5194/essd-2023-130, 2023
Preprint withdrawn
Short summary
Short summary
CROPGRIDS is a comprehensive global, geo-referenced dataset that provides information on harvested and crop areas of 173 crops circa the year 2020. This new product provides more recent crop type information for 80 crops, covering about 1.2 billion hectares of crop area globally. CROPGRIDS will facilitate global-scale assessments in various disciplines, including agriculture and resource management, food systems, environmental impact and sustainability analyses, and agroeconomics.
Ana Maria Roxana Petrescu, Chunjing Qiu, Matthew J. McGrath, Philippe Peylin, Glen P. Peters, Philippe Ciais, Rona L. Thompson, Aki Tsuruta, Dominik Brunner, Matthias Kuhnert, Bradley Matthews, Paul I. Palmer, Oksana Tarasova, Pierre Regnier, Ronny Lauerwald, David Bastviken, Lena Höglund-Isaksson, Wilfried Winiwarter, Giuseppe Etiope, Tuula Aalto, Gianpaolo Balsamo, Vladislav Bastrikov, Antoine Berchet, Patrick Brockmann, Giancarlo Ciotoli, Giulia Conchedda, Monica Crippa, Frank Dentener, Christine D. Groot Zwaaftink, Diego Guizzardi, Dirk Günther, Jean-Matthieu Haussaire, Sander Houweling, Greet Janssens-Maenhout, Massaer Kouyate, Adrian Leip, Antti Leppänen, Emanuele Lugato, Manon Maisonnier, Alistair J. Manning, Tiina Markkanen, Joe McNorton, Marilena Muntean, Gabriel D. Oreggioni, Prabir K. Patra, Lucia Perugini, Isabelle Pison, Maarit T. Raivonen, Marielle Saunois, Arjo J. Segers, Pete Smith, Efisio Solazzo, Hanqin Tian, Francesco N. Tubiello, Timo Vesala, Guido R. van der Werf, Chris Wilson, and Sönke Zaehle
Earth Syst. Sci. Data, 15, 1197–1268, https://doi.org/10.5194/essd-15-1197-2023, https://doi.org/10.5194/essd-15-1197-2023, 2023
Short summary
Short summary
This study updates the state-of-the-art scientific overview of CH4 and N2O emissions in the EU27 and UK in Petrescu et al. (2021a). Yearly updates are needed to improve the different respective approaches and to inform on the development of formal verification systems. It integrates the most recent emission inventories, process-based model and regional/global inversions, comparing them with UNFCCC national GHG inventories, in support to policy to facilitate real-time verification procedures.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Giacomo Grassi, Giulia Conchedda, Sandro Federici, Raul Abad Viñas, Anu Korosuo, Joana Melo, Simone Rossi, Marieke Sandker, Zoltan Somogyi, Matteo Vizzarri, and Francesco N. Tubiello
Earth Syst. Sci. Data, 14, 4643–4666, https://doi.org/10.5194/essd-14-4643-2022, https://doi.org/10.5194/essd-14-4643-2022, 2022
Short summary
Short summary
Despite increasing attention on the role of land use CO2 fluxes in climate change mitigation, there are large differences in available databases. Here we present the most updated and complete compilation of land use CO2 data based on country submissions to United Nations Framework Convention on Climate Change and explain differences with other datasets. Our dataset brings clarity of land use CO2 fluxes and helps track country progress under the Paris Agreement.
Hanqin Tian, Zihao Bian, Hao Shi, Xiaoyu Qin, Naiqing Pan, Chaoqun Lu, Shufen Pan, Francesco N. Tubiello, Jinfeng Chang, Giulia Conchedda, Junguo Liu, Nathaniel Mueller, Kazuya Nishina, Rongting Xu, Jia Yang, Liangzhi You, and Bowen Zhang
Earth Syst. Sci. Data, 14, 4551–4568, https://doi.org/10.5194/essd-14-4551-2022, https://doi.org/10.5194/essd-14-4551-2022, 2022
Short summary
Short summary
Nitrogen is one of the critical nutrients for growth. Evaluating the change in nitrogen inputs due to human activity is necessary for nutrient management and pollution control. In this study, we generated a historical dataset of nitrogen input to land at the global scale. This dataset consists of nitrogen fertilizer, manure, and atmospheric deposition inputs to cropland, pasture, and rangeland at high resolution from 1860 to 2019.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Francesco N. Tubiello, Kevin Karl, Alessandro Flammini, Johannes Gütschow, Griffiths Obli-Laryea, Giulia Conchedda, Xueyao Pan, Sally Yue Qi, Hörn Halldórudóttir Heiðarsdóttir, Nathan Wanner, Roberta Quadrelli, Leonardo Rocha Souza, Philippe Benoit, Matthew Hayek, David Sandalow, Erik Mencos Contreras, Cynthia Rosenzweig, Jose Rosero Moncayo, Piero Conforti, and Maximo Torero
Earth Syst. Sci. Data, 14, 1795–1809, https://doi.org/10.5194/essd-14-1795-2022, https://doi.org/10.5194/essd-14-1795-2022, 2022
Short summary
Short summary
The paper presents results from the new FAOSTAT database on food system emissions, covering all countries over the time series 1990–2019. Results indicate and further clarify – updated to 2019 – the relevance of emissions from crop and livestock production processes within the farm gate; from conversion of natural ecosystems to agriculture, such as deforestation and peat degradation; and from use of fossil fuels for energy and other industrial processes along food supply chains.
