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Abstract. Tracking environmental change is important to ensure efficient and sustainable natural resources
management. Eastern Africa is dominated by arid and semi-arid rangeland systems, where extensive grazing
of livestock represents the primary livelihood for most people. Despite several mapping efforts, eastern Africa
lacks accurate and reliable high-resolution maps of rangeland health necessary for many management, policy,
and research purposes. Earth observation data offer the opportunity to assess spatiotemporal dynamics in range-
land health conditions at much higher spatial and temporal coverage than conventional approaches, which rely
on in situ methods, while also complementing their accuracy. Using machine learning classification and linear
unmixing, we produced rangeland health indicators – Landsat-based time series from 2000 to 2022 at 30 m
spatial resolution for mapping land cover classes (LCCs) and vegetation fractional cover (VFC; including pho-
tosynthetic vegetation, non-photosynthetic vegetation, and bare ground) – two important data assets for deriving
metrics of rangeland health in eastern Africa. Due to the scarcity of in situ measurements in the large, remote,
and highly heterogeneous landscape, an algorithm was developed to combine high-resolution WorldView-2 and
WorldView-3 satellite imagery at < 2 m resolutions with a limited set of ground observations to generate ref-
erence labels across the study region using visual photo-interpretation. The LCC algorithm yielded an overall
accuracy of 0.856 when comparing predictions to our validation dataset comprised of a mixture of in situ obser-
vations and visual photo-interpretation from high-resolution imagery, with a kappa of 0.832; the VFC returned a
R2
= 0.795, p < 2.2× 10−16, and normalized root mean squared error (nRMSE) = 0.123 when comparing pre-

dicted bare-ground fractions to visual photo-interpreted high-resolution imagery. Our products represent the first
multi-decadal Landsat-resolution dataset specifically designed for mapping and monitoring rangelands health in
eastern Africa including Kenya, Ethiopia, and Somalia, covering a total area of 745 840 km2. These data can be
valuable to a wide range of development, humanitarian, and ecological conservation efforts and are available at
https://doi.org/10.5281/zenodo.7106166 (Soto et al., 2023) and Google Earth Engine (GEE; details in the “Data
availability” section).

Published by Copernicus Publications.
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1 Introduction

Rangelands cover nearly half of the African continent land
mass and support the livelihoods of tens of millions of house-
holds (Reid et al., 2008; Sayre et al., 2013). The productivity
of these rangelands along with the human and livestock pop-
ulations they sustain is significantly affected by land degra-
dation due to soil erosion, cropland expansion, and shrub en-
croachment resulting from heavy grazing and suppression of
fires, as well as climate change (Barbier and Hochard, 2018;
Roques et al., 2001; Angassa and Oba, 2008; Wynants et
al., 2019; Vetter, 2005; Hoffman and Vogel, 2008). Episodes
of extreme climate events, in particular, drought, have led
to emergency population migrations and humanitarian crises
of historic proportions (Blackwell, 2010). Improved under-
standing of the variation in rangeland health across space and
over time is crucial for community development, ecological
conservation, and humanitarian programming in the region.

The extensive development of Earth observation (EO)
platforms has largely improved our understanding of ecosys-
tems (Giuliani et al., 2020; Sudmanns et al., 2020). Long-
term EO systems, such as the Landsat constellation, have
provided valuable data to assess and accurately detect mul-
tiple ecosystem functions and patterns (Wulder et al., 2012;
Loveland and Dwyer, 2012; Williams et al., 2006). Further
development of EO and analytics has allowed the integra-
tion of multiple platforms into complex algorithms and work-
flows, benefiting from the ability of image data to scale at dif-
ferent spatial and temporal levels (e.g., AghaKouchak et al.,
2015) and leading to paradigm shift from change detection to
continuous monitoring at high resolution (Woodcock et al.,
2022). These recent developments have led to much interest
in applying EO and related analytics to rangeland ecology
and management (e.g., Allred et al., 2021; Hill et al., 2020;
Rigge et al., 2020; Fava and Vrieling, 2021).

