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Abstract. The Landsat series constitutes an unparalleled repository of multi-decadal Earth observations, serving
as a cornerstone in global environmental monitoring. However, the inconsistent coverage of Landsat data due
to its long revisit intervals and frequent cloud cover poses significant challenges to land monitoring over large
geographical extents. In this study, we developed a full-chain processing framework for the multi-sensor data
fusion of Landsat 5, 7, 8, and 9 and MODIS Terra surface reflectance products. Based on this framework a
global 30 m resolution daily seamless data cube (SDC) of land surface reflectance was generated, spanning from
2000 to 2022. A thorough evaluation of the SDC was undertaken using a leave-one-out approach and a cross-
comparison with NASA’s Harmonized Landsat and Sentinel-2 (HLS) products. The leave-one-out validation at
425 global test sites assessed the agreement between the SDC with actual Landsat surface reflectance values (not
used as input), revealing an overall mean absolute error (MAE) of 0.014 (the valid range of surface reflectance
values is 0–1). The cross-comparison with HLS products at 22 Military Grid Reference System (MGRS) tiles
revealed an overall mean absolute deviation (MAD) of 0.017 with L30 (Landsat 8-based 30 m HLS product)
and a MAD of 0.021 with S30 (Sentinel-2-based 30 m HLS product). Moreover, experimental results underscore
the advantages of employing the SDC for global land cover classification, achieving a sizable improvement
in overall accuracy (2.4 %–11.3 %) over that obtained using Landsat composite and interpolated datasets. A
web-based interface has been developed for researchers to freely access the SDC dataset, which is available at
https://doi.org/10.12436/SDC30.26.20240506 (Chen et al., 2024).
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1 Introduction

Earth observation (EO) data acquired by satellite sensors
are fundamental to global land monitoring (Markham and
Helder, 2012; Song et al., 2018; Wulder et al., 2022), pro-
viding critical information sources with unparalleled spatial
and temporal coverage at a low cost. Over the past decades,
satellite remote sensing has emerged as a prominent technol-
ogy in Earth system science (Gong et al., 2023; Yang et al.,
2013), contributing to the monitoring of land surface dynam-
ics (Gong et al., 2013, 2019; Huang et al., 2017; H. Liu et
al., 2020, 2021; Song et al., 2018), land surface phenology
(Bolton et al., 2020; Piao et al., 2019), forest (Hansen et al.,
2008, 2013), water (Ji et al., 2018; Pekel et al., 2016; Pick-
ens et al., 2022; Sagan et al., 2020), and urbanization (Gong
et al., 2012, 2020; X. Liu et al., 2020).

The Landsat series stands as the most enduring source
of Earth observations, with a historical archive extending
back to 1972 (Wulder et al., 2022). This longevity, combined
with its relatively high spatial resolution, rigorous radiomet-
ric calibration, and free-access policy, has made Landsat a
cornerstone for monitoring global terrestrial environments
(Markham and Helder, 2012; Wulder et al., 2022). Neverthe-
less, the utility of Landsat data inevitably encounters certain
limitations. A notable constraint is its relatively low tempo-
ral frequency, revisiting each area on Earth every 16 d (8 d
when there are two Landsat satellites in orbit with an 8 d off-
set) (Zhu et al., 2015b). This issue is further compounded by
the presence of cloud and cloud shadow, which can introduce
significant temporal gaps in the acquisition of clear-sky ob-
servations, especially in cloudy regions (Zhu et al., 2016).
Moreover, Landsat time series observations typically exhibit
irregularities in both observation frequencies and acquisition
dates due to the presence of cloud contamination and the ge-
ographically heterogeneous Landsat overpass coverage (Li
and Roy, 2017). These irregularities present significant chal-
lenges when utilizing Landsat for large-scale monitoring of
land cover and land use change (Potapov et al., 2020; Zhang
et al., 2024). Therefore, the availability of Landsat datasets
characterized by consistency in both temporal and spatial di-
mensions is crucial for facilitating various global environ-
mental studies (Khan et al., 2024; Li et al., 2023; Pickens
et al., 2022; Potapov et al., 2021a, b, 2022a, b; Song et al.,
2021; Turubanova et al., 2023).

One conventional approach employed to mitigate data
gaps in optical remote sensing is image compositing, which
selects the highest-quality observations within a pre-defined
time interval based on specific criteria to create seamless
clear images at large scales (Jin et al., 2023; Qiu et al., 2023;
White et al., 2014). Historically, image compositing has been
mostly applied to coarse-resolution data with high tempo-
ral frequency (Qiu et al., 2023), such as that obtained by the
Advanced Very High Resolution Radiometer (AVHRR) and
Moderate Resolution Imaging Spectroradiometer (MODIS)
sensors (Chuvieco et al., 2005; Cihlar et al., 1994; Holben,

1986; Huete et al., 2002; Wolfe et al., 1998). The use of im-
age compositing for medium-resolution data (e.g., Landsat)
was comparatively uncommon before the advent of Landsat
free-access policy in 2008 (Qiu et al., 2023). In recent years,
many image compositing algorithms have been developed for
Landsat data (Frantz et al., 2017; Griffiths et al., 2019; Jin et
al., 2023; Nelson and Steinwand, 2015; Qiu et al., 2023; Roy
et al., 2010; White et al., 2014). Nevertheless, Landsat image
compositing is not without its limitations. Firstly, due to the
lack of frequent Landsat observations (especially in cloudy
areas), it may take several months or even years to provide a
composite Landsat image, which can cause problems if there
are land cover or phenological changes (Zhu et al., 2015b).
Furthermore, the compositing process may introduce distor-
tions to the temporal dynamics of Landsat time series (Qiu
et al., 2023), thereby hampering subsequent applications that
depend on precise temporal information.

Landsat interpolation methods also provide the capabil-
ity to generate seamless synthetic Landsat images (Brooks
et al., 2012; Malambo and Heatwole, 2016; Yan and Roy,
2018, 2020; Zhu et al., 2015b). Linear interpolation is com-
monly employed to address missing values in Landsat time
series (Defourny et al., 2019; Inglada et al., 2017; Tran et
al., 2022), though it may not be highly effective for applica-
tions like land cover classification (Che et al., 2024). To im-
prove performance, more sophisticated interpolation meth-
ods have been developed (Brooks et al., 2012; Malambo and
Heatwole, 2016; Yan and Roy, 2018; Zhou et al., 2022; Zhu
et al., 2015b). Nevertheless, a significant limitation of these
methods is their dependence on numerous clear-sky Landsat
observations for accurate time series estimation (Chen et al.,
2021; Zhu et al., 2015b). This requirement poses a consid-
erable obstacle to their large-scale applications, particularly
in cloudy areas. Moreover, the performance of interpolation-
based methods relies on the careful tuning and selection
of model parameters, thereby encountering the challenge of
balancing between over-fitting and under-fitting (Wu et al.,
2022; Zhou et al., 2022). Large-scale remote sensing appli-
cations prefer processing algorithms capable of automatic
adaptation to diverse input data conditions, eliminating the
need for manual parameter tuning (Chen et al., 2023).

