Articles | Volume 17, issue 4
https://doi.org/10.5194/essd-17-1743-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-1743-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
GRILSS: opening the gateway to global reservoir sedimentation data curation
Sanchit Minocha
Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98105, USA
Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98105, USA
Related authors
Sanchit Minocha, Faisal Hossain, Pritam Das, Sarath Suresh, Shahzaib Khan, George Darkwah, Hyongki Lee, Stefano Galelli, Konstantinos Andreadis, and Perry Oddo
Geosci. Model Dev., 17, 3137–3156, https://doi.org/10.5194/gmd-17-3137-2024, https://doi.org/10.5194/gmd-17-3137-2024, 2024
Short summary
Short summary
The Reservoir Assessment Tool (RAT) merges satellite data with hydrological models, enabling robust estimation of reservoir parameters like inflow, outflow, surface area, and storage changes around the world. Version 3.0 of RAT lowers the barrier of entry for new users and achieves scalability and computational efficiency. RAT 3.0 also facilitates open-source development of functions for continuous improvement to mobilize and empower the global water management community.
Sarath Suresh, Faisal Hossain, Sanchit Minocha, Pritam Das, Shahzaib Khan, Hyongki Lee, Konstantinos Andreadis, and Perry Oddo
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-193, https://doi.org/10.5194/hess-2023-193, 2023
Manuscript not accepted for further review
Short summary
Short summary
Using entirely space-based data we explored how well can we predict the fast evolving dynamics of a flooding event in the mountainous region of Kerala during the 2018 disastrous floods. The tool, Reservoir Assessment Tool (RAT) was applied and found to have actionable accuracy in predicting the state of the Kerala reservoirs entirely from space to foster better coordinated management in future for reservoir operations.
Sarath Suresh, Faisal Hossain, Vimal Mishra, and Nehan Hossain
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-488, https://doi.org/10.5194/essd-2025-488, 2025
Preprint under review for ESSD
Short summary
Short summary
Irrigation canals deliver water to farms and sustain much of the world’s food supply, yet no global dataset previously existed. GRAIN is the first openly accessible, worldwide map of irrigation canals, and was built using community driven mapping efforts and machine learning. GRAIN contains data on nearly 4 million kilometers of canals, and this resource can support better water planning and agricultural management efforts by governments, researchers, and communities worldwide.
Sanchit Minocha, Faisal Hossain, Pritam Das, Sarath Suresh, Shahzaib Khan, George Darkwah, Hyongki Lee, Stefano Galelli, Konstantinos Andreadis, and Perry Oddo
Geosci. Model Dev., 17, 3137–3156, https://doi.org/10.5194/gmd-17-3137-2024, https://doi.org/10.5194/gmd-17-3137-2024, 2024
Short summary
Short summary
The Reservoir Assessment Tool (RAT) merges satellite data with hydrological models, enabling robust estimation of reservoir parameters like inflow, outflow, surface area, and storage changes around the world. Version 3.0 of RAT lowers the barrier of entry for new users and achieves scalability and computational efficiency. RAT 3.0 also facilitates open-source development of functions for continuous improvement to mobilize and empower the global water management community.
Sarath Suresh, Faisal Hossain, Sanchit Minocha, Pritam Das, Shahzaib Khan, Hyongki Lee, Konstantinos Andreadis, and Perry Oddo
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-193, https://doi.org/10.5194/hess-2023-193, 2023
Manuscript not accepted for further review
Short summary
Short summary
Using entirely space-based data we explored how well can we predict the fast evolving dynamics of a flooding event in the mountainous region of Kerala during the 2018 disastrous floods. The tool, Reservoir Assessment Tool (RAT) was applied and found to have actionable accuracy in predicting the state of the Kerala reservoirs entirely from space to foster better coordinated management in future for reservoir operations.
