Articles | Volume 16, issue 11
https://doi.org/10.5194/essd-16-5375-2024
https://doi.org/10.5194/essd-16-5375-2024
Data description paper
 | 
26 Nov 2024
Data description paper |  | 26 Nov 2024

Mapping rangeland health indicators in eastern Africa from 2000 to 2022

Gerardo E. Soto, Steven W. Wilcox, Patrick E. Clark, Francesco P. Fava, Nathaniel D. Jensen, Njoki Kahiu, Chuan Liao, Benjamin Porter, Ying Sun, and Christopher B. Barrett

Related authors

Inferring methane emissions from African livestock by fusing drone, tower, and satellite data
Alouette van Hove, Kristoffer Aalstad, Vibeke Lind, Claudia Arndt, Vincent Odongo, Rodolfo Ceriani, Francesco Fava, John Hulth, and Norbert Pirk
EGUsphere, https://doi.org/10.5194/egusphere-2024-3994,https://doi.org/10.5194/egusphere-2024-3994, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Detection of Fast-Changing Intra-seasonal Vegetation Dynamics of Drylands Using Solar-Induced Chlorophyll Fluorescence (SIF)
Jiaming Wen, Giulia Tagliabue, Micol Rossini, Francesco Pietro Fava, Cinzia Panigada, Lutz Merbold, Sonja Leitner, and Ying Sun
EGUsphere, https://doi.org/10.5194/egusphere-2024-2529,https://doi.org/10.5194/egusphere-2024-2529, 2024
Short summary
Global GOSAT, OCO-2, and OCO-3 solar-induced chlorophyll fluorescence datasets
Russell Doughty, Thomas P. Kurosu, Nicholas Parazoo, Philipp Köhler, Yujie Wang, Ying Sun, and Christian Frankenberg
Earth Syst. Sci. Data, 14, 1513–1529, https://doi.org/10.5194/essd-14-1513-2022,https://doi.org/10.5194/essd-14-1513-2022, 2022
Short summary
Optimal inverse estimation of ecosystem parameters from observations of carbon and energy fluxes
Debsunder Dutta, David S. Schimel, Ying Sun, Christiaan van der Tol, and Christian Frankenberg
Biogeosciences, 16, 77–103, https://doi.org/10.5194/bg-16-77-2019,https://doi.org/10.5194/bg-16-77-2019, 2019
Short summary

Related subject area

Domain: ESSD – Land | Subject: Land Cover and Land Use
EARice10: a 10 m resolution annual rice distribution map of East Asia for 2023
Mingyang Song, Lu Xu, Ji Ge, Hong Zhang, Lijun Zuo, Jingling Jiang, Yinhaibin Ding, Yazhe Xie, and Fan Wu
Earth Syst. Sci. Data, 17, 661–683, https://doi.org/10.5194/essd-17-661-2025,https://doi.org/10.5194/essd-17-661-2025, 2025
Short summary
A Sentinel-2 machine learning dataset for tree species classification in Germany
Maximilian Freudenberg, Sebastian Schnell, and Paul Magdon
Earth Syst. Sci. Data, 17, 351–367, https://doi.org/10.5194/essd-17-351-2025,https://doi.org/10.5194/essd-17-351-2025, 2025
Short summary
High-resolution mapping of global winter-triticeae crops using a sample-free identification method
Yangyang Fu, Xiuzhi Chen, Chaoqing Song, Xiaojuan Huang, Jie Dong, Qiongyan Peng, and Wenping Yuan
Earth Syst. Sci. Data, 17, 95–115, https://doi.org/10.5194/essd-17-95-2025,https://doi.org/10.5194/essd-17-95-2025, 2025
Short summary
A flux tower site attribute dataset intended for land surface modeling
Jiahao Shi, Hua Yuan, Wanyi Lin, Wenzong Dong, Hongbin Liang, Zhuo Liu, Jianxin Zeng, Haolin Zhang, Nan Wei, Zhongwang Wei, Shupeng Zhang, Shaofeng Liu, Xingjie Lu, and Yongjiu Dai
Earth Syst. Sci. Data, 17, 117–134, https://doi.org/10.5194/essd-17-117-2025,https://doi.org/10.5194/essd-17-117-2025, 2025
Short summary
Advances in LUCAS Copernicus 2022: enhancing Earth observations with comprehensive in situ data on EU land cover and use
Raphaël d'Andrimont, Momchil Yordanov, Fernando Sedano, Astrid Verhegghen, Peter Strobl, Savvas Zachariadis, Flavia Camilleri, Alessandra Palmieri, Beatrice Eiselt, Jose Miguel Rubio Iglesias, and Marijn van der Velde
Earth Syst. Sci. Data, 16, 5723–5735, https://doi.org/10.5194/essd-16-5723-2024,https://doi.org/10.5194/essd-16-5723-2024, 2024
Short summary

Cited articles

Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., and Hegewisch, K. C.: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015, Sci. Data, 5, 1–12, https://doi.org/10.1038/sdata.2017.191, 2018. 
Adams, E. C., Parache, H. B., Cherrington, E., Ellenburg, W. L., Mishra, V., Lucey, R., and Nakalembe, C.: Limitations of remote sensing in assessing vegetation damage due to the 2019–2021 desert locust upsurge, Front. Climate, 3, 714273, https://doi.org/10.3389/fclim.2021.714273, 2021. 
AghaKouchak, A., Farahmand, A., Melton, F. S., Teixeira, J., Anderson, M. C., Wardlow, B. D., and Hain, C. R.: Remote sensing of drought: Progress, challenges and opportunities, Rev. Geophys., 53, 452-480, https://doi.org/10.1002/2014RG000456, 2015. 
Download
Short summary
This paper uses machine learning and linear unmixing to produce rangeland health indicators: Landsat time series of land cover classes and vegetation fractional cover of photosynthetic vegetation, non-photosynthetic vegetation, and bare ground in arid and semi-arid Kenya, Ethiopia, and Somalia. This represents the first multi-decadal Landsat-resolution dataset specifically designed for mapping and monitoring rangeland health in the arid and semi-arid rangelands of this portion of eastern Africa.
Share
Altmetrics
Final-revised paper
Preprint