The spatiotemporal fusion technique provides a promising
solution which aims at incorporating more frequent coarse-
resolution observations to enhance the temporal frequency
of Landsat and generate synthetic Landsat-like dense time
series images (Chen et al., 2023, 2021; Gao et al., 2006;
Liu et al., 2022; Zhu et al., 2010, 2016). For example, the
Terra/Aqua Moderate Resolution Imaging Spectroradiometer
(MODIS) provides frequent coarse-resolution observations
at a 250, 500, and 1000 m spatial resolution with a near-
daily revisit frequency (Schaaf et al., 2002). The MODIS
land bands have comparable center wavelengths to the Land-
sat Enhanced Thematic Mapper Plus (ETM+) sensor, making
the MODIS data the ideal input for the spatiotemporal fu-
sion with Landsat (Gao et al., 2006). Many different types of
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Landsat–MODIS spatiotemporal fusion methods have been
developed (Chen et al., 2023; Gao et al., 2006, 2022; Goyena
et al., 2023; Guo et al., 2020; Hilker et al., 2009a; Liu et al.,
2019, 2022; Mizuochi et al., 2017; Shi et al., 2022; Wang et
al., 2017, 2020; Zhang et al., 2013; Zhu et al., 2010, 2016;
Zurita-Milla et al., 2008) and applied to land cover and land
surface phenology monitoring (Abowarda et al., 2021; Bat-
tude et al., 2016; Chen et al., 2018; Gervais et al., 2017;
Hilker et al., 2009b; Y. Li et al., 2017; Senf et al., 2015;
Singh, 2011; Tian et al., 2013; Walker et al., 2012; Watts et
al., 2011). The utility of multi-sensor data fusion in facilitat-
ing land cover and land use analyses has also been validated
empirically in previous studies (Carrasco et al., 2019; Chen
et al., 2017; Yin et al., 2019).

To the best of our knowledge, there is currently no global
30 m seamless dataset of land surface reflectance generated
by fusing Landsat and MODIS products available to the com-
munity. Although there have been numerous studies dedi-
cated to developing algorithms for missing data reconstruc-
tion and multi-sensor data fusion (Shen et al., 2015; Zhu et
al., 2018), unified and generalized frameworks for effective
and efficient Landsat–MODIS data fusion on a global scale
have not yet been explored extensively. To address this need,
in this study, we (i) developed a full-chain processing frame-
work for the multi-sensor data fusion of Landsat 5, 7, 8, 9
and MODIS Terra surface reflectance products; (ii) gener-
ated a global 30 m daily seamless data cube (SDC) of land
surface reflectance, covering the period from 2000 to 2022;
(iii) evaluated the reconstruction accuracy of the proposed
framework quantitatively using a leave-one-out strategy at
425 global test sites; (iv) evaluated the quality of the SDC
quantitatively by cross-comparing it with the Harmonized
Landsat and Sentinel-2 (HLS) products at 22 Military Grid
Reference System (MGRS) tiles; (v) evaluated the perfor-
mance of using the SDC for global-scale land cover classi-
fication against Landsat composite and interpolated datasets;
and (vi) provided a web-based interface for researchers to
freely access the SDC dataset.

2 Materials

2.1 Landsat Collection 2 level-2 surface reflectance
products

We collected a comprehensive dataset comprising 6 564 546
Landsat Collection 2 level-2 surface reflectance (L2SR) im-
ages from the US Geological Survey (USGS) Earth Re-
sources Observation and Science (EROS) Center, includ-
ing data acquired by the Landsat 8 and 9 Operational Land
Imager (OLI), Landsat 7 Enhanced Thematic Mapper Plus
(ETM+), and Landsat 5 Thematic Mapper (TM). This dataset
covers most of global land surface except Antarctica, span-
ning from 2000 to 2022.

The L2SR products are generated through a sequence of
processing steps applied to Landsat raw data. These steps

include reprojection, radiometric calibration, geometric cor-
rection, atmospheric correction, and cloud masking. Com-
pared to previous Landsat Collection 1 products, Collection
2 products have markedly improved the Landsat absolute ge-
olocation accuracy using Landsat 8 geolocational imaging
performance harmonized with the European Space (ESA)
Agency Global Reference Image (GRI) data (Crawford et
al., 2023). The Landsat 5 and 7 TM and ETM+ data were
atmospherically corrected using the Landsat Ecosystem Dis-
turbance Adaptive Processing System (LEDAPS) (Masek et
al., 2006), and the Landsat 8 and 9 OLI data were corrected
using the Land Surface Reflectance Code (LaSRC) (Vermote
et al., 2016). The Fmask algorithm (Zhu and Woodcock,
2012) was applied to detect cloud and cloud shadow in Land-
sat images. The L2SR products are spatially referenced us-
ing Worldwide Reference System-2 (WRS-2) path rows and
provided in Universal Transverse Mercator (UTM) projec-
tion. Figure 1 illustrates the spatial and temporal distribution
of all L2SR images used in this study. As listed in Table 1,
we used blue, green, red, near-infrared (NIR), and two short-
wave infrared (SWIR1 and SWIR2) bands for the generation
of the SDC. Although Landsat sensors have a relatively nar-
row field of view (15°), the bidirectional reflectance distri-
bution function (BRDF) normalization was found to be ef-
fective in making multi-temporal Landsat observations more
consistent (Claverie et al., 2015; Roy et al., 2016b). We ap-
plied the C-factor technique and global constant BRDF coef-
ficients provided by Roy et al. (2016a) to obtain the Landsat
nadir BRDF-adjusted reflectance (NBAR) dataset for SDC
generation.

2.2 MODIS nadir BRDF-adjusted reflectance (NBAR)
products

We reprocessed the MODIS MOD09GA version 6.1 surface
reflectance product to obtain a daily seamless (without miss-
ing values) 500 m MODIS NBAR dataset as detailed in Liang
et al. (2024). The official MODIS MCD43A4 NBAR prod-
uct was not employed due to persisting concerns associated
with it, including the prevalence of missing data and residual
influence of cloud and aerosols (Liang et al., 2024).

All MODIS Terra Surface Reflectance MOD09GA ver-
sion 6.1 images for the period 2000–2022 were acquired
from NASA Earthdata. The MOD09GA product is tiled in
the MODIS sinusoidal system with a spatial resolution of
about 500 m. A set of processing algorithms was applied to
these MOD09GA images to derive a daily 500 m resolution
seamless MODIS NBAR data cube (Liang et al., 2024), in-
cluding three main stages: (i) land-cover-based BRDF cor-
rection with the kernel-driven RossThick LiSparse recip-
rocal (RTLSR) model using parameters derived from the
MCD43A1 BRDF model parameter dataset and land cover
maps from the MCD12Q1 land cover product, (ii) outlier
removal and gap filling using the ecosystem curve-fitting
method, and (iii) sliding-window temporal smoothing us-
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Table 1. Attributes of Landsat 5 TM, 7 ETM+, and 8–9 OLI and MODIS Terra products (Markham and Helder, 2012; Masek et al., 2020;
Morisette et al., 2002).

Wavelengths (µm)

Landsat 5 TM Landsat 7 ETM+ Landsat 8 OLI Landsat 9 OLI-2 MODIS Terra

Blue 0.450–0.520 0.450–0.515 0.452–0.512 0.452–0.512 0.459–0.479
Green 0.520–0.600 0.525–0.600 0.533–0.590 0.532–0.589 0.545–0.565
Red 0.630–0.690 0.630–0.690 0.636–0.673 0.636–0.672 0.620–0.670
NIR 0.760–0.900 0.760–0.900 0.851–0.879 0.850–0.879 0.841–0.876
SWIR1 1.550–1.750 1.550–1.750 1.566–1.651 1.565–1.651 1.628–1.652
SWIR2 2.080–2.350 2.080–2.350 2.107–2.294 2.105–2.294 2.105–2.155

Spatial resolution 30 m 30 m 30 m 30 m ∼ 500 m
Revisit frequency 16 d 16 d 16 d 16 d ∼ daily

Figure 1. Spatial and temporal distribution of L2SR images used in
this study.

ing the Savitzky–Golay filter. The generated MODIS NBAR
seamless dataset provides seven spectral bands that are com-
monly used for terrestrial applications, six of which that have
compatible bandwidths with Landsat sensors are employed
for SDC generation as listed in Table 1.

