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Abstract. The rapid development of remote sensing technology has led to an exponential growth in satellite
images, yet their inherent complexity often makes them difficult for non-expert users to understand. Natural
language, as a carrier of human knowledge, can bridge the gap between common users and complicated satellite
imagery. Additionally, when paired with visual data, natural language can be utilized to train large vision–
language foundation models, significantly improving performance in various tasks. Despite these advancements,
the remote sensing community still faces a challenge due to the lack of large-scale, high-quality vision–language
datasets for satellite images. To address this challenge, we introduce a new image–text dataset, providing high-
quality natural language descriptions for global-scale satellite data. Specifically, we utilize Sentinel-2 data for
its global coverage as the foundational image source, employing semantic segmentation labels from the Euro-
pean Space Agency’s WorldCover project to enrich the descriptions of land cover types. By conducting in-depth
semantic analysis, we formulate detailed prompts to elicit rich descriptions from ChatGPT. We then include a
manual verification process to enhance the dataset’s quality further. This step involves manual inspection and
correction to refine the dataset. Finally, we offer the community ChatEarthNet, a large-scale image–text dataset
characterized by global coverage, high quality, wide-ranging diversity, and detailed descriptions. ChatEarth-
Net consists of 163 488 image–text pairs with captions generated by ChatGPT-3.5 and an additional 10 000
image–text pairs with captions generated by ChatGPT-4V(ision). This dataset has significant potential for both
training and evaluating vision–language geo-foundation models for remote sensing. The code is publicly avail-
able at https://doi.org/10.5281/zenodo.11004358 (Yuan et al., 2024b), and the ChatEarthNet dataset is available
at https://doi.org/10.5281/zenodo.11003436 (Yuan et al., 2024c).

1 Introduction

Land cover refers to the surface components of land, such as
waterbodies, trees, bare land, or developed areas, providing
the landscape patterns and features on the Earth’s surface.
A comprehensive understanding of global land cover holds
significant relevance for international projects, such as the
United Nations Framework Convention on Climate Change
(UNFCCC) (Mora et al., 2014), as well as various applica-
tions, including urban planning, environmental assessment,
disaster response, and economic development (García-Mora
et al., 2012). Satellite imagery in the field of remote sens-

ing is regarded as the ideal data for land cover monitoring
as it can provide an overview and repetitive observations of
land cover (Franklin and Wulder, 2002). The Sentinel-2 mis-
sion (Drusch et al., 2012) has achieved great success in pro-
viding comprehensive satellite images that enable the Earth’s
surface to be monitored on a global scale. A thorough anal-
ysis of land cover using Sentinel-2 data not only enhances
the understanding of ecosystems but also supports numer-
ous practical applications, including natural resource man-
agement, agriculture, and food security (ESA, 2024a).

The rapid advancements in remote sensing technology
have led to an exponential increase in tasks and bench-

Published by Copernicus Publications.

https://doi.org/10.5281/zenodo.11004358
https://doi.org/10.5281/zenodo.11003436


1246 Z. Yuan et al.: ChatEarthNet

mark datasets in semantic understanding of land cover
types (Xiong et al., 2022). However, these tasks and datasets
usually focus on an image-level and pixel-level understand-
ing of land cover types and fail to convey rich semantic re-
lationships and contextual information. Land cover maps,
while detailed, can be challenging for non-expert users in
terms of interpretation and effective utilization in practical
applications. In contrast, natural language, with its rich se-
mantic information, is regarded as a bridge between common
users and complicated satellite imagery, serving as a cru-
cial modality for understanding sophisticated machine learn-
ing systems (Lobry et al., 2021). For example, natural lan-
guage is integrated into vision–language models for different
tasks in a user-friendly manner, such as image captioning (Lu
et al., 2017), visual question answering (Lobry et al., 2020;
Yuan et al., 2022), visual grounding (Li et al., 2023a; Zhan
et al., 2023), and referring image segmentation (Yuan et al.,
2024a) in the remote sensing domain. The recent work VRS-
Bench (Li et al., 2024a) offers a versatile benchmark featur-
ing human-verified captions with detailed object information
for remote sensing images.

Despite the progress, the generalizability and performance
of these vision–language models are limited by the small-
scale models and training datasets. Recently, it has been
shown that foundation models, pre-trained on extensive
datasets, can be further fine-tuned for specific tasks across
different domains, serving as versatile tools in artificial in-
telligence (Zhou et al., 2023; Xiong et al., 2024). Among
foundation models, large language models and large vision–
language foundation models have achieved significant ad-
vancements. For large language models, examples like Chat-
GPT (OpenAI, 2024) and LLaMA (Touvron et al., 2023)
demonstrate notable progress. For large vision–language
foundation models, CLIP (Radford et al., 2021), LLaVA (Liu
et al., 2023b), MiniGPT-4 (Zhu et al., 2023), MiniGPT-
v2 (Chen et al., 2023), and Qwen-VL (Bai et al., 2023)
have revolutionized the computer vision community. These
models are equipped with billions of parameters and trained
on vast amounts of image–text data, offering a substan-
tial improvement over traditional, small-scale models in
the zero-shot transfer ability across various tasks (Zhang
et al., 2024; Liu et al., 2023a). The success of large vision–
language foundation models indicates the crucial role of
large-scale, semantically aligned image–text datasets in en-
hancing their versatile capabilities. For natural images, large
vision–language foundation models can utilize web-scale
image–text pairs available on the internet, where images are
associated with corresponding relevant text. However, few
pairs on the web provide detailed descriptions for satellite
images (Wang et al., 2024). This further confirms the need
to construct large-scale, high-quality image–text datasets for
remote sensing.