Dung Trung Vu, Thanh Duc Dang, Stefano Galelli, and Faisal Hossain
Hydrol. Earth Syst. Sci., 26, 2345–2364, https://doi.org/10.5194/hess-26-2345-2022, https://doi.org/10.5194/hess-26-2345-2022, 2022
Short summary
Short summary
The lack of data on how big dams are operated in the Upper Mekong, or Lancang, largely contributes to the ongoing controversy between China and the other Mekong countries. Here, we rely on satellite observations to reconstruct monthly storage time series for the 10 largest reservoirs in the Lancang. Our analysis shows how quickly reservoirs were filled in, what decisions were made during recent droughts, and how these decisions impacted downstream discharge.
Cited articles
Bartos, M.: pysheds: simple and fast watershed delineation in python, Zenodo [code], https://doi.org/10.5281/zenodo.3822494, 2020.
Basson, G. R.: Management of siltation in existing and new reservoirs, http://hdl.handle.net/10019.1/43104 (last access: 13 April 2025), 2009.
Central Water Commission: Compendium on sedimentation of reservoirs in India, Water Planning and Projects Wing, New Delhi, Government of India, https://cwc.gov.in/sites/default/files/compendium1122020.pdf (last access: 13 April 2025), 2020.
de Oliveira Fagundes, H., de Paiva, R. C. D., Fan, F. M., Buarque, D. C., and Fassoni-Andrade, A. C.: Sediment modeling of a large-scale basin supported by remote sensing and in-situ observations, Catena, 190, 104535, https://doi.org/10.1016/j.catena.2020.104535, 2020.
Demirbas, A.: Global renewable energy projections, Energ. Source. Part B, 4, 212–224, https://doi.org/10.1080/15567240701620499, 2009.
Dutta, S.: Soil erosion, sediment yield and sedimentation of reservoir: a review, Modeling Earth Systems and Environment, 2, 1–18, https://doi.org/10.1007/s40808-016-0182-y, 2016.
Elçi, Ş., Bor, A., and Çalışkan, A.: Using numerical models and acoustic methods to predict reservoir sedimentation, Lake Reserv. Manage., 25, 297–306, https://doi.org/10.1080/07438140903117183, 2009.
Erena, M., Atenza, J. F., García-Galiano, S., Domínguez, J. A., and Bernabé, J. M.: Use of drones for the topo-bathymetric monitoring of the reservoirs of the Segura River Basin, Water, 11, 445, https://doi.org/10.3390/w11030445, 2019.
Estrada Gutiérrez, G., Silva Hidalgo, H., Villalba, M. L., Astorga Bustillos, F., and Franco Estrada, B.: Tasa de acumulación de sedimentos en embalses del río Conchos, Chihuahua, México, In 1er Congreso Iberoamericano sobre sedimentos y ecología, Querétaro, Querétaro México, https://docspike.com/download/descargar-atl-el-portal-del-agua-desde-mexico-4_pdf (last access: 13 April 2025), 2015.
Gao, J.: Bathymetric mapping by means of remote sensing: methods, accuracy and limitations, Prog. Phys. Geog., 33, 103–116, https://doi.org/10.1177/0309133309105657, 2009.
George, M. W., Hotchkiss, R. H., and Huffaker, R.: Reservoir sustainability and sediment management, J. Water Res. Pl., 143, 04016077, https://doi.org/10.1061/(ASCE)WR.1943-5452.0000720, 2017.
Ghosh, S., Thakur, P. K., Sharma, R., Bhattacharyya, S., Garg, V., Dash, P., and Biradar, C. M.: Quantification of sedimentation of a tropical reservoir through satellite altimetry: A case study of Maithon reservoir, In Natural Resource Monitoring, Planning and Management Based on Advanced Programming, Singapore: Springer Nature Singapore, 225–247, https://doi.org/10.13140/RG.2.2.11934.10566, 2024.
Gray, J. R., Bernard, J. M., Stewart, D. W., McFaul, E. J., Laurent, K. W., Schwarz, G. E., Stinson, J. T., Jonas, M. R., Randle, T., and Webb, J. W.: Development of a national, dynamic reservoir sedimentation database, In Proceedings of the 2nd Joint Federal Interagency Conference, Las Vegas, NV, 27 June–1 July 2010, Vol. 172, https://pubs.usgs.gov/publication/70120715 (last access: 13 April 2025), 2010.