2.3 The Harmonized Landsat and Sentinel-2 V2.0
surface reflectance product

NASA’s Harmonized Landsat and Sentinel-2 (HLS) V2.0
products were used in cross-comparison with the gener-

ated SDC product for quantitative assessment. HLS prod-
ucts combine observations from the Landsat Operational
Land Imager (OLI; since 2013) and the Sentinel-2 Multi-
Spectral Instrument (MSI; since 2015), providing global sur-
face reflectance data at a 30 m spatial resolution with a the-
oretical revisit interval of 2–3 d at the Equator and even
more frequent revisits in areas of higher latitudes (Claverie
et al., 2018). The creation of HLS products involves four
major processes (Claverie et al., 2018): (i) atmospheric
correction and cloud masking, (ii) geometric resampling
and geographic registration, (iii) BRDF normalization, and
(iv) bandpass adjustment. HLS products are gridded into
the UTM Military Grid Reference System (MGRS) used by
the Sentinel-2 products. The HLS S30 product (Sentinel-2-
based 30 m product) is derived from 10 and 20 m Sentinel-
2 bands using overlapping-area-weighted averaging, and the
L30 product (Landsat-based 30 m product) is reprojected to
the same Sentinel-2 grid using cubic convolution interpola-
tion (Claverie et al., 2018). Both HLS L30 and S30 prod-
ucts are atmospherically corrected using the Land Surface
Reflectance Code (LaSRC) (Vermote et al., 2016). The cloud
mask used in HLS products is a combination of the mask de-
rived from the Fmask algorithm and the mask derived from
the LaSRC algorithm. The HLS L30 and S30 products are
delivered as NBAR, using the C-factor technique and global
constant BRDF coefficients provided by Roy et al. (2016a).
A bandpass adjustment is applied to the S30 product using a
global constant set of coefficients (Claverie et al., 2018).

3 Methods

Figure 2 illustrates the overview of the SDC processing
chain, comprising five key processing steps.

3.1 Gridding and reprojection

The UTM-based Military Grid Reference System (MGRS)
was chosen as the projection system for the SDC product and
was also adopted by ESA’s Sentinel-2 products and NASA’s
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Figure 2. Overview of the SDC processing chain for each task unit.

HLS products (Claverie et al., 2018). It is noteworthy that
our adopted grid slightly deviates from the Sentinel-2 grid.
The original Landsat coordinate system aligns the UTM co-
ordinate origin with a pixel center, while the Sentinel-2 grid
aligns it with a pixel corner (Claverie et al., 2018). We ex-
panded the Sentinel-2 tiles by 15 m in each direction to align
them with the original Landsat coordinate system, minimiz-
ing the need for resampling Landsat data. The SDC prod-
uct is gridded onto this modified MGRS system, with a tile
size of 109.83km×109.83km (3661×3661 Landsat pixels).
Although it has been found that overlaps among neighbor-
ing MGRS tiles may result in resource wastage to some ex-
tent (Bauer-Marschallinger and Falkner, 2023), implement-
ing this UTM-based projection system serves to minimize
the need for resampling Landsat data, thereby reducing the
introduction of additional errors (Dwyer et al., 2018).

The metadata for all Landsat and MODIS images has been
pre-indexed into a database. For each SDC generation task
unit, the metadata regarding all source data falling within
specified spatial and temporal ranges can be efficiently re-
trieved from the database. Subsequently, all involved Land-
sat and MODIS source data are reprojected and gridded onto
our UTM-based grid using nearest-neighbor resampling for
Landsat and bilinear resampling for MODIS. MODIS data
are resampled to 30 m spatial resolution to streamline subse-
quent processing steps, and the computational costs for this
upscaling operation are negligible. Table 2 lists the input data
products across distinct time periods utilized in SDC gener-
ation.

3.2 Landsat cloud masking

Cloud and cloud shadow masks are essential for removing
contaminated Landsat pixels in SDC generation. We used
Fmask (Zhu and Woodcock, 2012) detection results as pri-
mary cloud and cloud shadow indicators. There are still a
few clouds and heavy aerosols in Landsat images that re-
main undetected by the current Fmask method, which may
have noteworthy implications for subsequent data processing
procedures (Chen et al., 2021). To mitigate this issue, an en-
hanced cloud filtering approach is employed to reduce resid-
ual clouds and cloud shadows in Landsat imagery, which
comprises three major steps:

1. Firstly, the cloud and cloud shadow masks generated by
the Fmask algorithm are expanded by a margin of 150 m
(Claverie et al., 2018). This dilation process is designed
to exclude potentially contaminated pixels adjacent to
the initially detected cloud and shadow areas.

2. Secondly, a brightness-threshold filter combined with a
spatial filter is applied to remove remaining highly re-
flective pixels, which is achieved by cross-comparing
with MODIS NBAR data. This filter operates on a
patch-wise basis, with each patch measuring 20× 20
Landsat pixels. For a given image patch, we commence
by computing the ratio of Landsat reflectance (summed
over the six spectral bands) to MODIS reflectance for
each pixel. Following this, if the median of all these
Landsat–MODIS reflectance ratios within this image
patch surpasses a pre-defined threshold, the entire im-
age patch is then flagged as cloudy. The threshold was
set to 2 in this study as this value effectively eliminates
most residual clouds without being overly aggressive.

median

{∑
iρ

Landsat
i (x,y)∑

iρ
MODIS
i (x,y)

, . . .,
for all pixels
within the
image patch

}
> 2, (1)

where (x,y) indicates the pixel location and
ρLandsat
i (x,y) and ρMODIS

i (x,y) are the surface re-
flectance of band i for the corresponding Landsat pixel
and MODIS pixel, respectively.

3. Further, a time series outlier detection technique based
on the Hampel filter combined with a spatial filter is em-
ployed to detect temporal outliers using the vegetation
index (VI) of Landsat time series (Claverie et al., 2018).

VI(t)=
ρLandsat

NIR (t)

ρLandsat
Red (t)

, (2)

where t indicates the time phase and ρLandsat
NIR (t) and

ρLandsat
Red (t) are the NIR and red band surface reflectance

of Landsat at time phase t .

For each sample VI(t) of the Landsat time series, the Ham-
pel filter computes the median of the VIs in a temporal win-
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Table 2. Input product specifications across distinct periods.

Output Period Medium-resolution input Coarse-resolution input

SDC 2000–2011 Landsat TM, ETM+ MODIS NBAR
2012 Landsat ETM+ MODIS NBAR
2013–2022 Landsat ETM+, OLI MODIS NBAR

dow (with the center sample excluded).

VImedian =

median{VI(t −1t), . . .,VI(t − 1),VI(t + 1), . . .,VI(t +1t)}, (3)

where 1t represents the temporal window size.
Then, it estimates the scale of natural variation (SNV) of

each sample by deriving the median of the absolute devia-
tions of the VIs in the temporal window from the median.

SNV

= median
{
|VI(t −1t)−VImedian|, . . ., |VI(t − 1)−VImedian|,

|VI(t + 1)−VImedian|, . . ., |VI(t +1t)−VImedian|
}

(4)

If the center sample, VI(t), differs from the median,
VImedian, by more than 5 SNV, it is flagged as an outlier. No
filter is applied if there are fewer than 3 samples within a
60 d temporal window. To eliminate isolated outlier pixels
that generate a speckle effect, the sample pixel is flagged as
an outlier only if the majority of its surrounding pixels are
also flagged as outliers, cloud, or cloud shadow.