Zhu Deng, Philippe Ciais, Zitely A. Tzompa-Sosa, Marielle Saunois, Chunjing Qiu, Chang Tan, Taochun Sun, Piyu Ke, Yanan Cui, Katsumasa Tanaka, Xin Lin, Rona L. Thompson, Hanqin Tian, Yuanzhi Yao, Yuanyuan Huang, Ronny Lauerwald, Atul K. Jain, Xiaoming Xu, Ana Bastos, Stephen Sitch, Paul I. Palmer, Thomas Lauvaux, Alexandre d'Aspremont, Clément Giron, Antoine Benoit, Benjamin Poulter, Jinfeng Chang, Ana Maria Roxana Petrescu, Steven J. Davis, Zhu Liu, Giacomo Grassi, Clément Albergel, Francesco N. Tubiello, Lucia Perugini, Wouter Peters, and Frédéric Chevallier
Earth Syst. Sci. Data, 14, 1639–1675, https://doi.org/10.5194/essd-14-1639-2022, https://doi.org/10.5194/essd-14-1639-2022, 2022
Short summary
Short summary
In support of the global stocktake of the Paris Agreement on climate change, we proposed a method for reconciling the results of global atmospheric inversions with data from UNFCCC national greenhouse gas inventories (NGHGIs). Here, based on a new global harmonized database that we compiled from the UNFCCC NGHGIs and a comprehensive framework presented in this study to process the results of inversions, we compared their results of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O).
Alessandro Flammini, Xueyao Pan, Francesco Nicola Tubiello, Sally Yue Qiu, Leonardo Rocha Souza, Roberta Quadrelli, Stefania Bracco, Philippe Benoit, and Ralph Sims
Earth Syst. Sci. Data, 14, 811–821, https://doi.org/10.5194/essd-14-811-2022, https://doi.org/10.5194/essd-14-811-2022, 2022
Short summary
Short summary
Fossil-fuel-based energy used in agriculture, for crop and livestock production as well as in fisheries, generates significant amounts of greenhouse gases (GHG), which are typically not accounted for within the agriculture sector of national GHG inventories. Using activity data from UNSD and IEA, we construct a new database of energy use in agriculture and related emissions, covering the period 1970–2019 by country and by fossil fuel type, including emissions from electricity used on the farm.
Ana Maria Roxana Petrescu, Chunjing Qiu, Philippe Ciais, Rona L. Thompson, Philippe Peylin, Matthew J. McGrath, Efisio Solazzo, Greet Janssens-Maenhout, Francesco N. Tubiello, Peter Bergamaschi, Dominik Brunner, Glen P. Peters, Lena Höglund-Isaksson, Pierre Regnier, Ronny Lauerwald, David Bastviken, Aki Tsuruta, Wilfried Winiwarter, Prabir K. Patra, Matthias Kuhnert, Gabriel D. Oreggioni, Monica Crippa, Marielle Saunois, Lucia Perugini, Tiina Markkanen, Tuula Aalto, Christine D. Groot Zwaaftink, Hanqin Tian, Yuanzhi Yao, Chris Wilson, Giulia Conchedda, Dirk Günther, Adrian Leip, Pete Smith, Jean-Matthieu Haussaire, Antti Leppänen, Alistair J. Manning, Joe McNorton, Patrick Brockmann, and Albertus Johannes Dolman
Earth Syst. Sci. Data, 13, 2307–2362, https://doi.org/10.5194/essd-13-2307-2021, https://doi.org/10.5194/essd-13-2307-2021, 2021
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up and top-down CH4 and N2O emissions in the EU27 and UK. The data integrate recent emission inventories with process-based model data and regional/global inversions for the European domain, aiming at reconciling them with official country-level UNFCCC national GHG inventories in support to policy and to facilitate real-time verification procedures.
Ana Maria Roxana Petrescu, Matthew J. McGrath, Robbie M. Andrew, Philippe Peylin, Glen P. Peters, Philippe Ciais, Gregoire Broquet, Francesco N. Tubiello, Christoph Gerbig, Julia Pongratz, Greet Janssens-Maenhout, Giacomo Grassi, Gert-Jan Nabuurs, Pierre Regnier, Ronny Lauerwald, Matthias Kuhnert, Juraj Balkovič, Mart-Jan Schelhaas, Hugo A. C. Denier van der
Gon, Efisio Solazzo, Chunjing Qiu, Roberto Pilli, Igor B. Konovalov, Richard A. Houghton, Dirk Günther, Lucia Perugini, Monica Crippa, Raphael Ganzenmüller, Ingrid T. Luijkx, Pete Smith, Saqr Munassar, Rona L. Thompson, Giulia Conchedda, Guillaume Monteil, Marko Scholze, Ute Karstens, Patrick Brockmann, and Albertus Johannes Dolman
Earth Syst. Sci. Data, 13, 2363–2406, https://doi.org/10.5194/essd-13-2363-2021, https://doi.org/10.5194/essd-13-2363-2021, 2021
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up and top-down CO2 fossil emissions and CO2 land fluxes in the EU27+UK. The data integrate recent emission inventories with ecosystem data, land carbon models and regional/global inversions for the European domain, aiming at reconciling CO2 estimates with official country-level UNFCCC national GHG inventories in support to policy and facilitating real-time verification procedures.
Francesco N. Tubiello, Giulia Conchedda, Nathan Wanner, Sandro Federici, Simone Rossi, and Giacomo Grassi
Earth Syst. Sci. Data, 13, 1681–1691, https://doi.org/10.5194/essd-13-1681-2021, https://doi.org/10.5194/essd-13-1681-2021, 2021
Short summary
Short summary
This paper presents the first estimates of forest carbon fluxes (1990–2020) based on the new Global Forest Resources Assessment (FRA) 2020. We document for the first time in the literature forest carbon fluxes for the last decade 2011–2020. Results show that carbon losses from net forest conversion (3.1 billion tonnes of CO2) were counterbalanced by carbon gains on forest land (−3.3 billion tonnes of CO2), resulting in the world's forests acting overall as a small carbon sink in the past decade.