Although there have been several attempts to construct
image–text datasets for remote sensing data, they still have
limitations on the quality, quantity, and diversity of the pro-

vided image captions. Figure 1 shows the comparative vi-
sualization along with the number and caption (descrip-
tion) annotation methods of existing available image–text
pair datasets in the remote sensing domain, including the
UCM-Captions (Qu et al., 2016), Sydney-Captions (Qu et al.,
2016), RSICD (Lu et al., 2017), NWPU-Captions (Cheng
et al., 2022), RSICap (Hu et al., 2023), RS5M (Zhang
et al., 2023), and SkyScript (Wang et al., 2024) datasets.
These datasets range significantly in size, quality of cap-
tions, and annotation method. The dataset sizes vary from
thousands to millions of image–text pairs. Although the
RS5M and SkyScript datasets use algorithms to generate
captions automatically and reach quantities in the millions,
their text descriptions lack detail and only provide basic in-
formation. Similarly, smaller datasets like UCM-Captions,
Sydney-Captions, RSICD, and NWPU-Captions predomi-
nantly feature simple captions, often limited to a single sen-
tence for each caption. Though five captions are provided per
image, the descriptions tend to be very similar or even iden-
tical. This simplicity and redundancy are the disadvantages
of these datasets. RSICap dataset stands out for its detailed
manual annotation, but the quantity is limited, with only
2585 image–text pairs. This is because it is manually anno-
tated, a time- and labor-consuming process, making the gen-
eration of a large-scale dataset difficult. In conclusion, these
datasets suffer from limitations, with none of them encom-
passing a large quantity of satellite images with both global
coverage and high-quality descriptions.

Our motivation is to construct a large-scale image–text
dataset with global coverage that not only meets the semantic
richness required for training large vision–language founda-
tion models but also extends the understanding of satellite
imagery to common users. For the data sources, we utilize
Sentinel-2 data due to their practicality and accessibility. For
the source of semantic information in Sentinel-2 data, we
choose land cover maps from the European Space Agency
(ESA) WorldCover project (Zanaga et al., 2021). Leverag-
ing Sentinel-2 data and the corresponding land cover maps,
we aim to construct a global-scale, high-quality image–text
dataset, which is essential for training large vision–language
foundation models. However, it is challenging to manually
annotate Sentinel-2 data on a large scale with high quality.
This is mainly because manually annotating large datasets is
time- and labor-consuming; the low resolution of Sentinel-2
images also makes it challenging to distinguish land cover
types.

In this study, we introduce an automated processing
framework for generating descriptions of satellite images,
leveraging the powerful language generation capability of
ChatGPT (OpenAI, 2024). Through the design of effective
prompts, this framework can make use of ChatGPT to yield
high-quality, detailed descriptions of Sentinel-2 imagery on
a global scale. By integrating rich natural language descrip-
tions with global satellite imagery, the proposed dataset fills
in the interpretability gap between complex satellite imagery
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Figure 1. Comparative visualization of image–text pairs across UCM-Captions (Qu et al., 2016), Sydney-Captions (Qu et al., 2016),
RSICD (Lu et al., 2017), NWPU-Captions (Cheng et al., 2022), RSICap (Hu et al., 2023), RS5M (Zhang et al., 2023), and SkyScript (Wang
et al., 2024) datasets. For RS5M, only model-generated captions are shown.
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and common users. To further improve the quality of the
dataset, we conduct a manual validation process to check the
caption’s correctness and quality. In summary, we offer the
community ChatEarthNet, a large-scale image–text dataset
with global coverage, high quality, wide-ranging diversity,
and detailed descriptions. The vast number of geotagged
image–text pairs in ChatEarthNet is essential for training
vision–language geo-foundational models, which are specif-
ically designed to process and analyze geospatial satellite
data.

2 Dataset and methodology

The ChatEarthNet dataset is built upon the Sentinel-2
data (Drusch et al., 2012) with global coverage and the
fine-grained land cover product from the ESA’s WorldCover
project (Zanaga et al., 2021). For each Sentinel-2 image, the
overall dataset construction process contains the following
steps: (1) we analyze its land cover distributions based on the
WorldCover product, (2) we design sophisticated prompts
based on the land cover distribution, (3) and we generate de-
scriptive texts based on prompts using two versions of Chat-
GPT. This approach ensures that each description accurately
reflects the visual data, providing a rich semantic description
of the satellite imagery. Finally, the manual verification and
correction of generated texts further improve the dataset’s ac-
curacy and quality. In this paper, ChatGPT-3.5 refers to the
model gpt-3.5-turbo and ChatGPT-4V refers to the model
gpt-4-vision-preview.