3.3 Landsat cross-sensor calibration

To ensure the temporal continuity of the generated SDC
dataset, a Landsat cross-sensor calibration approach was em-
ployed to reduce the data inconsistencies between the in-
put Landsat OLI and TM and ETM+ products. The linear
regression models have been widely used to reduce cross-
sensor reflectance difference (Chastain et al., 2019; Claverie,
2023; Claverie et al., 2018; Roy et al., 2016a; Shang and Zhu,
2019). It has been found that a single set of linear transfor-
mation coefficients is not proper for global-scale applications
(Olthof and Fraser, 2024; Shang and Zhu, 2019). Therefore,
our approach aims at building multiple transformation mod-
els for each MGRS tile and each spectral band separately.

The Landsat 7 ETM+ and Landsat 8 OLI share a sun-
synchronous orbit at an altitude of approximately 710 km.
Both satellites revisit a specific area on Earth every 16 d,
with an 8 d offset from each other. Notably, there exists a
discernible across-track overlap between each ETM+ obser-
vation and an adjacent OLI observation acquired 1 d apart
(Roy et al., 2016a). Our cross-calibration approach uses
matched (acquired 1 d apart) ETM+ and OLI observations
in these overlapped regions to build linear regression models
for each MGRS tile and each spectral band separately, adjust-
ing ETM+ (and TM) observations to match the OLI spectral
responses (Roy et al., 2016a).

For each MGRS tile, ETM+ and OLI observations in the
overlap regions acquired only 1 d apart during the years
2014–2021 are reprojected onto the modified MGRS grid
using nearest-neighbor resampling. Pixels flagged as cloud,
cloud shadow, and snow/ice were discarded. Then, the re-
maining candidate pixels are used to build linear regression
models to adjust reflectance differences for each spectral
band. If the number of available pixels is insufficient to build
the regression model, candidate pixels from adjacent MGRS
tiles would be included. This step helps improve stability and
mitigate the issue of spatial inconsistency between neighbor-
ing MGRS tiles. Table 3 shows an example of calibration
coefficients obtained at three MGRS tiles in this study:

ρOLI
i = a× ρETM+

i + b for each band i. (5)

3.4 MODIS harmonization to Landsat bandpass

Harmonizing MODIS to the Landsat bandpass reduces in-
consistencies between Landsat and MODIS observations,
which has been proven effective in improving the recon-
struction accuracy of subsequent gap-filling and spatiotem-
poral fusion processes (Chen et al., 2023; Gevaert and
García-Haro, 2015; Shi et al., 2022). Here, a cross-resolution
data harmonization approach is employed for harmonizing
MODIS to the Landsat OLI bandpass. This method involves
utilizing matched Landsat and MODIS observations to estab-
lish multiple linear transformation models for each spectral
band and each local image patch.

In contrast to previous methods that construct distinct
transformation models for each land cover type (Cao et al.,
2020; Shen et al., 2013; Yang et al., 2020), our approach
adopts a patch-wise harmonization strategy with an overlap-
ping mechanism to tackle spatial heterogeneity. This strat-
egy avoids the necessity for high-accuracy land cover maps
while concurrently ensuring computational efficiency. As il-
lustrated in Fig. 3, Landsat images are paired with MODIS
images acquired on corresponding dates, with the exclusion
of contaminated Landsat pixels, such as clouds and cloud
shadows. Subsequently, for each image patch and each spec-
tral band, a linear transformation model is constructed uti-
lizing candidate pixels within that image patch. The MODIS
reflectance is then adjusted using the obtained transforma-
tion coefficients to generate more harmonized MODIS data.
In areas of patch overlap, the transformation coefficients are
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Table 3. Calibration coefficients obtained at three MGRS tiles in this study.

Band Tile 10SEH Tile 49SGV Tile 55HCC

Blue OLI= 0.0021+ 0.9726 TM/ETM+ OLI= 0.0089+ 0.8958 TM/ETM+ OLI= 0.0056+ 0.9009 TM/ETM+
Green OLI= 0.0010+ 0.9856 TM/ETM+ OLI= 0.0064+ 0.9405 TM/ETM+ OLI= 0.0056+ 0.9344 TM/ETM+
Red OLI= 0.0015+ 0.9719 TM/ETM+ OLI= 0.0050+ 0.9479 TM/ETM+ OLI= 0.0099+ 0.9232 TM/ETM+
NIR OLI= 0.0062+ 0.9814 TM/ETM+ OLI= 0.0027+ 0.9839 TM/ETM+ OLI= 0.0317+ 0.8848 TM/ETM+
SWIR1 OLI= 0.0039+ 0.9762 TM/ETM+ OLI= 0.0005+ 0.9887 TM/ETM+ OLI= 0.0354+ 0.8937 TM/ETM+
SWIR2 OLI= 0.0019+ 0.9810 TM/ETM+ OLI= 0.0015+ 0.9811 TM/ETM+ OLI= 0.0306+ 0.8800 TM/ETM+

Figure 3. An illustration of patch-wise harmonization with over-
lapping.

averaged for the final adjustments. This approach employs
multiple regional transformation models to better account for
material-dependent spectral characteristics that vary across
regions and uses an overlapping mechanism to enhance spa-
tial consistency between neighboring image patches.

3.5 Unified gap filling and spatiotemporal fusion

Existing spatiotemporal fusion algorithms generally require
cloud-free seamless Landsat images as input (Gao et al.,
2006; Shi et al., 2022; Zhu et al., 2010, 2016), which
may harm their data efficiency and performances, espe-
cially in cloudy areas where there are few cloud-free Land-
sat images available. Therefore, previous studies (Chen et
al., 2018; Liu et al., 2021) applied gap-filling algorithms
to partly contaminated Landsat images first and then used
these gap-filled images for the subsequent fusion process.
Different from these approaches, we propose the Unified,
ROBust, OpTimization-based spatiotemporal reconstruction
model (uROBOT), which can tackle both gap-filling and spa-
tiotemporal fusion problems in a unified manner.

As shown in Fig. 4, the input data for uROBOT consist of a
matched time series of Landsat–MODIS image patches, DF
andDC , acquired at {T1, . . .,Tn}; a MODIS image patch, Cp,
acquired at the prediction phase, Tp; and a partially contam-
inated Landsat image, Fp, acquired at Tp (case 1 in Fig. 4).
The output is the predicted reflectance value for the unob-

served segments of the Landsat image, F−p , at Tp. Should Fp
be entirely contaminated/unobserved, the scenario simplifies
to a conventional spatiotemporal fusion problem (case 2 in
Fig. 4).

3.5.1 Preliminaries of the uROBOT model

Similar to the previous spatiotemporal fusion model (Chen
et al., 2023), the basic assumption of uROBOT is that the
MODIS image, Cp, can be accurately approximated by a lin-
ear combination of other similar MODIS images in the input
time series data given by

Cp ≈Dcα, (6)

where Cp is the MODIS image patch acquired at the predic-
tion phase, Tp; DC is a matrix that stacks the input MODIS
time series image patches acquired at {T1, . . .,Tn}; and α is a
sparse vector that selects out MODIS image patches similar
to Cp and combines them to approximate Cp.

Then, it is assumed that the representation coefficient α
can be transferred to corresponding Landsat images, and we
obtain the following estimation for Fp:

F̂p =DFα, (7)

where F̂p is the estimated Landsat image patch at Tp andDF
is a matrix that stacks the input Landsat time series image
patches acquired at {T1, . . .,Tn}.