Giulia Conchedda and Francesco N. Tubiello
Earth Syst. Sci. Data, 12, 3113–3137, https://doi.org/10.5194/essd-12-3113-2020, https://doi.org/10.5194/essd-12-3113-2020, 2020
Short summary
Short summary
This paper describes the FAO methodology used to globally assess areas of drained organic soils and peatlands due to agriculture over the period 1990–2019. We overlay geospatial information of soil type, land cover, agro-climatic zones, livestock distribution and IPCC coefficients, then aggregate it at national level for over 200 countries and territories. Results are compared to inventory data reported to UNFCCC, showing good agreement between the FAO estimates and country data.
George C. Hurtt, Louise Chini, Ritvik Sahajpal, Steve Frolking, Benjamin L. Bodirsky, Katherine Calvin, Jonathan C. Doelman, Justin Fisk, Shinichiro Fujimori, Kees Klein Goldewijk, Tomoko Hasegawa, Peter Havlik, Andreas Heinimann, Florian Humpenöder, Johan Jungclaus, Jed O. Kaplan, Jennifer Kennedy, Tamás Krisztin, David Lawrence, Peter Lawrence, Lei Ma, Ole Mertz, Julia Pongratz, Alexander Popp, Benjamin Poulter, Keywan Riahi, Elena Shevliakova, Elke Stehfest, Peter Thornton, Francesco N. Tubiello, Detlef P. van Vuuren, and Xin Zhang
Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, https://doi.org/10.5194/gmd-13-5425-2020, 2020
Short summary
Short summary
To estimate the effects of human land use activities on the carbon–climate system, a new set of global gridded land use forcing datasets was developed to link historical land use data to eight future scenarios in a standard format required by climate models. This new generation of land use harmonization (LUH2) includes updated inputs, higher spatial resolution, more detailed land use transitions, and the addition of important agricultural management layers; it will be used for CMIP6 simulations.
Cited articles
Adu, M. O., Atia, K., Arthur, E., Asare, P. A., Obour, P. B., Danso, E. O., Frimpong, K. A., Sanleri, K. A., Asare-Larbi, S., Adjei, R., Mensah, G., and Andersen, M. N.: The use of oil palm empty fruit bunches as a soil amendment to improve growth and yield of crops, A meta-analysis, Agron. Sust. Dev., 42, 13, https://doi.org/10.1007/s13593-022-00753-z, 2022.
Akbar, S., Ahmed, S., Khan, S., and Badshah, M.: Anaerobic digestate: a sustainable source of bio-fertilizer, in: Sustainable Intensification for Agroecosystem Services and Management, edited by: Jhariya M. K., Banerjee, A., Meena, R. S., Kumar, S., and, Raj, A., Springer, Singapore, https://doi.org/10.1007/978-981-16-3207-5_15, 2021.
Al-Gheethi, A., Ma, N. L., Rupani, P. F., Sultana, Z., Azrina, M., Yaakob, M., Mohamed, R. M. S. R., and Soon, C. F.: Biowastes of slaughterhouses and wet markets: an overview of waste management for disease prevention, Environ. Sci. Pollut. Res., 30, 71780–71793, https://doi.org/10.1007/s11356-021-16629-w, 2021.
Alkharabsheh, H. M., Seleiman, M. F., Battaglia, M. L., Shami, A., Jalal, R. S., Alhammad, B. A., Almutairi, K. F., and Al-Saif, A. M.: Biochar and its broad impacts in soil quality and fertility, nutrient leaching and crop productivity: A Review, Agronomy, 11, 993, https://doi.org/10.3390/agronomy11050993, 2021.
American Society of Agriculture Engineers (ASAE): Manure production and characteristics ASAE Standards D384.1, https://elibrary.asabe.org/abstract.asp?aid=32018&t=2&redir=&redirType= (last access: 31 January 2025), 2005.
Andrews, E. M., Kassama, S., Smith, E. E., Brown, P. H., and Khalsa, S. D. S.: A review of potassium-rich crop residues used as organic matter amendments in tree crop agroecosystems, Agriculture, 11, 580, https://doi.org/10.3390/agriculture11070580, 2021.
Antonić, B., Jančiková, S., Dordević, D., and Tremlová, B.: Grape pomace valorization: A systematic review and meta-analysis, Foods, 9, 1627, https://doi.org/10.3390/foods9111627, 2020.
Bai, S. H., Omidvar, N., Gallart, M., Kämper, W., Tahmasbian, I., Farrar, M. B., Singh, S., Zhou, G., Muqadass, B., Xu, C-Y., Koech, R., Li, Y., Nguyen, T. T. N., and van Zwieten, L.: Combined effects of biochar and fertilizer applications on yield: A review and meta-analysis, Sci. Total Environ., 808, 152073, https://doi.org/10.1016/j.scitotenv.2021.152073, 2022.
Balingbing, C., Van Hung, N., Nghi, N. T., Van Hieu, N., Roxas, A. P., Tado, C. J., Bautista, E., and Gummert, M.: Mechanized collection and densification of rice straw, in: Sustainable Rice Straw Management, edited by: Gummert, M., Hung, N., Chivenge, P., and Douthwaite, B., Springer, 15–32, https://doi.org/10.1007/978-3-030-32373-8_2, 2020.
