Articles | Volume 16, issue 11
https://doi.org/10.5194/essd-16-5449-2024
https://doi.org/10.5194/essd-16-5449-2024
Data description paper
 | 
28 Nov 2024
Data description paper |  | 28 Nov 2024

Global 30 m seamless data cube (2000–2022) of land surface reflectance generated from Landsat 5, 7, 8, and 9 and MODIS Terra constellations

Shuang Chen, Jie Wang, Qiang Liu, Xiangan Liang, Rui Liu, Peng Qin, Jincheng Yuan, Junbo Wei, Shuai Yuan, Huabing Huang, and Peng Gong

Related authors

Global 500 m seamless dataset (2000–2022) of land surface reflectance generated from MODIS products
Xiangan Liang, Qiang Liu, Jie Wang, Shuang Chen, and Peng Gong
Earth Syst. Sci. Data, 16, 177–200, https://doi.org/10.5194/essd-16-177-2024,https://doi.org/10.5194/essd-16-177-2024, 2024
Short summary

Related subject area

Domain: ESSD – Land | Subject: Land Cover and Land Use
Mapping rangeland health indicators in eastern Africa from 2000 to 2022
Gerardo E. Soto, Steven W. Wilcox, Patrick E. Clark, Francesco P. Fava, Nathaniel D. Jensen, Njoki Kahiu, Chuan Liao, Benjamin Porter, Ying Sun, and Christopher B. Barrett
Earth Syst. Sci. Data, 16, 5375–5404, https://doi.org/10.5194/essd-16-5375-2024,https://doi.org/10.5194/essd-16-5375-2024, 2024
Short summary
3D-GloBFP: the first global three-dimensional building footprint dataset
Yangzi Che, Xuecao Li, Xiaoping Liu, Yuhao Wang, Weilin Liao, Xianwei Zheng, Xucai Zhang, Xiaocong Xu, Qian Shi, Jiajun Zhu, Honghui Zhang, Hua Yuan, and Yongjiu Dai
Earth Syst. Sci. Data, 16, 5357–5374, https://doi.org/10.5194/essd-16-5357-2024,https://doi.org/10.5194/essd-16-5357-2024, 2024
Short summary
Enhancing high-resolution forest stand mean height mapping in China through an individual tree-based approach with close-range lidar data
Yuling Chen, Haitao Yang, Zekun Yang, Qiuli Yang, Weiyan Liu, Guoran Huang, Yu Ren, Kai Cheng, Tianyu Xiang, Mengxi Chen, Danyang Lin, Zhiyong Qi, Jiachen Xu, Yixuan Zhang, Guangcai Xu, and Qinghua Guo
Earth Syst. Sci. Data, 16, 5267–5285, https://doi.org/10.5194/essd-16-5267-2024,https://doi.org/10.5194/essd-16-5267-2024, 2024
Short summary
Annual high-resolution grazing-intensity maps on the Qinghai–Tibet Plateau from 1990 to 2020
Jia Zhou, Jin Niu, Ning Wu, and Tao Lu
Earth Syst. Sci. Data, 16, 5171–5189, https://doi.org/10.5194/essd-16-5171-2024,https://doi.org/10.5194/essd-16-5171-2024, 2024
Short summary
Global mapping of oil palm planting year from 1990 to 2021
Adrià Descals, David L. A. Gaveau, Serge Wich, Zoltan Szantoi, and Erik Meijaard
Earth Syst. Sci. Data, 16, 5111–5129, https://doi.org/10.5194/essd-16-5111-2024,https://doi.org/10.5194/essd-16-5111-2024, 2024
Short summary

Cited articles

Abowarda, A. S., Bai, L., Zhang, C., Long, D., Li, X., Huang, Q., and Sun, Z.: Generating surface soil moisture at 30 m spatial resolution using both data fusion and machine learning toward better water resources management at the field scale, Remote Sens. Environ., 255, 112301, https://doi.org/10.1016/j.rse.2021.112301, 2021. 
Battude, M., Al Bitar, A., Morin, D., Cros, J., Huc, M., Marais Sicre, C., Le Dantec, V., and Demarez, V.: Estimating maize biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote sensing data, Remote Sens. Environ., 184, 668–681, https://doi.org/10.1016/j.rse.2016.07.030, 2016. 
Bauer-Marschallinger, B. and Falkner, K.: Wasting petabytes: A survey of the Sentinel-2 UTM tiling grid and its spatial overhead, ISPRS J. Photogramm., 202, 682–690, https://doi.org/10.1016/j.isprsjprs.2023.07.015, 2023. 
Bolton, D. K., Gray, J. M., Melaas, E. K., Moon, M., Eklundh, L., and Friedl, M. A.: Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery, Remote Sens. Environ., 240, 111685, https://doi.org/10.1016/j.rse.2020.111685, 2020. 
Brooks, E. B., Thomas, V. A., Wynne, R. H., and Coulston, J. W.: Fitting the Multitemporal Curve: A Fourier Series Approach to the Missing Data Problem in Remote Sensing Analysis, IEEE T. Geosci. Remote, 50, 3340–3353, https://doi.org/10.1109/TGRS.2012.2183137, 2012. 
Download
Short summary
The inconsistent coverage of Landsat data due to its long revisit intervals and frequent cloud cover poses challenges to large-scale land monitoring. We developed a global 30 m 23-year (2000–2022) daily seamless data cube (SDC) of surface reflectance based on Landsat 5, 7, 8, and 9 and MODIS products. The SDC exhibits enhanced capabilities for monitoring land cover changes and robust consistency in both spatial and temporal dimensions, which are important for global environmental monitoring.
Altmetrics
Final-revised paper
Preprint