The representation coefficients α can be obtained by solv-
ing an optimization problem with two extra regularization
terms. Detailed explanations regarding these two regulariza-
tion terms will be provided subsequently.

min
α

∣∣Cp−DCα
∣∣2
2+ λ|α|1+β

∣∣Finterp−DFα
∣∣2
2

+µ
∣∣F+p −D+F α∣∣22, (8)

where λ, β, and µ are scalars; α is a vector that flattens the
representation coefficients; Cp is a vector that flattens the
MODIS image patch at Tp; DC is a matrix that stacks the
MODIS time series image patches acquired at {T1, . . .,Tn};
DF is a matrix that stacks the Landsat time series image
patches acquired at {T1, . . .,Tn}; Finterp is a vector that flat-
tens an interpolated Landsat image patch at Tp (further elu-
cidation on this matter is subsequently presented); F+p is a
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Figure 4. Input–output settings of uROBOT. The superscripts + and − indicate the corresponding observed and unobserved (or contam-
inated) segments of Landsat image at the prediction phase. The uROBOT can tackle both gap-filling (case 1) and spatiotemporal fusion
(case 2) problems in a unified manner.

vector that flattens the observed part of Fp; and D+F is a ma-
trix that stacks the corresponding observed parts of DF .

Beyond the previous spatiotemporal fusion model (Chen et
al., 2023), the uROBOT model accepts the observed part F+p
(if there is one as in case 1 in Fig. 4) as extra input. Hence,
the regularization term µ(|F+p −D

+

F α|) allows uROBOT to
exploits the observed segments F+p to better reconstruct the
target image, Fp. This feature enables the uROBOT model
to handle both gap-filling and spatiotemporal fusion prob-
lems in a unified manner. Additionally, uROBOT utilizes the
interpolated Landsat image, Finterp, in the temporal continu-
ity penalty term, which further improves the performance of
uROBOT. Finterp is an interpolated patch of Landsat imagery
at time Tp, generated by combining Landsat observations ac-
quired at nearby dates, with weights determined by the cor-
responding MODIS data. Therefore, the regularization term
β(|Finterp−DFα|

2
2) serves to enhance the temporal continuity

of the final predicted Landsat image, F̂p =DFα.
All the constraint terms in Eq. (8) contribute to address-

ing gradual and step changes. To handle extreme conditions
such as ephemeral land cover changes, the uROBOT model
also distributes the approximation residuals into the predic-
tion (Chen et al., 2023), and the final prediction is formulated
as follows:

F̂p =DFα+ (Cp−DCα). (9)

In regions with frequent cloud cover, the scarcity of cloud-
free observations can pose a challenge. To address this,
the temporal continuity constraint β|Finterp−DFα|

2
2 and the

residual distribution in Eq. (9) ensure that our estimations are
consistent with Cp and are at least as accurate as the interpo-
lated results, Finterp.

3.5.2 Implementation of uROBOT for SDC
reconstruction

As shown in Fig. 4, the uROBOT model reconstructs seam-
less Landsat images for each prediction phase separately. At
each prediction phase, Tp, the uROBOT model takes three
main steps to reconstruct the corresponding Landsat image,
Fp:

1. Firstly, the uROBOT model constructs an interpolated
image, Finterp, using the weighted combination (Zhu et
al., 2010) of clear-sky Landsat pixels acquired nearest
to the prediction phase, Tp.

Finterp(x,y) = w1×F1(x,y)+w2×F2(x,y)

for each pixel location (x,y), (10)

where (x,y) indicates a given pixel location, F1(x,y)
is the cloud-free Landsat pixel acquired nearest to and
before Tp, F2(x,y) is the cloud-free Landsat pixel ac-
quired nearest to and after Tp, and the weights w1 and
w2 are obtained using corresponding MODIS pixels.

w1 =
(C2(x,y)−Cp(x,y))2

(C1(x,y)−Cp(x,y))2+ (C2(x,y)−Cp(x,y))2

and (11)

w2 =
(C1(x,y)−Cp(x,y))2

(C1(x,y)−Cp(x,y))2+ (C2(x,y)−Cp(x,y))2 ,

where Cp(x,y) is the corresponding MODIS pixel ac-
quired at Tp, C1(x,y) is the corresponding cloud-free
MODIS pixel acquired on the same date as F1(x,y), and
C2(x,y) is the corresponding cloud-free MODIS pixel
acquired on the same date as F2(x,y).

2. Secondly, the uROBOT model utilizes all input time se-
ries data and the spatial information of F+p to do similar
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image matching and approximation (Chen et al., 2023),
by solving the optimization problem in Eq. (8) to obtain
the representation coefficient α.

3. Then, the last step is to reconstruct the target F−p using
the obtained coefficients α and all input data, as

F̂−p =D
−

F α+
(
C−p −D

−

Cα
)
, (12)

where F̂−p is an estimation of the unobserved/contam-
inated segments of Fp and D−F , C−p , and D−C are the
corresponding masked parts of DF , Cp, and DC .

3.6 Quantitative assessment using the leave-one-out
approach

The leave-one-out assessment approach has been widely
used to evaluate the accuracy of reconstructed surface re-
flectance values in previous gap-filling and spatiotemporal
fusion studies (Chen et al., 2011; Gao et al., 2006; Zhu et
al., 2016, 2010). This approach initially excludes a certain
Landsat image from the input data, subsequently using the
remaining input data to reconstruct the excluded image and
thereafter evaluating discrepancies between the originals and
reconstructions using standard metrics, such as the correla-
tion coefficient (CC), root mean square error (RMSE), mean
absolute error (MAE), rMAE (MAE normalized by true sur-
face reflectance values), and Roberts edge (Edge) spatial fea-
tures (Zhu et al., 2022). We calculated the normalized differ-
ence in the Edge spatial features between a reconstructed im-
age and actual Landsat image. The normalized metric values
range from −1 to 1, indicating the under- or over-estimate of
spatial details. The average normalized metric value of pixels
with an Edge value higher than the 90th percentile in the ac-
tual Landsat image was used to represent the spatial accuracy
of the reconstructed image (Zhu et al., 2022).

A total of 425 test sites that are distributed across the globe
are selected randomly, each of which covers a 6km× 6km
area. These test sites were grouped by their dominant land
cover types using the FROM_GLC land cover map (Gong
et al., 2013; C. Li et al., 2017). Figure 5 shows the spatial
distribution and corresponding dominant land cover types of
the 425 global test sites. For each Landsat image at each test
site, we exclude it from the input data and apply SDC re-
construction using the remaining data, separately. Then, the
reconstruction accuracy is evaluated by comparing the recon-
structed images with the original Landsat images. The ac-
curacy assessment is conducted in four years (2001, 2004,
2012, and 2021) representative of different input data condi-
tions.

3.7 Quantitative assessment by cross-comparing with
HLS products

Another assessment approach is to cross-compare the gap-
filled SDC dataset with actual observations from other sen-

sors. NASA’s HLS products provide dense 30 m observation
data by harmonizing Landsat OLI (since 2013) and Sentinel-
2 MSI (since 2015) products, making themselves good refer-
ence data to evaluate the SDC product for the period 2016–
2022. We selected 22 MGRS tiles representative of different
land cover types as test sites (Chen et al., 2023) and evalu-
ated the agreement between SDC and HLS products in the
year 2021. Figure 6 shows the spatial distribution of the 22
MGRS tiles in the cross-comparison. Each MGRS tile cov-
ers a 109.8km×109.8km area. Since the L30 product is de-
rived from Landsat OLI data, we employed the leave-one-
out validation strategy (the same as in the last section) for
the cross-comparison with L30 data. The least-squares re-
gression method was used to reduce spectral bandpass dif-
ferences between SDC and HLS data for each spectral band
and each test site.

4 Results

4.1 Global 30 m daily seamless data cube (SDC) of land
surface reflectance

Based on the developed framework, a global 30 m 23-year
(2000–2022) daily surface reflectance SDC dataset was gen-
erated by combining multi-sensor observations from Land-
sat TM, ETM+, and OLI and MODIS Terra products. The
generated SDC dataset is tiled into the UTM-based grid as
described in Sect. 3.1. This gridding system includes 18 466
tiles (each of which includes 3661× 3661 Landsat pixels),
covering most of global land surface except Antarctica as
shown in Fig. 7.