Bedoić, R., Ćosić, B., and Duić, N.: Technical potential and geographic distribution of agricultural residues, co-products and by-products in the European Union, Sci. Total Environ., 686, 568–579, https://doi.org/10.1016/j.scitotenv.2019.05.219, 2019.
Behnassi, M. and El Haiba, M.: Implications of the Russia–Ukraine war for global food security, Nat. Hum. Behav., 6, 754–755, https://doi.org/10.1038/s41562-022-01391-x, 2022.
Bentsen, N. S., Felby, C., and Thorsen, B. J.: Agricultural residue production and potentials for energy and materials services, Prog. Energy Combust. Sci., 40, 59–73, https://doi.org/10.1016/j.pecs.2013.09.003, 2014.
Bezerra, T. L. and Ragauskas, A. J.: A review of sugarcane bagasse for second-generation bioethanol and biopower production, Biofuels, Bioprod. Bioref., 10, 634–647, https://doi.org/10.1002/bbb.1662, 2016.
Bluhm, D. and Lehmann, J.: Biochar-based recycling of biomass and nutrients at multiple scales, in: Biological Approaches to Regenerative Soil Systems, edited by: Uphoff, N. and Thies, J., Taylor and Francis, London, 324–331, https://doi.org/10.1201/9781003093718-31, 2023.
Bora, R., Tao, Y., Lehmann, J., Tester, J., Richardson, R., and You, F.: Techno-economic feasibility and spatial analysis of thermochemical conversion pathways for regional poultry waste valorization, ACS Sust. Chem. Eng., 8, 5763–5775, https://doi.org/10.1021/acssuschemeng.0c01229, 2020.
Bruni, E., Guenet, B., Clivot, H., Kätterer, T., Martin, M., Virto, I., and Chenu, C.: Defining quantitative targets for topsoil organic carbon stock increase in European croplands: case studies with exogenous organic matter inputs, Front. Environ. Sci., 10, 824724, https://doi.org/10.3389/fenvs.2022.824724, 2022.
Caldeira, C., Vlysidis, A., Fiore, G., De Laurentiis, V., Vignali, G., and Sala, S. Sustainability of food waste biorefinery: A review on valorisation pathways, techno-economic constraints, and environmental assessment, Bioresour. Technol., 312, 123575, https://doi.org/10.1016/j.biortech.2020.123575, 2020.
Chivenge, P., Vanlauwe, B., and Six, J.: Does the combined application of organic and mineral nutrient sources influence maize productivity? A meta-analysis, Plant Soil, 342, 1–30, https://doi.org/10.1007/s11104-010-0626-5, 2011.
Cobo, J. G., Barrios, E., Kass, D., and Thomas, R. J.: Decomposition and nutrient release by green manures in a tropical hillside agroecosystem, Plant Soil, 240, 331–342, https://doi.org/10.1023/A:1015720324392, 2002.
Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., and Paul, E.: The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter?, Glob. Change Biol., 19, 988–995, https://doi.org/10.1111/gcb.12113, 2013.
de Medeiros, E. V., Lima, N. T., de Sousa Lima, J. R., Pinto, K. M. S., da Costa, D. P., Junior, C. L. F., Souza, R. M. S., and Hammecker, C.: Biochar as a strategy to manage plant diseases caused by pathogens inhabiting the soil: a critical review, Phytoparasitica, 49, 713–726, https://doi.org/10.1007/s12600-021-00887-y, 2021.
Dobermann, A. and Fairhurst, T. H.: Rice Straw Management, Better Crops Int. 16, Special Supplement, https://www.researchgate.net/publication/228850474_Rice_straw_management (last access: 18 May 2023), 2002.
Domingues, R. R., Trugilho, P. F., Silva, C. A., Melo, L. C. A., Magriotis, Z. M., and Sánchez-Monedero, M. A.: Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits, PLoS ONE, 12, e0176884, https://doi.org/10.1371/journal.pone.0176884, 2017.
Duncan, A. J., Bachewe, F., Mekonnen, F., Valbuena, D., Rachier, G., Lule, D., Bahta, M., and Erenstein, O.: Crop residue allocation to livestock feed, soil improvement and other uses along a productivity gradient in Eastern Africa, Agric. Ecosys. Environ., 228, 101–110, https://doi.org/10.1016/j.agee.2016.05.011, 2016.
Dutra, J. C. F., Passos, M. F., García, G. J. Y., Gomes, R. F., Magalhães, T. A., Freitas, A. S., Laguna, J. G., da Costa, F. M. R., da Silva, T. F., Rodrigues, L. S., Américo, M. F., Campos, G. M., Pereira, G., Vandenbeghe, L., Soccol, C. R., Góes-Neto, A., and Azevedo, V. A. C.: Anaerobic digestion using cocoa residues as substrate: Systematic review and meta-analysis, Energy Sust. Dev., 72, 265–277, https://doi.org/10.1016/j.esd.2022.12.007, 2023.
ECN: Phyllis2 – Database for biomass and waste, https://www.ecn.nl/phyllis2/ (last access: 17 May 2023), 2018.
EEC: European Union Council. Directive 91/676/EEC of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources, Off. J. Eur. Union, L 375, 1–8, 1991.
Embrandiri, A., Singh, R. P., Ibrahim, H. M., and Ramli, A. A.: Land application of biomass residue generated from palm oil processing: its potential benefits and threats, Environmentalist, 32, 111–117, https://doi.org/10.1007/s10669-011-9367-0, 2012.
Emmerling, C., Krein, A., and Junk, J.: Meta-analysis of strategies to reduce NH3 emissions from slurries in European agriculture and consequences for greenhouse gas emissions, Agronomy, 10, 1633, https://doi.org/10.3390/agronomy10111633, 2020.