Güvel, Ş. P.: Investigation of Sediment Deposition in Dam Reservoirs, Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 36, 869–878, https://doi.org/10.21605/cukurovaumfd.1040334, 2021.
Hanmaiahgari, P. R., Gompa, N. R., Pal, D., and Pu, J. H.: Numerical modeling of the Sakuma Dam reservoir sedimentation, Nat. Hazards, 91, 1075–1096, https://doi.org/10.1007/s11069-018-3168-4, 2018.
ICOLD: ICOLD reservoir sedimentation bulletins: Case studies and Bypass Systems, SEDHYD, https://www.sedhyd.org/2023Program/s196.html (last access: 3 January 2025), 2019.
Kantoush, S. A. and Schleiss, A. J.: Influence of geometry shape factor on trapping and flushing efficiencies, in: Reservoir Sedimentation, 129–137, ISBN 9780429226809, https://www.taylorfrancis.com/chapters/edit/10.1201/b17397-20/influence-geometry-shape-factor-trapping-flushing-efficiencies-kantoush-schleiss (last access: 13 April 2025), 2014.
Kim, S. M., Jang, T. I., Kang, M. S., Im, S. J., and Park, S. W.: GIS-based lake sediment budget estimation taking into consideration land use change in an urbanizing catchment area, Environ. Earth Sci., 71, 2155–2165, https://doi.org/10.1007/s12665-013-2621-7, 2014.
Kondolf, G. M., Gao, Y., Annandale, G. W., Morris, G. L., Jiang, E., Zhang, J., Cao, Y., Carling, P., Fu, K., Guo, Q., and Hotchkiss, R.: Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents. Earth's Future, 2, 256–280, https://doi.org/10.1002/2013EF000184, 2014.
Lehner, B., Verdin, K., and Jarvis, A.: New global hydrography derived from spaceborne elevation data, Eos Transactions, American Geophysical Union, 89, 93–94, https://doi.org/10.1029/2008EO100001, 2008.
Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., Döll, P., Endejan, M., Frenken, K., Magome, J., and Nilsson, C.: High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management, Front. Ecol. Environ., 9, 494–502, https://doi.org/10.1890/100125, 2011.
Lorsirirat, K.: Models for prediction of the effects of hydrological and basin characteristics on reservoir sedimentation for water management in Thailand, Int. J. Erosion Control Eng., 7, 69–74, https://doi.org/10.13101/ijece.7.69, 2014.
McCully, P.: Silenced Rivers: The Ecology and Politics of Large Dams. Zed Books, ISBN 978-1-85649-436-6, https://www.cabidigitallibrary.org/doi/full/10.5555/19971801995 (last access: 13 April 2025), 1996.
Messager, M. L., Lehner, B., Grill, G., Nedeva, I., and Schmitt, O.: Estimating the volume and age of water stored in global lakes using a geo-statistical approach, Nat. Commun., 7, 13603, https://doi.org/10.1038/ncomms13603, 2016.
Minocha, S. and Hossain, F.: GRILSS, OSFHome [data set], https://doi.org/10.17605/OSF.IO/W4UG8, 2025.
Morley, N. J.: Anthropogenic effects of reservoir construction on the parasite fauna of aquatic wildlife, EcoHealth, 4, 374–383, https://doi.org/10.1007/s10393-007-0130-4, 2007.
Morris, G. L.: Sediment management and sustainable use of reservoirs, in: Modern Water Resources Engineering, Springer, 279–337, https://doi.org/10.1007/978-1-62703-595-8_5, 2014.
Morris, G. L. and Fan, J.: Reservoir Sedimentation Handbook: Design and Management of Dams, Reservoirs, and Watersheds for Sustainable Use, McGraw-Hill, ISBN 007043302X, https://lccn.loc.gov/97001065 (last access: 13 April 2025), 1998.