Figures 8–11 depict four examples of SDC time series in
comparison with the HLS data (not used in the generation of
SDC), with a specific focus on land cover changes. Figure 8
illustrates a crop harvest event that took place in April 2021
in Egypt. Remarkably, the SDC time series demonstrates a
more adept representation of the various crop harvest stages
compared to the L30 time series. This enhanced performance
is attributed to the incorporation of more frequent temporal
information from MODIS. Figure 9 presents the second case
in the Poyang Lake wetland, a region prone to frequent cloud
cover. Although there are only limited cloud-free Landsat ob-
servations, the temporal phases of land–water transition are
effectively captured in the SDC time series. The third case
typified a tundra region in Canada. As shown in Fig. 10, the
SDC time series accurately reflects the snow season and veg-
etation growth in the tundra ecosystem. The fourth case in
Fig. 11 illustrates a flood event that occurred in India. This
region experienced flooding in October 2013, a period when
Sentinel-2 data were unavailable. During December, the wa-
ter gradually receded as depicted in the figure. The results
demonstrate the proficiency of SDC data in monitoring rapid
land cover changes. Further, the SDC dataset exhibits robust
consistency in both spatial and temporal dimensions, with an
extended temporal coverage dating back to 2000.
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Figure 5. Spatial distribution and corresponding dominant land cover types of the 425 global test sites.

Figure 6. Spatial distribution of the 22 MGRS tiles involved in the cross-comparison with HLS.

Figure 7. Distribution of the 18 466 tiles used for SDC generation.
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4.2 Accuracy assessment results using the
leave-one-out approach

Table 4 displays the results of quantitative assessments for
the 425 global test sites across four typical years, utilizing
different input data settings. Notably, the SDC attains its peak
reconstruction accuracy in 2021, when incorporating Landsat
ETM+, OLI, and MODIS data. The reconstruction accuracy
of SDC is comparatively diminished in 2012, when Landsat
TM and OLI observations are not available. Table 5 illus-
trates the SDC reconstruction accuracy across test sites char-
acterized by different land cover types. The reconstruction
accuracy of SDC in waterbodies and tundra areas is observed
to manifest relatively higher error levels. Figure 12 displays
scatterplots depicting the predicted SDC and actual Landsat
surface reflectance values in the leave-one-out assessment.
The majority of data points closely align with the 1 : 1 line,
indicating a robust consistency between the predicted and ac-
tual reflectance values. Overall, these results substantiate that
reconstructed SDC surface reflectance values achieve a high
level of accuracy on a global scale.

4.3 Accuracy assessment results by cross-comparing
with HLS products

Table 6 presents the quantitative cross-comparison results be-
tween SDC and HLS L30 and S30 products at the 22 MGRS
tiles. The results indicate a higher level of agreement be-
tween SDC and HLS L30 products compared to that between
SDC and HLS S30 products. This discrepancy may be at-
tributed to the spectral differences between Landsat OLI and
Sentinel-2 MSI instruments. Notably, since the metric val-
ues listed in Table 6 are calculated for test sites at a different
spatial scale (109.8 km× 109.8km here and 6km× 6km in
Sect. 4.2), the listed root mean square deviation (RMSD) and
CC values are not directly comparable to those in Tables 4
and 5. As described in Sect. 3.1, the gridding system of SDC
has a 15 m offset compared to the Sentinel-2 gridding sys-
tem used by HLS products. This 15 m offset may also cause
systematic deviations in the cross-comparison.

Figure 13 presents scatterplots depicting the reconstructed
SDC data in comparison to HLS data. The blue band in the
plots indicates higher deviations, known to be sensitive to
atmospheric conditions. Most data points lie near the 1 : 1
line, indicating a high degree of agreement between SDC and
HLS products.

4.4 The effectiveness of Landsat cross-sensor
calibration

The evaluation of our Landsat cross-sensor calibration
method involved a comparison of surface reflectance differ-
ences before and after the bandpass adjustment. The sur-
face reflectance differences are quantified by the RMSDs
between ETM+ and OLI observations (temporally interpo-
lated to align with the acquisition dates of ETM+). This
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Figure 8. False-color composites of SDC and HLS data and time series of red SR (red) and NIR SR (blue) of the central pixel located at
30.4851° N, 31.9383° E (Egypt; tile 36RUU) from 15 February to 15 July 2021.

Table 5. Accuracy of SDC reconstruction at the 425 global test sites for different land cover types.

Band Cropland Forest Grassland Shrubland

RMSE MAE CC rMAE RMSE MAE CC rMAE RMSE MAE CC rMAE RMSE MAE CC rMAE
(%) (%) (%) (%)

Blue 0.012 0.009 0.763 13 0.014 0.010 0.684 17 0.015 0.011 0.808 11 0.011 0.008 0.758 11
Green 0.012 0.010 0.812 9 0.013 0.010 0.750 11 0.015 0.011 0.858 8 0.011 0.008 0.826 8
Red 0.015 0.012 0.866 11 0.015 0.011 0.777 13 0.017 0.013 0.896 9 0.013 0.009 0.875 9
NIR 0.027 0.020 0.892 7 0.029 0.022 0.880 8 0.026 0.019 0.907 7 0.021 0.016 0.898 6
SWIR1 0.026 0.019 0.867 8 0.020 0.015 0.820 10 0.022 0.017 0.863 8 0.020 0.015 0.863 7
SWIR2 0.021 0.016 0.882 10 0.013 0.010 0.766 11 0.018 0.013 0.856 9 0.016 0.012 0.870 8

Band Water Tundra Impervious surface Bare land

RMSE MAE CC rMAE RMSE MAE CC rMAE RMSE MAE CC rMAE RMSE MAE CC rMAE
(%) (%) (%) (%)

Blue 0.023 0.017 0.778 15 0.049 0.033 0.921 15 0.012 0.009 0.726 13 0.012 0.009 0.784 6
Green 0.023 0.017 0.829 12 0.048 0.033 0.927 13 0.013 0.009 0.792 10 0.013 0.010 0.858 5
Red 0.025 0.018 0.834 14 0.051 0.035 0.930 13 0.015 0.011 0.836 12 0.016 0.012 0.877 4
NIR 0.033 0.024 0.858 13 0.058 0.043 0.931 12 0.027 0.019 0.906 8 0.018 0.014 0.880 4
SWIR1 0.020 0.015 0.818 15 0.035 0.026 0.795 22 0.022 0.016 0.883 9 0.021 0.015 0.847 6
SWIR2 0.016 0.012 0.778 15 0.026 0.020 0.714 20 0.017 0.013 0.880 11 0.016 0.012 0.856 6
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Figure 9. False-color composites of SDC and HLS data and time series of red SR (red) and NIR SR (blue) of the central pixel located at
29.0965° N, 116.1107° W (China; tile 50RMT) from 15 February to 15 July 2021.

Table 6. Cross-comparison results of between SDC and HLS L30 and S30 products at the 22 MGRS tiles.

Band SDC compared with HLS L30 SDC compared with HLS S30

RMSD MAD CC Edge RMSD MAD CC Edge

Blue 0.058 0.014 0.892 −0.217 0.059 0.017 0.849 −0.339
Green 0.055 0.015 0.906 −0.217 0.060 0.020 0.863 −0.317
Red 0.056 0.017 0.920 −0.214 0.060 0.022 0.890 −0.306
NIR 0.054 0.023 0.924 −0.218 0.059 0.027 0.899 −0.233
SWIR1 0.030 0.017 0.977 −0.201 0.034 0.022 0.971 −0.154
SWIR2 0.025 0.014 0.980 −0.196 0.028 0.018 0.974 −0.164

comparison is conducted for six spectral bands across six
MGRS tiles (10SEH, 17RKQ, 32UNA, 36MWS, 49SGV,
and 55HCC). Figure 14 presents the surface reflectance dif-
ferences before and after the cross-calibration process for six
spectral bands at the six test sites. Additionally, Fig. 15 il-
lustrates two examples of calibrated blue and NIR surface
reflectance time series. The results demonstrate the effective-
ness of our method in reducing the surface reflectance differ-
ences between ETM+ and OLI observations, aligning them

more closely using obtained local-scale linear transformation
models.