EnviroStats: A geographical profile of livestock manure production in Canada, EnviroStats, vol. 2, https://www150.statcan.gc.ca/n1/en/pub/16-002-x/16-002-x2008004-eng.pdf?st=8hSAiqPk (last access: 20 June 2023), 2008.
European Parliament and Council: DIRECTIVE 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives, https://eur-lex.europa.eu/eli/dir/2008/98/oj/eng (last access: 29 January 2025), 2008.
Fan, X., Chen, Z., Niu, Z., Zeng, R., Ou, J., Liu, X., and Wang, X.: Replacing synthetic nitrogen fertilizer with different types of organic materials improves grain yield in China: A meta-analysis, Agronomy, 11, 2429, https://doi.org/10.3390/agronomy11122429, 2021.
FAO: CWP Handbook of Fishery Statistical Standards. Coordinating Working Party on Fishery Statistics, FAO, Rome, https://www.fao.org/3/j4000e/j4000e.pdf (last access: 9 May 2023), 2004.
FAO: Livestock statistics: Concepts, definitions and classifications, https://www.fao.org/economic/the-statistics-division-ess/methodology/methodology-systems/livestock-statistics-concepts-definitions-and-classifications/en/ (last access: 9 May 2023), 2011.
FAO: Bioenergy and Food Security Rapid Appraisal (BEFS RA) User Manual: Crop Residues and Livestock Residues, FAO, Rome, 2014.
FAO: Nitrogen inputs to agricultural soils from livestock manure: New statistics, Integrated Crop Management, 24, 1–41, FAO, Rome, 2018.
FAO: Establishing residue supply chains to reduce open burning. The case of rice straw and renewable energy in Punjab, India, Environment and Natural Resources Management Working Paper No. 95, Rome, https://doi.org/10.4060/cb9570en, 2022a.
FAO: Inorganic fertilizers 1990–2020, https://www.fao.org/food-agriculture-statistics/data-release/data-release-detail/en/c/1599852/ (last access: 9 May 2023), 2022b.
FAO: The importance of Ukraine and the Russian federation for global agricultural markets and the risks associated with the war in Ukraine, https://www.fao.org/3/cb9013en/cb9013en.pdf (last access: 9 May 2023), 2022c.
FAO: Greenhouse gas emissions from agrifood systems. Global, regional and country trends, 2000–2020, https://www.fao.org/food-agriculture-statistics/data-release/data-release-detail/en/c/1616127/ (last access: 9 May 2023), 2022d.
FAO: Classification of forest products 2022, Rome, https://doi.org/10.4060/cb8216en, 2022e.
FAOSTAT: Technical conversion factors for agricultural commodities, Technical report, Food and Agriculture Organization of the United Nations, https://www.fao.org/fileadmin/templates/ess/documents/methodology/tcf.pdf (last access: 9 May 2023), 2009.
FAOSTAT: Forestry Production and Trade, FAO, Rome, https://www.fao.org/faostat/en/#data/FO (last access: 18 July 2023), 2023.
Flammini, A., Adzmir, H., Karl, K., and Tubiello, F. N.: Quantifying greenhouse gas emissions from wood fuel use by households, Earth Syst. Sci. Data, 15, 2179–2187, https://doi.org/10.5194/essd-15-2179-2023, 2023.
Font-Palma, C.: Methods for the treatment of cattle manure – A Review, J. Carbon Res., 5, 27, https://doi.org/10.3390/c5020027, 2019.
Garibaldi, L.: The FAO global capture production database: A six-decade effort to catch the trend, Mar. Policy, 36, 760–768, https://doi.org/10.1016/j.marpol.2011.10.024, 2012.
Gontard, N., Sonesson, U., Birkved, M., Majone, M, Bolzonella, D., Celli, A., Angellier-Coussy, H., Jang, G. W., Verniquet, A., Broeze, J., Schaer, B., Batista, A. P., and Sebok, A.: A research challenge vision regarding management of agricultural waste in a circular bio-based economy, Crit. Rev. Environ. Sci. Technol., 48, 614–654, https://doi.org/10.1080/10643389.2018.1471957, 2018.
Gonzalez-Garcia, S., Morales, P. C., and Gullon, B.: Estimating the environmental impacts of a brewery waste–based biorefinery: bio-ethanol and xylooligosaccharides joint production case study, Ind. Crops Prod., 123, 331–340, https://doi.org/10.1016/j.indcrop.2018.07.003, 2018.
Hamelin, L., Borzęcka, M., Kozak, M., and Pudełko, R.: A spatial approach to bioeconomy: Quantifying the residual biomass potential in the EU-27, Renew. Sust. Energ. Rev., 100, 127–142, https://doi.org/10.1016/j.rser.2018.10.017, 2019.
Heyl, K., Döring, T., Garske, B., Stubenrauch, J., and Ekardt, F.: The Common Agricultural Policy beyond 2020: A critical review in light of global environmental goals, Rev. Eur. Compar. Int. Environ. Law, 30, 95–106, https://doi.org/10.1111/reel.12351, 2021.
Huang, S., Zeng, Y., Wu, J., Shi, Q., and Pan, X.: Effect of crop residue retention on rice yield in China: A meta-analysis, Field Crop Res., 154, 188–194, https://doi.org/10.1016/j.fcr.2013.08.013, 2013.
