Articles | Volume 16, issue 11
https://doi.org/10.5194/essd-16-5375-2024
https://doi.org/10.5194/essd-16-5375-2024
Data description paper
 | 
26 Nov 2024
Data description paper |  | 26 Nov 2024

Mapping rangeland health indicators in eastern Africa from 2000 to 2022

Gerardo E. Soto, Steven W. Wilcox, Patrick E. Clark, Francesco P. Fava, Nathaniel D. Jensen, Njoki Kahiu, Chuan Liao, Benjamin Porter, Ying Sun, and Christopher B. Barrett

Related authors

Detection of Fast-Changing Intra-seasonal Vegetation Dynamics of Drylands Using Solar-Induced Chlorophyll Fluorescence (SIF)
Jiaming Wen, Giulia Tagliabue, Micol Rossini, Francesco Pietro Fava, Cinzia Panigada, Lutz Merbold, Sonja Leitner, and Ying Sun
EGUsphere, https://doi.org/10.5194/egusphere-2024-2529,https://doi.org/10.5194/egusphere-2024-2529, 2024
Short summary
Global GOSAT, OCO-2, and OCO-3 solar-induced chlorophyll fluorescence datasets
Russell Doughty, Thomas P. Kurosu, Nicholas Parazoo, Philipp Köhler, Yujie Wang, Ying Sun, and Christian Frankenberg
Earth Syst. Sci. Data, 14, 1513–1529, https://doi.org/10.5194/essd-14-1513-2022,https://doi.org/10.5194/essd-14-1513-2022, 2022
Short summary
Optimal inverse estimation of ecosystem parameters from observations of carbon and energy fluxes
Debsunder Dutta, David S. Schimel, Ying Sun, Christiaan van der Tol, and Christian Frankenberg
Biogeosciences, 16, 77–103, https://doi.org/10.5194/bg-16-77-2019,https://doi.org/10.5194/bg-16-77-2019, 2019
Short summary

Related subject area

Domain: ESSD – Land | Subject: Land Cover and Land Use
3D-GloBFP: the first global three-dimensional building footprint dataset
Yangzi Che, Xuecao Li, Xiaoping Liu, Yuhao Wang, Weilin Liao, Xianwei Zheng, Xucai Zhang, Xiaocong Xu, Qian Shi, Jiajun Zhu, Honghui Zhang, Hua Yuan, and Yongjiu Dai
Earth Syst. Sci. Data, 16, 5357–5374, https://doi.org/10.5194/essd-16-5357-2024,https://doi.org/10.5194/essd-16-5357-2024, 2024
Short summary
Enhancing high-resolution forest stand mean height mapping in China through an individual tree-based approach with close-range lidar data
Yuling Chen, Haitao Yang, Zekun Yang, Qiuli Yang, Weiyan Liu, Guoran Huang, Yu Ren, Kai Cheng, Tianyu Xiang, Mengxi Chen, Danyang Lin, Zhiyong Qi, Jiachen Xu, Yixuan Zhang, Guangcai Xu, and Qinghua Guo
Earth Syst. Sci. Data, 16, 5267–5285, https://doi.org/10.5194/essd-16-5267-2024,https://doi.org/10.5194/essd-16-5267-2024, 2024
Short summary
Annual high-resolution grazing-intensity maps on the Qinghai–Tibet Plateau from 1990 to 2020
Jia Zhou, Jin Niu, Ning Wu, and Tao Lu
Earth Syst. Sci. Data, 16, 5171–5189, https://doi.org/10.5194/essd-16-5171-2024,https://doi.org/10.5194/essd-16-5171-2024, 2024
Short summary
Global mapping of oil palm planting year from 1990 to 2021
Adrià Descals, David L. A. Gaveau, Serge Wich, Zoltan Szantoi, and Erik Meijaard
Earth Syst. Sci. Data, 16, 5111–5129, https://doi.org/10.5194/essd-16-5111-2024,https://doi.org/10.5194/essd-16-5111-2024, 2024
Short summary
A 28-time-point cropland area change dataset in Northeast China from 1000 to 2020
Ran Jia, Xiuqi Fang, Yundi Yang, Masayuki Yokozawa, and Yu Ye
Earth Syst. Sci. Data, 16, 4971–4994, https://doi.org/10.5194/essd-16-4971-2024,https://doi.org/10.5194/essd-16-4971-2024, 2024
Short summary

Cited articles

Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., and Hegewisch, K. C.: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015, Sci. Data, 5, 1–12, https://doi.org/10.1038/sdata.2017.191, 2018. 
Adams, E. C., Parache, H. B., Cherrington, E., Ellenburg, W. L., Mishra, V., Lucey, R., and Nakalembe, C.: Limitations of remote sensing in assessing vegetation damage due to the 2019–2021 desert locust upsurge, Front. Climate, 3, 714273, https://doi.org/10.3389/fclim.2021.714273, 2021. 
AghaKouchak, A., Farahmand, A., Melton, F. S., Teixeira, J., Anderson, M. C., Wardlow, B. D., and Hain, C. R.: Remote sensing of drought: Progress, challenges and opportunities, Rev. Geophys., 53, 452-480, https://doi.org/10.1002/2014RG000456, 2015. 
Download
Short summary
This paper uses machine learning and linear unmixing to produce rangeland health indicators: Landsat time series of land cover classes and vegetation fractional cover of photosynthetic vegetation, non-photosynthetic vegetation, and bare ground in arid and semi-arid Kenya, Ethiopia, and Somalia. This represents the first multi-decadal Landsat-resolution dataset specifically designed for mapping and monitoring rangeland health in the arid and semi-arid rangelands of this portion of eastern Africa.
Altmetrics
Final-revised paper
Preprint