Msadala, V., Gibson, L., Le Roux, J., Rooseboom, A., and Basson, G. R.: Sediment yield prediction for South Africa: 2010 edition, South African Water Research Commission, https://www.researchgate.net/profile/Gerrit-Basson/publication/348325829_WRCSedYieldMapsFinalReportAug2010/links/5ff80aa645851553a02b0c1a/WRCSedYieldMapsFinalReportAug2010.pdf (last access: 13 April 2025), 2010.
Nguyen, B. Q., Van Binh, D., Tran, T. N. D., Kantoush, S. A., and Sumi, T.: Response of streamflow and sediment variability to cascade dam development and climate change in the Sai Gon Dong Nai River basin, Clim. Dynam., 62, 7997–8017, https://doi.org/10.1007/s00382-024-07319-7, 2024.
Nyikadzino, B. and Gwate, O.: Estimation of reservoir capacity and sedimentation rate using direct and indirect methods, Int. J. Earth Sci. Geophys., 7, 045, https://doi.org/10.35840/2631-5033/1845, 2021.
OpenStreetMap contributors: Planet dump retrieved from https://planet.osm.org (last access: 13 April 2025), https://www.openstreetmap.org (last access: 5 October 2024), 2017.
Overpass API: OpenStreetMap Wiki, https://wiki.openstreetmap.org/w/index.php?title=Overpass_API&oldid=2745759, last access: 20 August 2024.
Pandey, A., Chaube, U. C., Mishra, S. K., and Kumar, D.: Assessment of reservoir sedimentation using remote sensing and recommendations for desilting Patratu Reservoir, India, Hydrol. Sci. J., 61, 711–718, https://doi.org/10.1080/02626667.2014.993988, 2016.
Palinkas, C. M. and Russ, E.: Spatial and temporal patterns of sedimentation in an infilling reservoir, Catena, 180, 120–131, https://doi.org/10.1016/j.catena.2019.04.024, 2019.
Patil, R. and Shetkar, R.: Sediment deposition in Koyna reservoir by integrated bathymetric survey, Int. J. Res. Eng. Technol., 4, 114–118, https://doi.org/10.15623/IJRET.2015.0411022, 2015.
Patro, E. R., De Michele, C., Granata, G., and Biagini, C.: Assessment of current reservoir sedimentation rate and storage capacity loss: An Italian overview, J. Environ. Manage., 320, 115826, https://doi.org/10.1016/j.jenvman.2022.115826, 2022.
Pekel, J. F., Cottam, A., Gorelick, N., and Belward, A. S.: High-resolution mapping of global surface water and its long-term changes, Nature, 540, 418–422, https://doi.org/10.1038/nature20584, 2016.
Pelicice, F. M., Pompeu, P. S., and Agostinho, A. A.: Large reservoirs as ecological barriers to downstream movements of Neotropical migratory fish, Fish Fish., 16, 697–715, https://doi.org/10.1111/faf.12089, 2015.
Perera, D., Williams, S., and Smakhtin, V.: Present and future losses of storage in large reservoirs due to sedimentation: A country-wise global assessment, Sustainability, 15, 219, https://doi.org/10.3390/su15010219, 2023.
QGIS Development Team: QGIS Geographic Information System, https://www.qgis.org (last access: 13 April 2025), 2024.
Samaila-Ija, H. A., Ajayi, O. G., Zitta, N., Kuta, A. A., Adesina, E. A., and Ibrahim, P.: Bathymetric survey and volumetric analysis for sustainable management: Case study of Suleja Dam, Niger State, Nigeria, Niger. J. Eng. Sci., 10, 38–45, https://www.iiste.org/Journals/index.php/JEES/article/view/15908 (last access: 13 April 2025), 2014.
Seatgeek: Seatgeek/thefuzz: Fuzzy string matching in Python, GitHub [code], https://github.com/seatgeek/thefuzz (last access: 5 October 2024), 2021.
Stauch, G., Dörwald, L., Esch, A., and Walk, J.: 115 years of sediment deposition in a reservoir in Central Europe: topographic change detection, Earth Surf. Proc. Land., 49, 582–600, https://doi.org/10.1002/esp.5722, 2024.