Hergoualc'h, K., Akiyama, H., Bernoux, M., Chirinda, N., del Prado, A., Kasimir, A., MacDonald, J. D., Ogle, S. M., Regina, K., van der Weerden, T. J.: N2O Emissions from Managed Soils, and CO2Emissions from Lime and Urea Application. In: 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, edited by: Buendia, E. C., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P., and Federici, S., Volume 4: Agriculture, Forestry and Other Land Use Switzerland: Intergovernmental Panel on Climate Change (IPCC), https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_11_Ch11_N2O&CO2.pdf, (last access: 29 January 2025), 2019.
Iriondo-DeHond, I., Iriondo-DeHond, M., and del Castillo, M. D.: Applications of compounds from coffee processing by-products, Biomolecules, 10, 1219, https://doi.org/10.3390/biom10091219, 2020.
Ji, C., Cheng, K., Nayak, D., and Pan, G.: Environmental and economic assessment of crop residue competitive utilization for biochar, briquette fuel and combined heat and power generation, J. Cleaner Prod., 192, 916–923, https://doi.org/10.1016/j.jclepro.2018.05.026, 2018.
Karan, S. K. and Hamelin, L.: Towards local bioeconomy: A stepwise framework for high-resolution spatial quantification of forestry residues, Renew. Sust. Energ. Rev., 134, 110350, https://doi.org/10.1016/j.rser.2020.110350, 2020.
Karan, S. K. and Hamelin, L.: Crop residues may be a key feedstock to bioeconomy but how reliable are current estimation methods?, Resour. Conserv. Recycl., 164, 105211, https://doi.org/10.1016/j.resconrec.2020.105211, 2021.
Khare, S. K., Jha, K., and Gandhi, A. P.: Citric acid production from okara (soy-residue) by solid-state fermentation, Biores. Technol., 54, 323–325, 1995.
Kizito, S., Luo, H., Lu, J., Bah, H., Dong, R., and Wu, S.: Role of nutrient-enriched biochar as a soil amendment during maize growth: Exploring practical alternatives to recycle agricultural residuals and to reduce chemical fertilizer demand, Sustainability, 11, 3211, https://doi.org/10.3390/su11113211, 2019.
Koopmans, A. and Koppejan, J.: Agricultural and forest residues -generation, utilization and availability. Paper presented at the Regional Consultation on Modern Applications of Biomass Energy, 6–10 January 1997, Kuala Lumpur, Malaysia, 1998.
Lim, K. O.: The energy potential and current utilization of agriculture and logging wastes in Malaysia, Renewable Energy Review Journal, 8, RERIC-AIT, Bangkok, 1986.
Lin, M. and Begho, T.: Crop residue burning in South Asia: A review of the scale, effect, and solutions with a focus on reducing reactive nitrogen losses, J. Environ. Manage., 314, 115104, https://doi.org/10.1016/j.jenvman.2022.115104, 2022.
Lopes, F. C. and Ligabue-Braun, R.: Agro-industrial residues: Eco-friendly and inexpensive substrates for microbial pigments production, Front. Sustain. Food Syst., 5, 589414, https://doi.org/10.3389/fsufs.2021.589414, 2021.
Loyon, L.: Overview of animal manure management for beef, pig, and poultry farms in France, Front. Sustain. Food Syst., 2, 36, https://doi.org/10.3389/fsufs.2018.00036, 2018.
Lu, F.: How can straw incorporation management impact on soil carbon storage? A meta-analysis, Mitig. Adapt. Strateg. Glob. Change, 20, 1545–1568, https://doi.org/10.1007/s11027-014-9564-5, 2015.
Ludemann, C. I., Hijbeek, R., van Loon, M., Murrell, T. S., Dobermann, A., and van Ittersum, M.: Global data on crop nutrient concentration and harvest indices, Dryad [data set], https://doi.org/10.5061/dryad.n2z34tn0x, 2023.
Ma, G., Chen, Y., and Ndegwa, P.: Anaerobic digestion process deactivates major pathogens in biowaste: A meta-analysis, Renew. Sust. Energ. Rev., 153, 111752, https://doi.org/10.1016/j.rser.2021.111752, 2022.
Marin, S., Andarge, T., and Foltz, J.: Effectiveness of local regulations on nonpoint source pollution: evidence from Wisconsin dairy farms, Amer. J. Agric. Econ., 105, 1333–1364, https://doi.org/10.1111/ajae.12388, 2023.
Masella, P., Guerrini, L., and Parenti, A.: The spent cake from olive oil filtration as biomass feedstock, Agric. Eng. Int., CIGR J., 16, 156–160, 2014.
Masoumi, S., Borugadda, V. B., Nanda, and Dalai, A. K.: Hydrochar: A review on its production technologies and applications, Catalysts, 11, 939, https://doi.org/10.3390/catal11080939, 2021.
Melo, L. C. A., Lehmann, J., Carneiro, J. S., and Camps-Arbestain, M.: Biochar-based fertilizer effects on crop productivity: a meta-analysis, Plant Soil, 472, 45–58, https://doi.org/10.1007/s11104-021-05276-2, 2022.
Millati, R., Cahyono, R. B., Ariyanto, T., Azzahrani, I. N., Putri, R. U., and Taherzadeh, M. J.: Agricultural, industrial, municipal, and forest wastes, in: Sustainable Resource Recovery and Zero Waste Approaches, edited by: Taherzadeh, M. J. Bolton, K., Wong, J., and Pandey, A., Elsevier, 1–22, https://doi.org/10.1016/B978-0-444-64200-4.00001-3, 2019.
Monforti, F., Bodis, K., Scarlat, N., and Dallemand, J. F.: The possible contribution of agricultural crop residues to renewable energy targets in Europe: A spatially explicit study, Renew. Sustain. Energy Rev., 19, 666–677, https://doi.org/10.1016/j.rser.2012.11.060, 2013.