4.5 The effects of remaining Landsat sensor differences

The effects of remaining Landsat sensor differences on the
SDC reconstruction accuracy are investigated in this section.
We evaluated the reconstruction accuracy with different in-
put data settings in three typical years (2001, 2004, and 2021)
using the 425 global test sites from Sect. 3.6. The accuracy
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Figure 10. False-color composites of SDC and HLS data and time series of red SR (red) and NIR SR (blue) of the central pixel located at
56.2778° N, 110.9034° W (Canada; tile 12VWH) from 15 February to 15 June 2021.

assessment results presented in Table 7 suggest that incorpo-
rating more data from different sensors helps to improve the
overall reconstruction accuracy. However, a more in-depth
analysis reveals that while incorporating ETM+∗ (∗ denot-
ing a scan-line corrector failure) images in the input data im-
proved the accuracy of TM image reconstructions in 2004,
it simultaneously diminished the accuracy of OLI image re-
constructions in 2021. In a similar vein, the inclusion of OLI
somewhat reduced the accuracy of ETM+∗ image reconstruc-
tions in 2021 as evidenced in Table 8 and Fig. 16. Despite
this, these fluctuations in accuracy were relatively minor.

4.6 The effectiveness of Landsat cloud masking

To mitigate cloud mask omission errors in Fmask results,
SDC generation incorporated an enhanced cloud masking
approach involving a brightness-threshold filter and a time
series outlier filter. Figure 17 presents two cases of cloud
masking results by Fmask and the enhanced cloud mask-
ing method. These cases reveal the presence of cloud or
heavy aerosol pixels that remain undetected by the Fmask
algorithm. Meanwhile, the enhanced cloud masking method
adeptly identified and filtered out the majority of these pre-
viously undetected cloud pixels, demonstrating its effective-
ness in ensuring the quality of the input Landsat data for SDC
generation.

4.7 Temporal continuity of reconstructed SDC time
series

The SDC product provides an extensive historical dataset
of multi-spectral and medium-resolution data covering the
period from 2000 to 2022. As indicated in Table 2, this
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Figure 11. False-color composites of SDC and HLS data and time series of red SR (red) and NIR SR (blue) of the central pixel located at
23.2923° N, 68.7947° E (India; tile 42QVL) from 15 November 2013 to 15 March 2014.

Figure 12. Scatterplots of the actual and predicted values for the test sites of different land cover types.
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Figure 13. Scatterplots of SDC and HLS reflectance values in the cross-comparison.

Table 7. Accuracy of SDC reconstruction (of all images) with different input data settings. Metrics were averaged over the six bands, and
the best results are marked in bold. (∗: scan-line corrector failure).

Metrics 2001 TM and ETM+ 2004 TM and ETM+∗ 2021 ETM+∗ and OLI

TM ETM+ All TM ETM+∗ All ETM+∗ OLI All

RMSE 0.0205 0.0227 0.0203 0.0194 0.0264 0.0187 0.0240 0.0222 0.0187
MAE 0.0152 0.0170 0.0150 0.0147 0.0194 0.0138 0.0182 0.0167 0.0140
CC 0.7836 0.7459 0.8056 0.8302 0.7567 0.8297 0.7894 0.8117 0.8535

Table 8. Accuracy of SDC reconstruction (of images from specific sensors) with different input data settings. Metrics were averaged over
the six bands, and the best results are marked in bold.

Metrics 2004 TM 2021 ETM+ 2021 OLI

TM TM and ETM+ OLI and OLI OLI and
ETM+ ETM+ ETM+

RMSE 0.0213 0.0198 0.0183 0.0186 0.0172 0.0177
MAE 0.0161 0.0148 0.0137 0.0142 0.0125 0.0131
CC 0.8083 0.8402 0.8365 0.8503 0.8732 0.8750

prolonged temporal coverage encapsulates multiple distinct
phases, each characterized by varied input data configura-
tions. The temporal continuity and consistency of SDC data
emerge as pivotal factors for its efficacy in monitoring long-
term land dynamics. Figure 18 presents two distinct scenar-
ios of SDC time series extending from 2000 to 2022. The first
scenario pertains to a forest situated in a mountainous region,
characterized by strong phenological changes and rugged ter-
rain features. The second scenario depicts a desert location
exhibiting minimal temporal variations and near-Lambertian
surfaces. It can be seen that there are no discernible disconti-
nuities between the different phases in the SDC time series.

5 Discussion

5.1 Global-scale land cover classification utilizing the
SDC: a comparative analysis with Landsat
composite and interpolated datasets

Image compositing is a conventional approach employed to
mitigate data gaps in optical remote sensing, which selects
the highest-quality observations within a defined time inter-
val based on specific criteria to create seamless clear images
(Qiu et al., 2023). Contrary to best-pixel composite meth-
ods, there are also some interpolation methods to generate
synthetic images based on harmonic time series fits (Zhou et
al., 2022; Zhu et al., 2015b). Figure 19 displays the compari-
son of SDC images with Landsat composite and interpolated
images. The Landsat composite images are generated by the
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Figure 14. The mean RMSDs between ETM+ and OLI observa-
tions before and after the cross-calibration for six spectral bands at
six MGRS tiles.

Figure 15. Time series of original and calibrated surface re-
flectance: (a) located at 23.2923° N, 68.7947° E; (b) located at
23.2923° N, 68.7947° E. The blue lines are the estimated curves of
the OLI observations based on the Fourier approach (Dash et al.,
2010; Shang and Zhu, 2019).

NLCD (Jin et al., 2023) and MAX-RNB (Qiu et al., 2023)
algorithms, and the Landsat interpolated images are gener-
ated using the HAPO algorithm (Zhou et al., 2022). Notwith-
standing the good visual quality apparent in these Landsat
composite and interpolated images, it is evident that certain
temporal change information was lost during the process of
image compositing and interpolation.

Moreover, we conducted a comparative analysis to evalu-
ate the effectiveness of using Landsat composite and inter-
polated images versus using SDC data for land cover clas-
sification. To perform this assessment, we utilized the vali-
dation sample set provided in a previous study (C. Li et al.,
2017), which consists a total of 32 946 data points distributed
globally. To facilitate a clear and equitable comparison, we
employed solely the six-band surface reflectance time series
from Landsat composite interpolated images and SDC data
as input features for the classification. Subsequently, we con-
ducted a fivefold cross-validation procedure independently
for each input data configuration using the same LightGBM
classifier with default parameter settings.

Table 9 presents the results of overall classification accu-
racy for various input data configurations. It is discernible
that there exist minor discrepancies in performance between
the NLCD and MAX-RNB results. And the utilization of
seasonal composite images led to a significantly higher level
of classification accuracy compared to annual composite im-
ages. Remarkably, the highest classification accuracy was at-
tained using SDC time series as input features, outperform-
ing other input settings by a wide margin (2.4 %–11.3 %).
Figure 20 shows two examples of land cover classification
results when using SDC can correctly identify land cover
types, while other data cannot. The SDC time series pre-
serves the temporal information of the original Landsat data
and remains stable when Landsat observations are sparse.