Rangeland health has been conceptualized as a framework
of three fundamental attributes reflecting soil/site stability,
biotic integrity, and hydrologic function (Pellant et al., 2020).
Historically, associated assessments have largely relied on in
situ methods for assessment. Recent scientific advances cre-
ate an opportunity to map rangeland health using satellite im-
agery to monitor changes at ecologically meaningful scales
for landscape planning and management (Allred et al., 2022).
EO in these often remote, arid and semi-arid regions becomes
extremely valuable for its capacity to enable measurements
in areas where data have never or rarely been collected on
the ground. In addition, high-resolution (HR) remote sensing
datasets can capture the fine spatial heterogeneity and the
temporal dynamics that are key to informing management
decisions but are also exceedingly difficult to discern at scale
using conventional, ground-based monitoring systems (Zhou
et al., 2020).

EO-based data have been used to inform on rangeland
health since the early days of EO programs (e.g., Landsat
1 program: Graetz et al., 1976). Understanding of rangeland
ecosystems relies on information about the specific compo-
sition of the various vegetation communities within these
ecosystems, oftentimes over large spatial extents, such as the
Great Plains in North America (Reeves and Baggett, 2014).
Composition changes over time are important to track tra-
jectories, such as bush encroachment and soil degradation
and impacts on grazers (Ghafari et al., 2018; Liao et al.,
2018). HR thematic mapping of rangeland ecosystem can
help explain key interannual variability in ecological pro-
cesses such as water changes (Cooley et al., 2017), terrestrial
and aquatic vegetation phenology (Cheng et al., 2020; Cof-
fer et al., 2020), and crop dynamics (Lin et al., 2021), as well
as long-term effects, such as land-use change, aboveground
carbon, and sedimentation (Sankey et al., 2019, 2021).

The lower computational barriers from the continuous ad-
vancement of technology are promoting the shift from plot-
based assessments to the integration of satellite-based maps
into landscape management, improving broad-scale mapping
of rangelands at higher spatial and temporal resolutions than
ever before (Jones et al., 2020; Allred et al., 2022). Many re-
cent contributions to this field have shown that even though
moderate resolution datasets (from MODIS sensors at 250 m
resolution) are able to detect short-term vegetation phenol-
ogy and long-term demographic dynamics of herbaceous and
woody species, they cannot detect changes at local scales be-
cause the spatial patterns of herbaceous and woody species
typically occur at such fine scales (Angassa, 2014; Brown-
ing et al., 2017, 2019; Matongera et al., 2021; Oba et al.,
2003). Despite collecting data at lower temporal resolutions,
the Landsat collection at 30 m spatial resolution has con-
sistently played an important role in science for over 50
years due to continuous efforts in calibration and corrections
(Wulder et al., 2012, 2022; Franks et al., 2020). The recent
collection-based reprocessing that resulted in the Landsat
collection 2 (Wulder et al., 2022) represents an important op-
portunity to build consistent time series for rangeland map-
ping at local scales. In addition, field studies have demon-
strated that Landsat-scale sub-pixel estimation of fractional
cover of rangeland functional types, such as herbaceous and
shrub components, and especially bare ground, is crucial to
overcome the difficulties of parsing out the underlying het-
erogeneity within thematic land cover classifications and in
understanding ecological dynamics (Jones et al., 2018; Rigge
et al., 2019). As a result, land cover classification (LCC) and
vegetation fractional cover (VFC; including photosynthetic
vegetation (PV), non-photosynthetic vegetation (NPV), and
bare ground (BG)) estimations have become the two build-
ing blocks of rangeland health assessment of today’s EO-
based rangeland management (Jones et al., 2020). However,
Landsat-based land and fractional cover mapping over large
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and remote regions is hampered by the difficulty of collecting
ground truth data at fine resolution. This is especially true in
eastern Africa, where limited infrastructure and physical in-
security make it very difficult to collect field data at scale.