Syvitski, J. P.: Supply and flux of sediment along hydrological pathways: research for the 21st century, Global Planet. Change, 39, 1–11, https://doi.org/10.1016/S0921-8181(03)00008-0, 2003.
Tran, T. N. D., Nguyen, B. Q., Grodzka-Łukaszewska, M., Sinicyn, G., and Lakshmi, V.: The role of reservoirs under the impacts of climate change on the Srepok River basin, Central Highlands of Vietnam, Frontiers in Environmental Science, 11, 1304845, https://doi.org/10.3389/fenvs.2023.1304845, 2023.
Tundisi, J. G.: Reservoirs: New challenges for ecosystem studies and environmental management, Water Security, 4, 1–7, https://doi.org/10.1016/j.wasec.2018.09.001, 2018.
Ugwu, S. J., Ajoge, H. N., Abdulsalam, B., and Nwude, M. O.: Bathymetry study of the siltation level of Lugu Dam Reservoir in Sokoto State, Nigeria, Nigerian Journal of Technological Development, 18, 238–243, https://doi.org/10.4314/njtd.v18i3.8, 2021.
Vanmaercke, M., Poesen, J., Broeckx, J., and Nyssen, J.: Sediment yield in Africa, Earth-Sci. Rev., 136, 350–368, https://doi.org/10.1016/j.earscirev.2014.06.004, 2014.
Vanmaercke, M., Poesen, J., Verstraeten, G., de Vente, J., and Ocakoglu, F.: Sediment yield in Europe: Spatial patterns and scale dependency, Geomorphology, 130, 142–161, https://doi.org/10.1016/j.geomorph.2011.03.010, 2011.
Walter, J. A., Fleck, R., Pace, M. L., and Wilkinson, G. M.: Scaling relationships between lake surface area and catchment area, Aquat. Sci., 82, 1–8, https://doi.org/10.1007/s00027-020-00726-y, 2020.
Wisser, D., Frolking, S., Hagen, S., and Bierkens, M. F.: Beyond peak reservoir storage? A global estimate of declining water storage capacity in large reservoirs, Water Resour. Res., 49, 5732–5739, https://doi.org/10.1002/wrcr.20452, 2013.
Wu, H., Chen, J., Xu, J., Zeng, G., Sang, L., Liu, Q., Yin, Z., Dai, J., Yin, D., Liang, J., and Ye, S.: Effects of dam construction on biodiversity: A review, J. Clean. Prod., 221, 480–489, https://doi.org/10.1016/j.jclepro.2019.03.001, 2019.
Yang, C. Y., Kang, W., Lee, J. H., and Julien, P. Y.: Sediment regimes in South Korea, River Res. Appl., 38, 209–221, https://doi.org/10.1002/rra.3896 , 2022.
Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L., and Tockner, K.: A global boom in hydropower dam construction, Aquat. Sci., 77, 161–170, https://doi.org/10.1007/s00027-014-0377-0, 2015.
Zhang, A. T. and Gu, V. X.: Global Dam Tracker: A database of more than 35 000 dams with location, catchment, and attribute information, Scientific Data, 10, 111, https://doi.org/10.1038/s41597-023-02008-2, 2023.
Zhang, J., Xu, K., Yang, Y., Qi, L., Hayashi, S., and Watanabe, M.: Measuring water storage fluctuations in Lake Dongting, China, by Topex/Poseidon satellite altimetry, Environ. Monit. Assess., 115, 23–37, https://doi.org/10.1007/s10661-006-5233-9, 2006.
Short summary
Trustworthy and independently verifiable information on declining storage capacity or sedimentation rates worldwide is sparse and suffers from inconsistent metadata and curation to allow global-scale archiving and analyses. The Global Reservoir Inventory of Lost Storage by Sedimentation (GRILSS) dataset addresses this challenge by providing organized, well-curated, and open-source data on sedimentation rates and capacity loss for 1013 reservoirs in 75 major river basins across 54 countries.
Trustworthy and independently verifiable information on declining storage capacity or...
Altmetrics
Final-revised paper
Preprint