Articles | Volume 17, issue 3
https://doi.org/10.5194/essd-17-1245-2025
https://doi.org/10.5194/essd-17-1245-2025
Data description paper
 | 
24 Mar 2025
Data description paper |  | 24 Mar 2025

ChatEarthNet: a global-scale image–text dataset empowering vision–language geo-foundation models

Zhenghang Yuan, Zhitong Xiong, Lichao Mou, and Xiao Xiang Zhu

Related authors

GlobalBuildingAtlas: An Open Global and Complete Dataset of Building Polygons, Heights and LoD1 3D Models
Xiao Xiang Zhu, Sining Chen, Fahong Zhang, Yilei Shi, and Yuanyuan Wang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-327,https://doi.org/10.5194/essd-2025-327, 2025
Preprint under review for ESSD
Short summary
Physics-aware machine learning for glacier ice thickness estimation: a case study for Svalbard
Viola Steidl, Jonathan Louis Bamber, and Xiao Xiang Zhu
The Cryosphere, 19, 645–661, https://doi.org/10.5194/tc-19-645-2025,https://doi.org/10.5194/tc-19-645-2025, 2025
Short summary
Learning Building Floor Numbers from Crowdsourced Streetview Images
Yifan Tian, Yao Sun, and Xiao Xiang Zhu
Abstr. Int. Cartogr. Assoc., 7, 171, https://doi.org/10.5194/ica-abs-7-171-2024,https://doi.org/10.5194/ica-abs-7-171-2024, 2024
Calving front monitoring at a subseasonal resolution: a deep learning application for Greenland glaciers
Erik Loebel, Mirko Scheinert, Martin Horwath, Angelika Humbert, Julia Sohn, Konrad Heidler, Charlotte Liebezeit, and Xiao Xiang Zhu
The Cryosphere, 18, 3315–3332, https://doi.org/10.5194/tc-18-3315-2024,https://doi.org/10.5194/tc-18-3315-2024, 2024
Short summary
Towards Sustainable Urban Energy: A Robust Deep Learning Framework for Solar Potential Estimation
Weiyan Lin, Jiasong Zhu, Yuansheng Hua, Qingyu Li, Lichao Mou, and Xiao Xiang Zhu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-2024, 371–378, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-371-2024,https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-371-2024, 2024

Related subject area

Domain: ESSD – Land | Subject: Land Cover and Land Use
The GIEMS-MethaneCentric database: a dynamic and comprehensive global product of methane-emitting aquatic areas
Juliette Bernard, Catherine Prigent, Carlos Jimenez, Etienne Fluet-Chouinard, Bernhard Lehner, Elodie Salmon, Philippe Ciais, Zhen Zhang, Shushi Peng, and Marielle Saunois
Earth Syst. Sci. Data, 17, 2985–3008, https://doi.org/10.5194/essd-17-2985-2025,https://doi.org/10.5194/essd-17-2985-2025, 2025
Short summary
An annual 30 m cultivated-pasture dataset of the Tibetan Plateau from 1988 to 2021
Binghong Han, Jian Bi, Shengli Tao, Tong Yang, Yongli Tang, Mengshuai Ge, Hao Wang, Zhenong Jin, Jinwei Dong, Zhibiao Nan, and Jin-Sheng He
Earth Syst. Sci. Data, 17, 2933–2952, https://doi.org/10.5194/essd-17-2933-2025,https://doi.org/10.5194/essd-17-2933-2025, 2025
Short summary
GloUCP: a global 1 km spatially continuous urban canopy parameters for the WRF model
Weilin Liao, Yanman Li, Xiaoping Liu, Yuhao Wang, Yangzi Che, Ledi Shao, Guangzhao Chen, Hua Yuan, Ning Zhang, and Fei Chen
Earth Syst. Sci. Data, 17, 2535–2551, https://doi.org/10.5194/essd-17-2535-2025,https://doi.org/10.5194/essd-17-2535-2025, 2025
Short summary
CCD-Rice: a long-term paddy rice distribution dataset in China at 30 m resolution
Ruoque Shen, Qiongyan Peng, Xiangqian Li, Xiuzhi Chen, and Wenping Yuan
Earth Syst. Sci. Data, 17, 2193–2216, https://doi.org/10.5194/essd-17-2193-2025,https://doi.org/10.5194/essd-17-2193-2025, 2025
Short summary
U-Surf: a global 1 km spatially continuous urban surface property dataset for kilometer-scale urban-resolving Earth system modeling
Yifan Cheng, Lei Zhao, TC Chakraborty, Keith Oleson, Matthias Demuzere, Xiaoping Liu, Yangzi Che, Weilin Liao, Yuyu Zhou, and Xinchang “Cathy” Li
Earth Syst. Sci. Data, 17, 2147–2174, https://doi.org/10.5194/essd-17-2147-2025,https://doi.org/10.5194/essd-17-2147-2025, 2025
Short summary

Cited articles

Bai, J., Bai, S., Yang, S., Wang, S., Tan, S., Wang, P., Lin, J., Zhou, C., and Zhou, J.: Qwen-vl: Qwen-VL: A Versatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond, arXiv [preprint], https://doi.org/10.48550/arXiv.2308.12966, 2023. a
Bastani, F., Wolters, P., Gupta, R., Ferdinando, J., and Kembhavi, A.: SatlasPretrain: A large-scale dataset for remote sensing image understanding, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–6 October 2023, 16772–16782, https://doi.org/10.1109/ICCV51070.2023.01538, 2023. a, b
Chen, J., Zhu, D., Shen, X., Li, X., Liu, Z., Zhang, P., Krishnamoorthi, R., Chandra, V., Xiong, Y., and Elhoseiny, M.: MiniGPT-v2: large language model as a unified interface for vision-language multi-task learning, arXiv [preprint], https://doi.org/10.48550/arXiv.2310.09478, 2023. a, b
Cheng, G., Han, J., and Lu, X.: Remote sensing image scene classification: Benchmark and state of the art, P. IEEE, 105, 1865–1883, https://doi.org/10.1109/JPROC.2017.2675998, 2017. a
Cheng, Q., Huang, H., Xu, Y., Zhou, Y., Li, H., and Wang, Z.: NWPU-captions dataset and MLCA-Net for remote sensing image captioning, IEEE T. Geosci. Remote, 60, 5629419, https://doi.org/10.1109/TGRS.2022.3201474, 2022. a, b, c
Download
Short summary
ChatEarthNet is an image–text dataset that provides high-quality, detailed natural language descriptions for global-scale satellite data. It consists of 163 488 image-text pairs with captions generated by ChatGPT-3.5 and an additional 10 000 image-text pairs with captions generated by ChatGPT-4V(ision). This dataset has significant potential for training and evaluating vision–language geo-foundation models in remote sensing.
Share
Altmetrics
Final-revised paper
Preprint