2.1 Sentinel-2 data in ChatEarthNet

Sentinel-2 (ESA, 2024b) provides global-scale optical im-
agery that captures a wide array of spectral bands, with a spa-
tial resolution ranging from 10 to 60 m. The spectral range of
Sentinel-2 data is specifically tailored to monitor land cover
types (Karra et al., 2021), making it invaluable for applica-
tions like agricultural monitoring and forestry management.
Regarding Sentinel-2 images, we follow the sampling strat-
egy used in the SatlasPretrain dataset (Bastani et al., 2023).
Specifically, we use the Sentinel-2 images collected in Sat-
lasPretrain as the foundation to build the image–text dataset.
This subsection details the characteristics of Sentinel-2 data
used in the ChatEarthNet dataset.

1. Global distribution. The ChatEarthNet dataset is de-
signed to capture a detailed description of the land
cover, with its images spanning all continents except
Antarctica and encompassing major urban centers, as
shown in the upper-left part of Fig. 2. The global distri-
bution ensures diverse landscapes and urban areas, en-
riching the dataset with a variety of visual characteris-
tics relevant to different geographical locations.

2. Temporal coverage. The temporal distribution of images
is a critical aspect of the dataset. As illustrated in the

bottom-left corner of Fig. 2, the ChatEarthNet dataset
includes Sentinel-2 images captured throughout differ-
ent months to ensure that they cover different seasons on
the Earth’s surface. This temporal diversity allows the
dataset to provide a more comprehensive appearance of
different land cover types.

3. Image size. The spatial size of Sentinel-2 images in the
ChatEarthNet dataset is 256× 256 pixels. There is a to-
tal of 163 488 images in the dataset, providing extensive
coverage across the world and enabling analysis and ap-
plications in various remote sensing tasks.

4. Spectral band. Sentinel-2 imagery is rich in spectral in-
formation, and the ChatEarthNet dataset includes nine
specific bands from the S2A sensor, as shown in the
right part of Fig. 2. These bands are band 5, band 6,
band 7, band 8, band 11, and band 12 along with the
red, green, and blue (RGB) bands. The selected bands
offer a detailed spectral resolution that captures a broad
range of wavelengths, providing insights into different
physical properties of the land cover.

2.2 Land cover map from WorldCover product

As depicted in Fig. 3, the ChatEarthNet dataset leverages
the WorldCover product 2020 version (Zanaga et al., 2021)
to obtain semantic information, which provides global-scale
land cover maps. These maps describe the land cover at 10 m
resolution. Specifically, we utilize 11 different land cover
classes (Bastani et al., 2023), that is water, developed area,
tree, shrub, grass, crop, bare land, snow, wetland, mangroves,
and moss. These land cover types offer a detailed catego-
rization encompassing natural and urban-related landscapes,
providing critical semantic information to generate detailed
descriptions. The integration of WorldCover with Sentinel-2
data provides a robust foundation for our image–text dataset.
By doing so, we can take advantage of both global-scale
satellite images and detailed land cover semantics.

2.3 Large language models for description generation

Among the numerous large language models that have been
developed, ChatGPT is distinguished by its exceptional per-
formance. Its proficiency in textual understanding and pro-
duction makes it a valuable tool for textual analysis and de-
scription generation. Thus, in this work, we adopt two large
language models, ChatGPT-3.5 and ChatGPT-4V(ision), to
generate two different versions of image–text datasets.

While both ChatGPT-3.5 and ChatGPT-4V represent sig-
nificant advancements in the field of large language models,
they exhibit differences in their performance and capabili-
ties. Compared with ChatGPT-3.5, ChatGPT-4V can process
not only text but also visual inputs, thereby enhancing its
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Figure 2. Statistics derived from Sentinel-2 data used in the ChatEarthNet dataset. The upper-left part of the figure displays the geographical
distribution of the Sentinel-2 data used in the ChatEarthNet dataset. The lower-left part shows the temporal distribution of the Sentinel-2 data
used. The right part visualizes some examples of the images and the nine spectral bands used in the dataset.

Figure 3. Sentinel-2 image and land cover map pairs. The land cover maps, sourced from the WorldCover product, showcase various land
cover types.

contextual comprehension of the shapes and spatial distri-
butions of land cover types in images. Moreover, ChatGPT-
4V demonstrates improved performance in terms of accu-
racy, coherence, and ability to handle sophisticated prompts.
However, considering the application programming interface
(API) prices, ChatGPT-4V is much more expensive than
ChatGPT-3.5. Additionally, by February 2024, for usage tier
1, ChatGPT-4V has a limit of 500 requests per day, while
ChatGPT-3.5 has a limit of 10 000 requests per day. If pro-
cessing one image (image represented by text for GPT-3.5)
requires a single request, this means that GPT-3.5 can handle
10 000 images per day, while GPT-4V is limited to process-
ing just 500 images daily. Considering cost and efficiency,
we utilize ChatGPT-3.5 for generating descriptions for the
complete dataset, comprising 163 488 image–text pairs, and
randomly select a subset of 10 000 Sentinel-2 images for de-

scription generation using ChatGPT-4V, resulting in 10 000
image–text pairs.