5.2 The influence of Landsat 7 ETM+ scan-line
corrector failure

The scan-line corrector (SLC) of the ETM+ sensor on board
Landsat 7 failed permanently in May 2003, resulting in about
22 % of the pixels per scene not being scanned (causing
wedge-shaped gaps) since that time (Chen et al., 2011).
These wedge-shaped gaps are evident in the Landsat ETM+
images as displayed in Figs. 17–19. However, this issue
poses no obstacle to SDC generation as the uROBOT model
can exploit time series input data to fill these gaps and fuse
them with MODIS in a unified manner. In the year 2012,
when there are only Landsat ETM+ SLC-off images avail-
able, the uROBOT model can still utilize these ETM+ image
patches as input and achieve a relatively high reconstruction
accuracy as indicated in Table 4. Even in later years when
Landsat OLI images become available, the incorporation of
Landsat ETM+ images as input can still help improve the
overall accuracy of the SDC generation as indicated in Ta-
ble 7.
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Figure 16. Comparison of the SDC reconstruction accuracy with different input data settings. The symbols + (increase) and − (decrease)
indicate the change in accuracy with the additional input data.

Figure 17. Comparison of cloud masks derived by Fmask and the enhanced cloud masking approach. The yellow shading in the cloud masks
signifies cloud-free pixels. It can be seen that thin clouds undetected by Fmask were mostly screened out by the enhanced cloud masking.
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Figure 18. Two cases of SDC and Landsat time series: (a) located at 35.4549° N, 113.4381° E and (b) located at 39.0850° N, 81.2460° E.

Table 9. Overall accuracy (OA) of land cover classification results using NLCD composite images, MAX-RNB composite images, HAPO
interpolated images, and SDC time series as input features.

Input data NLCD MAX-RNB HAPO SDC

Seasonal Annual Seasonal Annual Daily Daily

OA 0.7179 0.6309 0.7131 0.6360 0.7197 0.7437

5.3 Limitations of SDC products

The SDC is not equivalent to actual daily 30 m Earth obser-
vation data. It is an estimation based on Landsat and MODIS
time series observations. Reconstructing missing Landsat
data is an under-determined problem, meaning there can be
infinitely many possible solutions (Shen et al., 2015). Us-
ing 500 m MODIS images as “guidance” and applying the
constraints presented in Eq. (8), we can narrow down the so-
lution space and make more accurate estimations. However,
achieving 100 % accuracy is not feasible since the informa-
tion provided in the input data is usually incomplete. Addi-
tionally, the effective spatial resolution of MODIS observa-

tions changes significantly due to the variations in view an-
gles (Pahlevan et al., 2017). Even after BRDF normalization
and temporal smoothing, these effects cannot be perfectly
mitigated. The effective temporal resolution of SDC depends
on the quality of the input Landsat and MODIS data, which
can vary in space and time.

The LEDAPS atmospheric correction algorithm for Land-
sat TM and ETM+ does not perform as well as the LaSRC for
Landsat OLI (Vermote et al., 2018). Additionally, the Fmask
algorithm for Landsat 5 and 7 is less effective compared to
its performance for Landsat 8 and 9 due to the absence of the
cirrus band (Zhu et al., 2015a). Our enhanced cloud mask-
ing approach identifies most of the previously undetected
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Figure 19. False-color composites of Landsat, Landsat composite, and SDC images at 35.3104° N, 97.7974° W.

clouds. Nonetheless, there are still certain thin aerosols and
cloud shadows in Landsat imagery that can introduce tem-
poral noise and spatial artifacts into the SDC dataset. Im-
plementing a more aggressive cloud masking strategy could
minimize these impacts, yet it could also significantly reduce
the number of available observations. Therefore, the develop-
ment of a more accurate and robust algorithm for cloud and
cloud shadow detection is essential for future improvements.

As shown in Table 8 and Fig. 16, remaining Landsat cross-
sensor inconsistencies may slightly reduce the reconstruction
accuracy. And the sensor differences between Landsat and
MODIS sensors could also introduce errors. Future improve-

ments may require a more effective method for cross-sensor
calibration and data harmonization.

The influence of geographic registration errors was not
considered in this study since Landsat Collection 2 prod-
ucts have significantly improved the absolute geolocation ac-
curacy of Landsat data (Crawford et al., 2023). However,
the co-registration accuracy between Landsat imagery and
MODIS data could also influence the reconstruction accu-
racy of SDC dataset. Future improvements could introduce
co-registration processes to address this concern.

The SDC dataset could also benefit from integrating more
data sources. For example, the European Space Agency
(ESA) launched two satellites of the Sentinel-2 mission (S-
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Figure 20. Examples of land cover classification results using different input data where (a) the ground truth is cropland and (b) the ground
truth is grass.

2A and S-2B) in 2015 and 2017, respectively. The Multi-
Spectral Instrument (MSI) on board both satellites acquires
multi-spectral data at a spatial resolution of 10 to 60 m de-
pending on the wavelength with a 5 d revisit period at the
Equator. The incorporation of Sentinel-2 could facilitate the
generation of higher-quality SDC datasets with finer spatial
resolutions.

6 Code and data availability

The SDC dataset is available at https://doi.org/10.12436/
SDC30.26.20240506 (Chen et al., 2024) or on the project
website (http://sdc.iearth.cloud/, last access: 16 November
2024), where a web-based interface is provided for all re-
searchers to be able to freely access the SDC dataset. No-
tably, the SDC dataset is dynamically generated upon request
to optimize data storage efficiency. Furthermore, leveraging
the generated SDC dataset, we have produced global 23-year
(2000–2022) annual land cover maps using the FROM_GLC
classification system, which are readily accessible on the
website. All code utilized in our analyses and the accom-
panying experimental data are available upon reasonable re-
quest.

7 Conclusion

In this study, a global-coverage 30 m resolution 23-year
(2000–2022) daily seamless data cube (SDC) of land sur-
face reflectance was developed based on the fusion of multi-
sensor observations from the Landsat 5, 7, 8, and 9 and
MODIS Terra constellations. SDC generation relies on a
novel processing framework, which comprises a set of pro-
cessing stages: gridding and reprojection, Landsat cloud
masking, Landsat cross-sensor calibration, MODIS harmo-
nization to Landsat bandpass, and a unified gap-filling and
spatiotemporal fusion stage. The quality of the generated
SDC dataset was evaluated using a leave-one-out approach
and a cross-comparison with NASA’s Harmonized Landsat
and Sentinel-2 products. The leave-one-out validation at 425
global test sites assessed the agreement between the SDC
with actual Landsat surface reflectance values (not used as
input), revealing an overall mean absolute error (MAE) of
0.014 (the valid range of surface reflectance values is 0–1).
The cross-comparison of SDC with HLS products at 22 Mili-
tary Grid Reference System (MGRS) tiles revealed an overall
mean absolute deviation (MAD) of 0.017 with L30 (Landsat
8-based 30 m HLS product) and a MAD of 0.021 with S30
(Sentinel-2-based 30 m HLS product).
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The SDC has several advantages compared with other ex-
isting Landsat-based surface reflectance datasets: (i) it ex-
hibits a higher observation frequency and enhanced capabil-
ities for monitoring land cover changes, (ii) it is consistent
in both spatial and temporal dimensions without missing val-
ues, (iii) it has a global coverage and a prolonged 23-year du-
ration from 2000 to 2022, and (iv) validation results revealed
a high level of accuracy in SDC reconstruction. Moreover,
the experiment employing the SDC for global-scale land
cover classification underscores its advantages compared
with Landsat composite/interpolated datasets, achieving a
sizable improvement in overall accuracy (2.4 %–11.3 %).
The SDC will be a competitive analysis-ready surface re-
flectance dataset in many other studies related to global en-
vironmental monitoring.
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