Articles | Volume 17, issue 3
https://doi.org/10.5194/essd-17-1245-2025
https://doi.org/10.5194/essd-17-1245-2025
Data description paper
 | 
24 Mar 2025
Data description paper |  | 24 Mar 2025

ChatEarthNet: a global-scale image–text dataset empowering vision–language geo-foundation models

Zhenghang Yuan, Zhitong Xiong, Lichao Mou, and Xiao Xiang Zhu

Related authors

Physics-aware machine learning for glacier ice thickness estimation: a case study for Svalbard
Viola Steidl, Jonathan Louis Bamber, and Xiao Xiang Zhu
The Cryosphere, 19, 645–661, https://doi.org/10.5194/tc-19-645-2025,https://doi.org/10.5194/tc-19-645-2025, 2025
Short summary
Learning Building Floor Numbers from Crowdsourced Streetview Images
Yifan Tian, Yao Sun, and Xiao Xiang Zhu
Abstr. Int. Cartogr. Assoc., 7, 171, https://doi.org/10.5194/ica-abs-7-171-2024,https://doi.org/10.5194/ica-abs-7-171-2024, 2024
Calving front monitoring at a subseasonal resolution: a deep learning application for Greenland glaciers
Erik Loebel, Mirko Scheinert, Martin Horwath, Angelika Humbert, Julia Sohn, Konrad Heidler, Charlotte Liebezeit, and Xiao Xiang Zhu
The Cryosphere, 18, 3315–3332, https://doi.org/10.5194/tc-18-3315-2024,https://doi.org/10.5194/tc-18-3315-2024, 2024
Short summary
Towards Sustainable Urban Energy: A Robust Deep Learning Framework for Solar Potential Estimation
Weiyan Lin, Jiasong Zhu, Yuansheng Hua, Qingyu Li, Lichao Mou, and Xiao Xiang Zhu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-2024, 371–378, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-371-2024,https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-371-2024, 2024
A high-resolution calving front data product for marine-terminating glaciers in Svalbard
Tian Li, Konrad Heidler, Lichao Mou, Ádám Ignéczi, Xiao Xiang Zhu, and Jonathan L. Bamber
Earth Syst. Sci. Data, 16, 919–939, https://doi.org/10.5194/essd-16-919-2024,https://doi.org/10.5194/essd-16-919-2024, 2024
Short summary

Related subject area

Domain: ESSD – Land | Subject: Land Cover and Land Use
Aboveground biomass dataset from SMOS L-band vegetation optical depth and reference maps
Simon Boitard, Arnaud Mialon, Stéphane Mermoz, Nemesio J. Rodríguez-Fernández, Philippe Richaume, Julio César Salazar-Neira, Stéphane Tarot, and Yann H. Kerr
Earth Syst. Sci. Data, 17, 1101–1119, https://doi.org/10.5194/essd-17-1101-2025,https://doi.org/10.5194/essd-17-1101-2025, 2025
Short summary
GMIE: a global maximum irrigation extent and central pivot irrigation system dataset derived via irrigation performance during drought stress and deep learning methods
Fuyou Tian, Bingfang Wu, Hongwei Zeng, Miao Zhang, Weiwei Zhu, Nana Yan, Yuming Lu, and Yifan Li
Earth Syst. Sci. Data, 17, 855–880, https://doi.org/10.5194/essd-17-855-2025,https://doi.org/10.5194/essd-17-855-2025, 2025
Short summary
Annual vegetation maps in the Qinghai–Tibet Plateau (QTP) from 2000 to 2022 based on MODIS series satellite imagery
Guangsheng Zhou, Hongrui Ren, Lei Zhang, Xiaomin Lv, and Mengzi Zhou
Earth Syst. Sci. Data, 17, 773–797, https://doi.org/10.5194/essd-17-773-2025,https://doi.org/10.5194/essd-17-773-2025, 2025
Short summary
Time series of Landsat-based bimonthly and annual spectral indices for continental Europe for 2000–2022
Xuemeng Tian, Davide Consoli, Martijn Witjes, Florian Schneider, Leandro Parente, Murat Şahin, Yu-Feng Ho, Robert Minařík, and Tomislav Hengl
Earth Syst. Sci. Data, 17, 741–772, https://doi.org/10.5194/essd-17-741-2025,https://doi.org/10.5194/essd-17-741-2025, 2025
Short summary
EARice10: a 10 m resolution annual rice distribution map of East Asia for 2023
Mingyang Song, Lu Xu, Ji Ge, Hong Zhang, Lijun Zuo, Jingling Jiang, Yinhaibin Ding, Yazhe Xie, and Fan Wu
Earth Syst. Sci. Data, 17, 661–683, https://doi.org/10.5194/essd-17-661-2025,https://doi.org/10.5194/essd-17-661-2025, 2025
Short summary

Cited articles

Bai, J., Bai, S., Yang, S., Wang, S., Tan, S., Wang, P., Lin, J., Zhou, C., and Zhou, J.: Qwen-vl: Qwen-VL: A Versatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond, arXiv [preprint], https://doi.org/10.48550/arXiv.2308.12966, 2023. a
Bastani, F., Wolters, P., Gupta, R., Ferdinando, J., and Kembhavi, A.: SatlasPretrain: A large-scale dataset for remote sensing image understanding, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–6 October 2023, 16772–16782, https://doi.org/10.1109/ICCV51070.2023.01538, 2023. a, b
Chen, J., Zhu, D., Shen, X., Li, X., Liu, Z., Zhang, P., Krishnamoorthi, R., Chandra, V., Xiong, Y., and Elhoseiny, M.: MiniGPT-v2: large language model as a unified interface for vision-language multi-task learning, arXiv [preprint], https://doi.org/10.48550/arXiv.2310.09478, 2023. a, b
Cheng, G., Han, J., and Lu, X.: Remote sensing image scene classification: Benchmark and state of the art, P. IEEE, 105, 1865–1883, https://doi.org/10.1109/JPROC.2017.2675998, 2017. a
Cheng, Q., Huang, H., Xu, Y., Zhou, Y., Li, H., and Wang, Z.: NWPU-captions dataset and MLCA-Net for remote sensing image captioning, IEEE T. Geosci. Remote, 60, 5629419, https://doi.org/10.1109/TGRS.2022.3201474, 2022. a, b, c
Download
Short summary
ChatEarthNet is an image–text dataset that provides high-quality, detailed natural language descriptions for global-scale satellite data. It consists of 163 488 image-text pairs with captions generated by ChatGPT-3.5 and an additional 10 000 image-text pairs with captions generated by ChatGPT-4V(ision). This dataset has significant potential for training and evaluating vision–language geo-foundation models in remote sensing.
Share
Altmetrics
Final-revised paper
Preprint