2.4 Prompt design

In this section, we detail the prompt designs for caption
generation using ChatGPT. Given that ChatGPT is predomi-
nantly trained on commonly available natural images, its di-
rect application to satellite images may not yield optimal re-
sults. To address this, we carefully design prompts that em-
bed semantic information from the land cover maps for the
caption generation. This allows large language models to uti-
lize the provided context to generate precise and semantically
rich descriptions for satellite images. Although the underly-
ing concept is straightforward, it requires careful designs to
compensate for the inherent limitations of the current ver-
sions of ChatGPT. These limitations include challenges with
following instructions, where large language models may not
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strictly follow the given instructions in the prompt. The other
limitation is the well-known hallucination problem, where
large language models may output plausible but factually in-
correct or nonsensical information. To settle these issues, we
carefully design the prompts and instructions to guide Chat-
GPT toward generating reliable and contextually appropriate
descriptions.

The term prompt in large language models like ChatGPT
refers to the input provided to the model to generate a re-
sponse. System prompts and user prompts serve different
functions, as illustrated below:

1. System prompt. A system prompt typically refers to
the initial instructions set by developers for configur-
ing large language models. Its purpose is to establish
the ground rules or guidelines for the following conver-
sation, including setting the tone, style, or scope of the
responses to standardize the large language model’s be-
havior.

2. User prompt. A user prompt is the actual question or
statement input by the user, which seeks a response
from large language models. This is the variable part
of the interaction that can differ with each user. Context
information can be part of the user prompt to provide
background details necessary for large language models
to generate relevant and coherent responses. It provides
additional information to give large language models a
better understanding of the current topic.

2.4.1 Prompt design for ChatGPT-3.5

We aim to generate captions, i.e., natural language descrip-
tions, for Sentinel-2 satellite images. To provide sufficient se-
mantic information, we leverage the geographic-aligned land
cover maps derived from the WorldCover product. Given the
corresponding land cover map, we generate textual descrip-
tions based on the proportions of different land cover types.
Since ChatGPT-3.5 can only accept text instructions as in-
put, we need to extract the semantic information from land
cover maps and provide it to ChatGPT-3.5 in text form. The
designed prompt for ChatGPT-3.5 is presented in Box 1.

The prompt comprises two elements: the system prompt
to guide the response style and set constraints to ChatGPT
and the user prompt containing context derived from land
cover maps using Algorithm 1. The system prompt includes
a set of explicit constraints to ensure the generated descrip-
tions are fluent, accurate, and unbiased. Specifically, we force
ChatGPT to generate fluent descriptions and focus more on
the spatial locations and portions of different land cover
types. We also encourage ChatGPT to describe objectively
and avoid the use of subjective words.

For the user prompt, we extract the semantic information
from land cover maps, where each pixel represents a land
cover type. Specifically, in Algorithm 1, we first calculate the
overall proportions of different land cover types and generate

Algorithm 1 Generating the prompt for land cover propor-
tion.

a prompt describing the overall land cover proportions. Sub-
sequently, we split the land cover map Y ∈ R256×256 into four
non-overlapping patches of equal size, each being 128×128.
The top-left patch, denoted as Ytl ∈ R128×128, extends from
indices 0 to 127 in both row and column directions. The top-
right (Ytr), bottom-left (Ybl), and bottom-right (Ybr) quad-
rants are similarly demarcated. Additionally, we extract a
middle patch, Ym, also 128× 128 in size, centered within
the map, with indices ranging from 64 to 191 in both row
and column directions, aligning with the midpoint of the land
cover map.

For each patch Yi , we calculate the proportion of each
land cover within that patch relative to its total pixel count.
We then rank these land cover types by their proportional
presence and select the top three to represent the primary
land cover types of the patch. In cases where a patch con-
tains fewer than three land cover types, we select all available
types. This selection process is employed because ChatGPT-
3.5 tends to generate verbose descriptions when presented
with abundant prompts. Limiting the information to three
main land cover types ensures more focused descriptions,
and can avoid unnecessary lengthy captions. After determin-
ing the primary land cover types for all five patches in a land
cover map Y, we concatenate their proportions and the over-
all proportions to formulate the final prompt. This tailored
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Box 1. Prompt design for ChatGPT-3.5.

prompt enables ChatGPT-3.5 to generate accurate, detailed,
and coherent descriptions of Sentinel-2 satellite imagery.

2.4.2 Prompt design for ChatGPT-4V

The prompt design for ChatGPT-4V is presented in Box 2.
Like the prompt for ChatGPT-3.5, this prompt contains a sys-
tem prompt and a user prompt. However, the system prompt
for ChatGPT-4V differs from that used for ChatGPT-3.5, as
ChatGPT-4V is capable of processing the land cover map as
an image directly. Given that the land cover map is essen-
tially a segmentation map where each color represents a land
cover type, this key information is provided to ChatGPT-
4V through the system prompt. To enhance the accuracy
and detail of descriptions, we also define several guides
and constraints in the system prompt. Moreover, considering
the API request limit of ChatGPT-4V, we put four images
into one request to generate descriptions more efficiently.
While ChatGPT-4V can handle image inputs, it still requires
specific guidance to accurately interpret segmentation maps
from a remote sensing perspective. Hence, the user prompt is
supplemented with semantic information extracted from the
land cover maps using Algorithms 2 and 3.