In this study, we produced a unique and new dataset com-
posed of Landsat-based LCC and VFC annual estimates of
rangeland components for eastern Africa from 2000 to 2022.
We used a LCC scheme to help identify rangeland vegetation
transition pathways and VFC to describe rangeland health
condition trajectories within each class. To overcome the
challenge of scarce ground data for training and validating
our models over this vast and remote region, we used a large
collection of high-resolution satellite imagery, visual photo-
interpretation, and ad hoc algorithms to generate a large sam-
ple of reference data to generate and validate our two prod-
ucts.

2 Data and methods

The overall strategy of our methodological framework to
generate the long-term time series of LCC and VFC for
rangelands in eastern Africa consists of three major steps:
first, the development of a training/testing dataset from
HR imagery (Sect. 2.3); second, the LCC classification
(Sect. 2.4); and third, the VFC classification (Sect. 2.5). The
detailed workflow is provided in Fig. 1.

To integrate in situ and HR data to create reference
data, we used ground reference data to inform a visual
photo-interpretation (VPI) protocol to create reference la-
bels to train supervised classifications of HR imagery. These
HR classifications were used to create a large amount of
machine-generated reference data to train Landsat-based
classifiers and to identify areas with large proportions of the
focal rangeland components for VFC estimation. To generate
the LCC reference data, we generated an algorithm that cre-
ated reference points using a set of conditions with the pro-
portions of reference compositional component (RCC). The
RCCs within each of our LCC definitions include vegetation
functional groups (VFG) and other important classes such
as bare ground. The RCCs are then compared to the calcu-
lated proportion of pixels from the HR classification within a
moving window matching the 30 m spatial resolution of the
Landsat data. We also generated VFC reference data using
image segmentation on the RCC classifications with the as-
sistance of an application in GEE to identify homogeneous
areas of rangeland components that could spatially allocate
Landsat pixels to use them to calculate spectral endmembers
and generate VFC estimations. Figure 1 shows our general
workflow, including reference data partitions, remote sensing
data and results, processing algorithms, and accuracy assess-
ments.

Prior to the detailed technical description of this entire
workflow (Sect. 2.4–2.6), we first described our study do-

main (Sect. 2.1) and satellite datasets utilized in this study
(Sect. 2.2).

2.1 Study area

The study area is located in the semi-arid and arid regions
centered in east and northern Kenya, western Somalia, and
southern Ethiopia (Fig. 2). We chose this study region be-
cause it has been a geographic area with numerous develop-
ment interventions on the ground in the past decades (Liao
and Fei, 2017), but limited land cover datasets exist to eval-
uate the concurrent changes on the landscapes. In addition,
this region suffers strongly from climate change extremes
(e.g., droughts, floods; IPCC, 2022) and their consequences
on rangeland health, resilience, and well-being of pastoralists
(Pricope et al., 2013; Beal et al., 2023). Covering a total of
745 840 km2, it includes diverse types of rangelands, which
represent hyper complex and rapid physiological and pheno-
logical dynamics in other regions of the world (ILRI, IUCN,
FAO, UNEP and ILC, 2021; Adams et al., 2021; Nandintset-
seg et al., 2024). Therefore, the study area demonstrates po-
tential for broad generalization and sheds light for develop-
ment efforts for stakeholders.

We used two main features to bound our study area. To the
east and north, we used Landsat tiles, using PATH 164 and
ROW 56 as limits, dropping tiles PATH 164, ROW 59 and
60 due to heavy cloud cover. To the west and south, we used
a threshold value of mean annual precipitation of 700 mm
using TerraClimate data (smoothed with a kernel convolution
with standard deviation = 5 km; Abatzoglou et al., 2018),
thus keeping the focus on the rangeland-dominated arid and
semi-arid areas.

The study covers the epoch 2000 to 2022 to help cap-
ture decadal variation in ecosystem conditions and maximize
Landsat data availability. Landsat imagery is limited in this
area due to high cloud cover often occurring during the two
wet seasons observed in the region including the long rains
(March to June) and short rains (October to December). In
most cases, cloud-free data were available during Decem-
ber through early March, which corresponds to the short, dry
(SD) season. Thus, we generated our datasets using imagery
from a portion of the SD, from 15 December over 2000–2022
to 1 March over 2001–2023, which maximized the annual
available data count per pixel and ensured even distribution
of data over our period of study.