Mozhiarasi, V. and Natarajan, T. S.: Slaughterhouse and poultry wastes: management practices, feedstocks for renewable energy production, and recovery of value added products, Biomass Conv. Bioref., 15, 1705–1728, https://doi.org/10.1007/s13399-022-02352-0, 2025.
Murphy, D. J., Goggin, K., and Paterson, R. R. M.: Oil palm in the 2020s and beyond: challenges and solutions, CABI Agric. Biosci., 2, 39, https://doi.org/10.1186/s43170-021-00058-3, 2021.
Oanh, N. T. K., Permadi, D. A., Hopke, P. K., Smith, K. R., Dong, N. P., and Dang, A. N.: Annual emissions of air toxics emitted from crop residue open burning in Southeast Asia over the period of 2010–2015, Atmos. Environ., 187, 163–173, https://doi.org/10.1016/j.atmosenv.2018.05.061, 2018.
Olsen, R. L., Toppe, J., and Karunasagar, I.: Challenges and realistic opportunities in the use of by-products from processing of fish and shellfish, Trends Food Sci. Technol., 36, 144–151, https://doi.org/10.1016/j.tifs.2014.01.007, 2014.
Onwudike, O. C.: Coconut (Cocos nucifera L.) kernel, oil and meal, in: Food and Feed from Legumes and Oilseeds, edited by: Nwokolo, E. and Smartt, J., Springer, Boston, MA, https://doi.org/10.1007/978-1-4613-0433-3_33, 1996.
Palm, C. A., Gachengo, C. N., Delve, R. J., Cadisch, G., and Giller, K. E.: Organic inputs for soil fertility management in tropical agroecosystems: application of an organic resource database, Agric. Ecosyst. Environ., 83, 27–42, https://doi.org/10.1016/S0167-8809(00)00267-X, 2001.
Padhye, L. P., Bandala, E. R., Wijesiri, B., Goonetilleke, A., and Bolan, N.: Hydrochar: A promising step towards achieving a circular economy and sustainable development goals, Front. Chem. Eng., 4, 867228, https://doi.org/10.3389/fceng.2022.867228, 2022.
Paudel, K. P., Bhattarai, K., Gauthier, W. M., and Hall, L. M.: Geographic information systems (GIS) based model of dairy manure transportation and application with environmental quality consideration, Waste Manage., 29, 1634–1643, https://doi.org/10.1016/j.wasman.2008.11.028, 2009.
Petersen, A. M., Melamu, R., Knoetze, J. H., and Görgens, J. F.: Comparison of second-generation processes for the conversion of sugarcane bagasse to liquid biofuels in terms of energy efficiency, pinch point analysis and life cycle analysis, Energy Convers Manage., 91, 292–301, https://doi.org/10.1016/j.enconman.2014.12.002, 2015.
Poveda, J., Martínez-Gómez, A., Fenoll, C., and Escobar, C.: The use of biochar for plant pathogen control, Phytopathol., 111, 1490–1499, https://doi.org/10.1094/PHYTO-06-20-0248-RVW, 2021.
Ronzon, T. and Piotrowski, S.: Are primary agricultural residues promising feedstock for the European bioeconomy?, Ind. Biotechnol., 13, 113–127, https://doi.org/10.1089/ind.2017.29078.tro, 2017.
Scarlat, N., Martinov, M., and Dallemand, J. F.: Assessment of the availability of agricultural crop residues in the European Union: Potential and limitations for bioenergy use, Waste Manag., 30, 1889–1897, https://doi.org/10.1016/j.wasman.2010.04.016, 2010.
Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D. A. C., Nannipieri, P., Rasse, D. P., Weiner, S., and Trumbore, S. E.: Persistence of soil organic matter as an ecosystem property, Nature, 478, 49–56, https://doi.org/10.1038/nature10386, 2011.
Shen, X., Huang, G., Yang, Z., and Han, L.: Compositional characteristics and energy potential of Chinese animal manure by type and as a whole, Appl. Energy, 160, 108–119, https://doi.org/10.1016/j.apenergy.2015.09.034, 2015.
Shepherd, K. D., Palm, C. A., Gachengo, C. N., and Vanlauwe, B.: Rapid characterization of organic resource quality for soil and livestock management in tropical agroecosystems using near-infrared spectroscopy, Agron. J., 95, 1314–1322, https://doi.org/10.2134/agronj2003.1314, 2003.
Shu, X, He, J., Zhou, Z., Xia, L., Hu, Y., Zhang, Y., Zhang, Y., Luo, Y., Chu, H., Liu, W., Yuan, S., Gao, X., and Wang, C.: Organic amendments enhance soil microbial diversity, microbial functionality and crop yields: A meta-analysis, Sci. Total Environ., 829, 154627, https://doi.org/10.1016/j.scitotenv.2022.154627, 2022.
Sileshi, G. W., Nhamo, N., Mafongoya, P. L., and Tanimu, J.: The stoichiometry of animal manure and its implications for nutrient cycling and agriculture in sub-Saharan Africa, Nutr. Cycl. Agroecosyst., 107, 91–105, https://doi.org/10.1007/s10705-016-9817-7, 2017.
Sileshi, G. W., Jama, B., Vanlauwe, B., Negassa, W., and Harawa, R.: Nutrient use efficiency and crop yield response to the combined application of cattle manure and inorganic fertilizer in sub-Saharan Africa, Nutr. Cycl. Agroecosyst., 113, 181–199, https://doi.org/10.1007/s10705-019-09974-3, 2019.
Sileshi, G. W., Barrios, E., Lehmann, J., and Tubiello, F. N.: Organic Matter Database (OMD), Zenodo [data set], https://doi.org/10.5281/zenodo.10450921, 2024.