Similar to the process described in Algorithm 1, we split
the land cover map Y ∈ R256×256 into five different patches:
top-left (Ytl), top-right (Ytr), bottom-left (Ybl), bottom-right
(Ybr), and middle (Ym) patches, each 128× 128 in size. As
shown in Algorithm 2, for each patch, we calculate the pro-
portion of each land cover within that patch relative to its
total pixel count. Different from Algorithm 1, we provide
the proportion information of all land cover types (instead
of three main land cover types) in each patch to ChatGPT-
4V. The reason is that ChatGPT-4V is more powerful and
can process all information to generate detailed descriptions

Algorithm 2 Generating the prompt for land cover propor-
tion in each patch.

without unnecessarily lengthy descriptions. In Algorithm 3,
we aim to calculate the distribution of each land cover type
across the five patches. For each land cover type Lj , we first
calculate the number of pixels for Lj in the land cover map
Y, represented by Nj . Subsequently, for each patch Yi , we
calculate the pixel count of Lj in Yi , denoted as nji . The spa-
tial distribution is evaluated using the ratio nji

Nj
, which quan-

tifies the presence of Lj in each patch relative to its overall
occurrence. After computing the spatial distribution of Lj

across all patches, we concatenate prompts for all land cover
types. These prompts, derived from calculations in both al-
gorithms, are put into the final text prompt. This text prompt
and the land cover map as visual input are then provided to
ChatGPT-4V to generate descriptions.
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Box 2. Prompt design for ChatGPT-4V.

2.5 Manual verification

To further improve the quality of the dataset, we conduct
a manual validation process to check the caption’s correct-
ness and quality. Considering the efficiency and cost sav-
ings, we combine four images and the corresponding tex-
tual prompts in one request and provide them to ChatGPT-
4V for caption generation. To avoid unexpected descrip-
tions on comparisons between different images, we design
prompts like “Generate the four descriptions separately; do
not add connections between them” to guide the descrip-
tion generation process. Despite providing specific instruc-
tions for ChatGPT-4V to treat each image individually, it
occasionally makes mistakes by describing comparisons be-
tween images. For instance, phrases such as “similar to other
images” and “compared with previous images” need to be
revised to eliminate comparisons. We therefore manually
check all captions and refine comparison-related captions.
For ChatGPT-3.5, we provide a single image (represented by
text) in one request, which avoids the comparison issues. We
manually inspected 10 000 image–text pairs from ChatGPT-

3.5-generated captions to ensure that there are no significant
quality issues.

3 Dataset analysis and discussion

In this section, we present a comprehensive analysis of the
ChatEarthNet dataset from different aspects. As we construct
the dataset using ChatGPT-3.5 and ChatGPT-4V, we analyze
and compare these two different versions to provide a clear
overview and understanding of the ChatEarthNet dataset.

3.1 Dataset overview

In Fig. 4, we present four different image–text pairs from
four regions of the Earth, illustrating that images from differ-
ent geographical locations exhibit unique characteristics. The
diversity in land cover distributions across these images is
evident. The accompanying texts accurately reflect the quan-
tity and spatial distribution of the various land cover types
observed.
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Figure 4. An overview of the ChatEarthNet dataset. We randomly select image–text samples from four different locations. The left and top
sides display the descriptions generated by ChatGPT-4V, while the right and bottom sides show two samples produced by ChatGPT-3.5. We
use different colors to highlight the words related to different land cover types. Sentinel-2 data are from the ESA.

Algorithm 3 Generating the prompt for the spatial distribu-
tion of each land cover type.

In Table 1, we present the number of Sentinel-2 im-
ages used for generating captions along with the corre-

Table 1. The numbers of captions generated by ChatGPT-3.5 and
ChatGPT-4V.

Subsets Number of Number of
ChatGPT-3.5 captions ChatGPT-4V captions

Training 98 092 6000
Validation 16 348 1000
Test 49 048 3000
Sum 163 488 10 000

sponding numbers of captions generated by ChatGPT-3.5
and ChatGPT-4V in the ChatEarthNet dataset. Specifically,
we use 163 488 Sentinel-2 images and generate a long cap-
tion to accompany each image using ChatGPT-3.5. For the
ChatGPT-4V version, we randomly select 10 000 Sentinel-2
images across the world and generate one detailed caption
for each image. In terms of the number of image–text pairs,
the ChatEarthNet dataset is not the largest dataset available,
but it offers high-quality detailed land cover descriptions on
a global scale. This makes it a solid foundation for train-
ing vision–language geo-foundation models in the field of
remote sensing.
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3.2 Geographic coverage

Figure 5 illustrates the geographical distributions of image–
text pairs using ChatGPT-3.5 and ChatGPT-4V in the
ChatEarthNet dataset. From the two panels, we can see that
the image–text pairs for both the ChatGPT-3.5 and ChatGPT-
4V versions cover all continents except Antarctica. Com-
pared to the image–text pairs using ChatGPT-4V, the geo-
graphical distribution of those using ChatGPT-3.5 is more
dense, covering a wider range of areas. Nevertheless, 10 000
high-quality image–text pairs using ChatGPT-4V are suffi-
cient for fine-tuning large vision–language models.

3.3 Word frequency

Figure 6 illustrates the word clouds for captions generated by
ChatGPT-3.5 and ChatGPT-4V. In the two subfigures, larger
words indicate a higher frequency of occurrence. In Fig. 6a,
prominent words like developed, small, medium, grass, and
portion indicate a focus on describing the content and scale
of land cover types. Other significant words like right and
bottom relate to specific locations in the image. In Fig. 6b,
the word cloud centers around the words image and areas,
indicating these are key themes in the generated captions.
Adjacent to these are other significant words like developed,
bottom, water, right, and landscape, suggesting an emphasis
on geographical features and the layout in the image. Over-
all, the captions generated by ChatGPT-3.5 provide more
straightforward descriptions focusing on the distribution and
size of land cover types. The captions generated by ChatGPT-
4V use more varied and descriptive language and showcase
a more diverse vocabulary to describe the scale of land cover
types and their layout.

