Articles | Volume 17, issue 4
https://doi.org/10.5194/essd-17-1743-2025
https://doi.org/10.5194/essd-17-1743-2025
Data description paper
 | 
29 Apr 2025
Data description paper |  | 29 Apr 2025

GRILSS: opening the gateway to global reservoir sedimentation data curation

Sanchit Minocha and Faisal Hossain

Related authors

Reservoir Assessment Tool version 3.0: a scalable and user-friendly software platform to mobilize the global water management community
Sanchit Minocha, Faisal Hossain, Pritam Das, Sarath Suresh, Shahzaib Khan, George Darkwah, Hyongki Lee, Stefano Galelli, Konstantinos Andreadis, and Perry Oddo
Geosci. Model Dev., 17, 3137–3156, https://doi.org/10.5194/gmd-17-3137-2024,https://doi.org/10.5194/gmd-17-3137-2024, 2024
Short summary
Satellite-based Tracking of Reservoir Operations for Flood Management during the 2018 Extreme Weather Event in Kerala, India
Sarath Suresh, Faisal Hossain, Sanchit Minocha, Pritam Das, Shahzaib Khan, Hyongki Lee, Konstantinos Andreadis, and Perry Oddo
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-193,https://doi.org/10.5194/hess-2023-193, 2023
Manuscript not accepted for further review
Short summary

Related subject area

Domain: ESSD – Land | Subject: Hydrology
A worldwide event-based debris flow barrier dam dataset from 1800 to 2023
Haiguang Cheng, Kaiheng Hu, Shuang Liu, Xiaopeng Zhang, Hao Li, Qiyuan Zhang, Lan Ning, Manish Raj Gouli, Pu Li, Anna Yang, Peng Zhao, Junyu Liu, and Li Wei
Earth Syst. Sci. Data, 17, 1573–1593, https://doi.org/10.5194/essd-17-1573-2025,https://doi.org/10.5194/essd-17-1573-2025, 2025
Short summary
CAMELS-DK: hydrometeorological time series and landscape attributes for 3330 Danish catchments with streamflow observations from 304 gauged stations
Jun Liu, Julian Koch, Simon Stisen, Lars Troldborg, Anker Lajer Højberg, Hans Thodsen, Mark F. T. Hansen, and Raphael J. M. Schneider
Earth Syst. Sci. Data, 17, 1551–1572, https://doi.org/10.5194/essd-17-1551-2025,https://doi.org/10.5194/essd-17-1551-2025, 2025
Short summary
An in situ daily dataset for benchmarking temporal variability of groundwater recharge
Pragnaditya Malakar, Aatish Anshuman, Mukesh Kumar, Georgios Boumis, T. Prabhakar Clement, Arik Tashie, Hitesh Thakur, Nagaraj Bhat, and Lokendra Rathore
Earth Syst. Sci. Data, 17, 1515–1528, https://doi.org/10.5194/essd-17-1515-2025,https://doi.org/10.5194/essd-17-1515-2025, 2025
Short summary
CAMELS-FR dataset: a large-sample hydroclimatic dataset for France to explore hydrological diversity and support model benchmarking
Olivier Delaigue, Guilherme Mendoza Guimarães, Pierre Brigode, Benoît Génot, Charles Perrin, Jean-Michel Soubeyroux, Bruno Janet, Nans Addor, and Vazken Andréassian
Earth Syst. Sci. Data, 17, 1461–1479, https://doi.org/10.5194/essd-17-1461-2025,https://doi.org/10.5194/essd-17-1461-2025, 2025
Short summary
Features of Italian large dams and their upstream catchments
Giulia Evangelista, Paola Mazzoglio, Daniele Ganora, Francesca Pianigiani, and Pierluigi Claps
Earth Syst. Sci. Data, 17, 1407–1426, https://doi.org/10.5194/essd-17-1407-2025,https://doi.org/10.5194/essd-17-1407-2025, 2025
Short summary

Cited articles

Bartos, M.: pysheds: simple and fast watershed delineation in python, Zenodo [code], https://doi.org/10.5281/zenodo.3822494, 2020. 
Basson, G. R.: Management of siltation in existing and new reservoirs, http://hdl.handle.net/10019.1/43104 (last access: 13 April 2025), 2009. 
Central Water Commission: Compendium on sedimentation of reservoirs in India, Water Planning and Projects Wing, New Delhi, Government of India, https://cwc.gov.in/sites/default/files/compendium1122020.pdf (last access: 13 April 2025), 2020. 
de Oliveira Fagundes, H., de Paiva, R. C. D., Fan, F. M., Buarque, D. C., and Fassoni-Andrade, A. C.: Sediment modeling of a large-scale basin supported by remote sensing and in-situ observations, Catena, 190, 104535, https://doi.org/10.1016/j.catena.2020.104535, 2020. 
Demirbas, A.: Global renewable energy projections, Energ. Source. Part B, 4, 212–224, https://doi.org/10.1080/15567240701620499, 2009. 
Download
Short summary
Trustworthy and independently verifiable information on declining storage capacity or sedimentation rates worldwide is sparse and suffers from inconsistent metadata and curation to allow global-scale archiving and analyses. The Global Reservoir Inventory of Lost Storage by Sedimentation (GRILSS) dataset addresses this challenge by providing organized, well-curated, and open-source data on sedimentation rates and capacity loss for 1013 reservoirs in 75 major river basins across 54 countries.
Share
Altmetrics
Final-revised paper
Preprint