Singh, B.: Rice husk ash, in: Woodhead Publishing Series in Civil and Structural Engineering, Waste and Supplementary Cementitious Materials in Concrete, edited by: Siddique, R. and Cachim, P., Woodhead Publishing, 417–460, https://doi.org/10.1016/B978-0-08-102156-9.00013-4, 2018.
Singh, B. and Craswell, E.: Fertilizers and nitrate pollution of surface and ground water: an increasingly pervasive global problem, SN Appl. Sci., 3, 518, https://doi.org/10.1007/s42452-021-04521-8, 2021.
Siqueira, M. U., Contin, B., Fernandes, P. R. B., Ruschel-Soares, R., Siqueira, P. U., and Baruque-Ramos, J.: Brazilian agro-industrial wastes as potential textile and other raw materials: a sustainable approach, Mater. Circ. Econ., 4, 9, https://doi.org/10.1007/s42824-021-00050-2, 2022.
Smerald, A., Rahimi, J., and Scheer, C.: A global dataset for the production and usage of cereal residues in the period 1997–2021, Sci. Data, 10, 685, https://doi.org/10.1038/s41597-023-02587-0, 2023.
Torrijos, M.: State of Development of Biogas Production in Europe, Procedia Environ. Sci., 35, 881–889, https://doi.org/10.1016/j.proenv.2016.07.043, 2016.
Tubiello, F. N., Karl, K., Flammini, A., Gütschow, J., Obli-Laryea, G., Conchedda, G., Pan, X., Qi, S. Y., Halldórudóttir Heiðarsdóttir, H., Wanner, N., Quadrelli, R., Rocha Souza, L., Benoit, P., Hayek, M., Sandalow, D., Mencos Contreras, E., Rosenzweig, C., Rosero Moncayo, J., Conforti, P., and Torero, M.: Pre- and post-production processes increasingly dominate greenhouse gas emissions from agri-food systems, Earth Syst. Sci. Data, 14, 1795–1809, https://doi.org/10.5194/essd-14-1795-2022, 2022.
van Dijk, K. C., Lesschen, J. P., and Oenema, O.: Phosphorus flows and balances of the European Union Member States, Sci. Total Environ., 542, 1078–1093, https://doi.org/10.1016/j.scitotenv.2015.08.048, 2016.
Van Hung, N., Maguyon-Detras, M. C., Migo, M. V., Quilloy, R., Balingbing, C., Chivenge, P., and Gummert, M.: Rice straw overview: availability, properties, and management practices, in: Sustainable Rice Straw Management, edited by: Gummert, M., Hung, N., Chivenge, P., and Douthwaite, B., Springer, 1–14, https://doi.org/10.1007/978-3-030-32373-8_1, 2020.
Vanlauwe, B., Gachengo, C., Shepherd, K., Barrios, E., Cadisch, G., and Palm, C. A.: Laboratory validation of a resource quality-based conceptual framework for organic matter management, Soil Sci. Soc. Amer. J., 69, 1135–1145, https://doi.org/10.2136/sssaj2004.0089, 2005.
Venkatramanan, V., Shah, S., Rai, A. K., and Prasad, R.: Nexus between crop residue burning, bioeconomy and Sustainable Development Goals over North-Western India, Front. Energy Res., 8, 614212, https://doi.org/10.3389/fenrg.2020.614212, 2021.
Wang, Y., Sun, J., and Lin, H.: Environmental pollution of livestock and poultry raising in rural areas and control measures: Taking Hebei province in China as an example, Nat. Env. Poll. Technol., 16, 849–855, 2017.
Wang, X., He, C., Liu, B., Zhao, X., Liu, Y., Wang, Q., and Zhang, H.: Effects of residue returning on soil organic carbon storage and sequestration rate in China's croplands: A meta-analysis, Agronomy, 10, 691, https://doi.org/10.3390/agronomy10050691, 2020.
Woolf, D.: Review of organic-matter resource databases in the agriculture sector and related industries. Report prepared on behalf of FAO, McKnight Foundation funded project (MTF/GLO/664/MKF), 2020.
Zhang, X., Fang, Q., Zhang, T., Ma, W., Velthof, G.L., Hou, Y., Oenema, O., and Zhang, F.: Benefits and trade-offs of replacing synthetic fertilizers by animal manures in crop production in China: A meta-analysis, Glob. Chang. Biol., 26, 888–900, https://doi.org/10.1111/gcb.14826, 2020.
Zhao, X., Chen, J., and Du, F.: Potential use of peanut by-products in food processing: a review, J. Food Sci. Technol., 49, 521–529, https://doi.org/10.1007/s13197-011-0449-2, 2012.
Zhao, X., Li, R. C., Liu, W. X., Liu, W. S., Xue, Y. H., Sun, R. H., Wei, Y. X., Chen, Z., Lal, R., Dang, Y. P., Xu, Z. Y., and Zhang, H. L.: Estimation of crop residue production and its contribution to carbon neutrality in China, Res. Conserv. Recycl., 203, 107450, https://doi.org/10.1016/j.resconrec.2024.107450, 2024.
Short summary
Agricultural, fishery, forestry and agro-processing activities produce large quantities of residues, by-products and waste materials every year. Here, we present a global organic matter database (OMD), the first of its kind, consolidating estimates of residues and by-products potentially available for use in a circular bio-economy. It also provides definitions, typologies and methods to aid consistent classification, estimation and reporting of the various residues and by-products.
Agricultural, fishery, forestry and agro-processing activities produce large quantities of...
Altmetrics
Final-revised paper
Preprint