Figure 7 displays histograms of the top 200 word frequen-
cies for captions generated by ChatGPT-3.5 and ChatGPT-
4V. The x axis represents individual words, and the y axis
represents the frequency. Both distributions are long-tailed,
indicating that a minority of words are used frequently, while
the majority appear infrequently. Comparing the two his-
tograms, we observe that the descent from the most to the
least frequent words appears sharper in Fig. 7a, while Fig. 7b
exhibits a more gradual decline. This observation indicates
that ChatGPT-4V employs a broader vocabulary to generate
more diverse and higher-quality captions.

To better understand the differences in captions related to
land cover types generated by ChatGPT-3.5 and ChatGPT-
4V, we construct histograms to illustrate the frequencies of
relevant words, as depicted in Fig. 8a and b. The x axis rep-
resents land cover types, and the y axis represents the fre-
quency. The histogram in Fig. 8a exhibits a clear long-tailed
distribution, with developed area, grass, and crop being the
most frequently mentioned land cover types. In Fig. 8b, de-
veloped area, water, and tree are predominant land cover
types. These differences reflect the different descriptive ap-

proaches and varied geographical distributions in the two
versions.

Figure 8c and d illustrate the word frequencies related to
quantity and shape for two versions of captions. The x axis
represents words related to quantity and shape, and the y axis
represents the frequency. The histogram for ChatGPT-3.5
shows a preference for terms like small, medium, large, and
dominant to describe land cover proportions. Meanwhile,
ChatGPT-4V, as reflected in the histogram, employs a more
diverse vocabulary, extending beyond common descriptors
such as small, large, and dominant to include high frequen-
cies of significant, scattered, minimal, extensive, and sub-
stantial. These words enrich the descriptions of land cover
type shapes and patterns, indicating that captions of the
ChatGPT-4V version leverage a broader vocabulary to de-
scribe the characteristics of the image.

3.4 Caption length

Figure 9 presents a comparison of caption lengths gener-
ated by ChatGPT-3.5 and ChatGPT-4V, illustrated as the his-
togram. The x axis denotes caption length, and the y axis rep-
resents the normalized frequency of captions at each length.
Unlike most existing image–text datasets that typically pro-
vide brief annotations, the ChatEarthNet dataset stands out
by offering comprehensive captions that provide detailed se-
mantic insights into land cover types. The histogram for
ChatGPT-4V, shown in green, forms a Gaussian distribution
with a mean value of around 90 words per caption. The his-
togram for ChatGPT-3.5, depicted in orange, also shows a
Gaussian distribution but with a mean centered around 160
words, suggesting that captions generated by this version
are generally longer. The reason is that ChatGPT-3.5 tends
to elaborate on provided prompts by extending contextual
cues, resulting in detailed descriptions that try to encompass
various aspects of prompts. Conversely, ChatGPT-4V com-
prehensively grasps contextual information in prompts, en-
abling it to generate concise yet comprehensive descriptions.
Additionally, ChatGPT-4V harnesses visual data (land cover
maps) to achieve a more precise comprehension of spatial
distributions of land cover types. As mentioned in the de-
scription of Fig. 7, captions in the ChatGPT-4V version uti-
lize a more diverse vocabulary. Consequently, the ChatGPT-
4V captions manage to be more concise yet more varied.

3.5 Visualization and comparison

In Fig. 10, we showcase captions generated by ChatGPT-3.5
and ChatGPT-4V for a detailed comparison between the two
versions. The caption from ChatGPT-3.5 provides a struc-
tured breakdown of the land cover types in five sections (top
left, top right, bottom left, bottom right, and middle) of the
image. This is a result of ChatGPT-3.5’s inability to pro-
cess image inputs directly and heavily relying on the given
prompts. By doing so, these captions are structured, quantita-
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Figure 5. (a) Geographical distribution of image–text pairs using ChatGPT-3.5. (b) Geographical distribution of image–text pairs using
ChatGPT-4V.

tive, and exhaustive, providing a balanced view of land cover
types. In contrast, the caption from ChatGPT-4V adopts a
holistic perspective, depicting land cover types in the con-
text of the complete image rather than discrete sections. The
language is descriptive and vivid, emphasizing visually strik-
ing features and the general impression of the landscape.
As ChatGPT-4V employs land cover maps as visual inputs,
the generated captions offer a more comprehensive perspec-
tive, emphasizing the overall visual impact. While the two
captions offer different interpretations, each remains factu-
ally correct. The captions in the ChatEarthNet dataset can be
valuable resources for the advancement of vision–language
geo-foundation models in the field of remote sensing.

3.6 Evaluation of existing multimodal large language
models using ChatEarthNet

To demonstrate the effectiveness of ChatEarthNet in evalu-
ating multimodal large language models, we conduct bench-
marking experiments using a range of existing models. Given
that ChatEarthNet includes long and detailed descriptions,
it is not well suited for evaluating CLIP-based vision–
language models like RemoteCLIP (Liu et al., 2024) and RS-
CLIP (Li et al., 2023b). Therefore, we focus on evaluating
widely used multimodal large language models, including
LLaVA-v1.5 (Liu et al., 2023b), MiniGPT-v2 (Chen et al.,
2023), MiniGPT-4 (Zhu et al., 2023), and GeoChat (Kuck-
reja et al., 2023). All experiments are performed using the
ChatGPT-4V version of our dataset, which allows us to
conduct extensive evaluations across multiple models while
significantly reducing computational resource requirements.
Note that the prompt used during dataset creation and the in-
struction prompt for model evaluation are entirely different.
Dataset creation involves leveraging land cover maps and de-
signing prompts to generate rich descriptions of satellite im-
ages. In contrast, during both training and evaluation of mod-
els, only satellite images are used as visual input. To ensure
consistency and fairness, all models are evaluated using the

same instruction prompt: “Provide a detailed description of
the given image” or its variants.

Table 2 summarizes the results of these evaluations, detail-
ing the models’ performance across several widely used met-
rics: BLEU, CIDEr, METEOR, ROUGE-L, and SPICE. We
evaluate these models in two experimental settings. The first
is a zero-shot transfer setting, where pre-trained models are
used to generate captions without any additional training or
fine-tuning on the ChatEarthNet dataset. The first four rows
in Table 2 present the results of this zero-shot transfer set-
ting. The performance is suboptimal due to the domain gap
between the models’ original training datasets and our test
dataset. Specifically, the original GeoChat model exhibits
unsatisfactory zero-shot performance on the ChatEarthNet
dataset due to the substantial domain differences between
its training datasets and our proposed dataset. GeoChat is
trained primarily on high-resolution datasets designed for
tasks such as object detection, visual question answering,
and scene classification, which lack the global-scale land use
and land-cover-related semantics and descriptions. The dif-
ferences in spatial resolution, coupled with the lack of com-
prehensive land cover content, significantly limit GeoChat’s
performance using ChatEarthNet. These gaps also motivate
the need for ChatEarthNet to complement existing datasets.
In addition to zero-shot testing, we fine-tune some of these
models using the ChatEarthNet dataset (ChatGPT-4V ver-
sion) and report their performance. The results clearly show
that fine-tuning on our proposed dataset significantly im-
proves image captioning performance in the context of re-
mote sensing data. These findings strongly suggest that
ChatEarthNet is a valuable resource for both training and
evaluating vision–language geo-foundation models in the re-
mote sensing domain.

4 Code and data availability

The code that utilizes the ChatGPT API to generate captions
can be found at https://github.com/zhu-xlab/ChatEarthNet
(last access: 27 February 2025), and its DOI

https://doi.org/10.5194/essd-17-1245-2025 Earth Syst. Sci. Data, 17, 1245–1263, 2025

https://github.com/zhu-xlab/ChatEarthNet


1256 Z. Yuan et al.: ChatEarthNet

Figure 6. (a) Word cloud for captions generated by ChatGPT-3.5. (b) Word cloud for captions generated by ChatGPT-4V.

Figure 7. (a) Histogram of word frequencies for captions generated by ChatGPT-3.5. (b) Histogram of word frequencies for captions
generated by ChatGPT-4V.
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Figure 8. (a) Histogram of word frequencies related to land cover types for captions generated by ChatGPT-3.5. (b) Histogram of word
frequencies related to land cover types for captions generated by ChatGPT-4V. (c) Histogram of word frequencies related to quantity and
shape for captions generated by ChatGPT-3.5. (d) Histogram of word frequencies related to quantity and shape for captions generated by
ChatGPT-4V.

Figure 9. Histogram comparing caption lengths generated by ChatGPT-3.5 and ChatGPT-4V.

is https://doi.org/10.5281/zenodo.11004358 (Yuan
et al., 2024b). The ChatEarthNet dataset is
accessible on the Zenodo data repository at
https://doi.org/10.5281/zenodo.11003436 (Yuan et al.,
2024c). The ChatEarthNet dataset consists of image
data and corresponding textual descriptions organized
into JSON files. Specifically, there are six JSON files:
(1) ChatEarthNet_caps_35_train.json and ChatEarth-
Net_caps_4v_train.json, which contain image paths and
corresponding captions for the training set; (2) ChatEarth-
Net_caps_35_val.json and ChatEarthNet_caps_4v_val.json,
which contain image paths and corresponding captions for

the validation set; and (3) ChatEarthNet_caps_35_test.json
and ChatEarthNet_caps_4v_test.json, which contain image
paths and corresponding captions for the test set. Each
JSON file contains a collection of data samples, with
each sample comprising an image_id field that specifies
the image’s file path, and a caption field that provides a
detailed textual description of the corresponding image
content. Each Sentinel-2 image in the dataset includes nine
spectral bands, which are distributed across three ZIP files.
These files are organized as follows: (1) s2_rgb_images.zip,
which contains the RGB bands: Band-R, Band-G, and
Band-B; (2) s2_band_5_6_7_images.zip, which contains
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Figure 10. Sentinel-2 satellite image, its associated land cover map, and its corresponding captions generated by ChatGPT-3.5 and ChatGPT-
4V.

Table 2. Performance comparison of different models on the ChatEarthNet (ChatGPT-4V version) test set. The best results are highlighted
in bold.

Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDEr METEOR ROUGE-L SPICE

LLaVA-v1.5 0.285 0.116 0.040 0.014 0.012 0.104 0.186 0.093
MiniGPT-v2 0.279 0.116 0.041 0.015 0.009 0.104 0.180 0.091
MiniGPT-4 0.175 0.072 0.023 0.008 0.000 0.116 0.180 0.079
GeoChat 0.199 0.088 0.034 0.011 0.005 0.067 0.126 0.083

MiniGPT-4 (ChatEarthNet) 0.310 0.184 0.113 0.071 0.001 0.209 0.254 0.186
GeoChat (ChatEarthNet) 0.445 0.269 0.170 0.109 0.094 0.208 0.286 0.211

the spectral bands: Band-5, Band-6, and Band-7; and (3)
s2_band_8_11_12_images.zip, which contains the spectral
bands: Band-8, Band-11, and Band-12.

5 Conclusion

In this work, we construct ChatEarthNet, a large-scale
image–text dataset characterized by its global coverage, high
quality, wide-ranging diversity, and detailed descriptions.
Specifically, we utilize Sentinel-2 data for its global coverage
as the image source, and we employ land cover maps from
ESA’s WorldCover project to generate text. Consequently,
by analyzing these land cover maps, we manage to extract
the spatial distributions of different land cover types, which
serve as the context information for crafting the prompts.
These well-curated prompts are employed to elicit descrip-
tive captions for Sentinel-2 images from two large language
models, ChatGPT-3.5 and ChatGPT-4V. ChatEarthNet com-
prises 163 488 image–text pairs with captions generated by
ChatGPT-3.5 and an additional 10 000 pairs with captions
generated by ChatGPT-4V. By combining high-quality cap-
tions with the visual information from Sentinel-2 imagery,
ChatEarthNet is a valuable resource for training and evaluat-

ing vision–language geo-foundation models for remote sens-
ing. It is worth noting that the proposed ChatEarthNet dataset
can be readily used for other tasks, including image-to-text
and text-to-image synthesis. Moreover, leveraging the capa-
bilities of large language models, it can also be extended to
visual question answering by prompting large language mod-
els for questions and answers based on rich descriptions. This
versatility enhances the dataset’s value to the community.
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Appendix A

We provide image–text pairs from ChatEarthNet to compare
the differences between the two versions.

Figure A1. Sample 1: Sentinel-2 satellite image, its associated land cover map, and its corresponding captions generated by ChatGPT-3.5
and ChatGPT-4V.

Figure A2. Sample 2: Sentinel-2 satellite image, its associated land cover map, and its corresponding captions generated by ChatGPT-3.5
and ChatGPT-4V.
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Figure A3. Sample 3: Sentinel-2 satellite image, its associated land cover map, and its corresponding captions generated by ChatGPT-3.5
and ChatGPT-4V.

To provide a clear comparison between our dataset and
existing ones, we list some representative image captioning
datasets for remote sensing in the following table.

For a clear understanding of the prompts used for generat-
ing descriptions, we provide some examples of prompt out-
puts by Algorithms 1–3. Note that in Algorithm 2, we calcu-
late the percentage of a specific land cover in each patch, not
the percentage of one land cover in the entire image. There-
fore, the sum of the percentages is not 1.

Table A1. A summary of the remote sensing image captioning datasets.

Dataset No. of image–text Caption Caption Image Geographical
pairs granularity generation data coverage

UCM-Captions (Qu et al., 2016) 10 500 Coarse-grained Manually annotated RGB, UCMerced (Yang and Newsam, 2010) Regional
Sydney-Captions (Qu et al., 2016) 3065 Coarse-grained Manually annotated RGB, Sydney (Zhang et al., 2014) Regional
RSICD (Lu et al., 2017) 54 605 Coarse-grained Manually annotated RGB, Google Earth, Baidu Map Regional
NWPU-Captions (Cheng et al., 2022) 157 500 Coarse-grained Manually annotated RGB, NWPU-RESISC45 (Cheng et al., 2017) Regional
RSICap (Hu et al., 2023) 2585 Fine-grained Manually annotated RGB, DOTA (Xia et al., 2018) Regional
RS5M (Zhang et al., 2023) 5 000 000 Coarse-grained Model-generated and multiple datasets RGB, multiple datasets Global
SkyScript (Wang et al., 2024) 2 600 000 Coarse-grained OpenStreetMap RGB and multispectral, multiple sensors Global
FIT-RS (Luo et al., 2024) 1 800 851 Fine-grained STAR and ChatGPT RGB, STAR (Li et al., 2024b) Global
RemoteCLIP (Liu et al., 2024) 828 725 Coarse-grained Rule-based RGB, multiple datasets Global

ChatEarthNet 173 488 Fine-grained WorldCover and ChatGPT RGB and multispectral, Sentinel-2 Global

Earth Syst. Sci. Data, 17, 1245–1263, 2025 https://doi.org/10.5194/essd-17-1245-2025



Z. Yuan et al.: ChatEarthNet 1261

Box A1. An example of prompt output by Algorithm 1.

Box A2. An example of prompt output by Algorithm 2.

Box A3. An example of prompt output by Algorithm 3.
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