2.2 Remote sensing data

2.2.1 HR – high-resolution satellite imagery

To train our models and validate the results, we used HR
satellite imagery as little ground reference information exists
in this vast and remote region. We obtained a large collection
of imagery from Maxar Technologies via the United States
National Geospatial-Intelligence Agency (NGA): ordered
with the following filtering parameters: sun elevation > 45°,
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Figure 1. Schematic workflow of the process used in this work to generate land cover classifications and fractional cover estimations based on
Landsat imagery. Short names correspond to the following: visual photo-interpretation (VPI), points generated with reference compositional
component (RCC) work to train the RCC classification (RCC points); collection of points with pure pixels (i.e., points with 100 % of a
single VFC type, pure points); library of spectral signatures of pure points (spectral library); spectral endmembers for PV, NPV, and BG
(endmembers); random sample of points with overlapping Landsat imagery to perform accuracy assessment on VFC estimations (sampled
pixels). See text for further details on the uses of data and processing.

Figure 2. Map showing our study area in eastern Africa. Basemap: © MapTiler, https://www.maptiler.com/copyright/ (last access: 10 Novem-
ber 2023).
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Figure 3. Spatial coverage of high-resolution imagery (polygons)
and the spatial distribution of the point grid (dots) used for generat-
ing reference data.

off-nadir angle < 40°, and cloud cover < 50 %. The HR col-
lection was composed of 2500 mosaicked strips of imagery
scenes from Worldview-2 and Worldview-3 sensors (Fig. 3).
These mosaicked strips, typically 16.4 km in width, were de-
livered as orthorectified and radiometrically corrected bun-
dles of eight bands including coastal (400–450 nm), blue
(450–510 nm), green (510–580 nm), yellow (585–625 nm),
red (630–690 nm), red edge (705–745 nm), near-infrared 1
(NIR1, 770–895 nm), and NIR2 (860–1040 nm) at a spa-
tial resolution of 184 cm for WorldView-2 and 124 cm for
WorldView-3 and a panchromatic band at a spatial resolu-
tion of 46 cm for WorldView-2 and 31 cm for WorldView-3.
Shortwave infrared (SWIR) imagery (1195 to 2365 nm) col-
lected by Worldview-3 with a spatial resolution of ∼ 3.7 m
was also used in this study.

After subsetting to the short, dry season, we manually se-
lected 321 strips maximizing the spatial coverage and min-
imizing cloud cover, as most images with scattered clouds
projected oblique shadows often resulting in < 10 % of pixels
being usable for further analysis. These data corresponded to
imagery acquired from 2016 to 2020. We considered using
Quick Bird imagery from previous years, but data availabil-
ity for our area of interest was minimal.

2.2.2 Landsat collections

To capture historical changes in vegetation health in our
area of study, we utilized the Landsat dataset, which has
been available for over 4 decades (1982–present; Wulder et
al., 2012) and thus enables the development of long-term
time series of land cover classes and vegetation fractional
cover. While other studies have shown the value of higher-
resolution sensors such as Sentinel-2 to show the potential
higher gain in accuracy compared to Landsat collection for

the detection of invasive species in eastern Africa (Dube et
al., 2020), ESA’s Sentinel mission only features a short his-
tory of imagery acquisition from 2015 (Drusch et al., 2012),
which could bias our assessment towards the last decade,
thus confusing the interpretation of our results.

Landsat data are readily and freely accessible for sci-
entific purposes. They are available at different process-
ing levels, from raw images to radiometrically, geometri-
cally, and atmospherically corrected scenes (Wulder et al.,
2019). We used Google Earth Engine (GEE; Gorelick et
al., 2017) to access and analyze atmospherically corrected
surface reflectance images for Landsat 5, 7, and 8 satel-
lites from collection 2 (USGS, 2021), processed at the
L1TP level (https://www.usgs.gov/core-science-systems/nli/
landsat/landsat-levels-processing, last access: 10 Novem-
ber 2023). Landsat data are packaged into overlapping
“tiles”, covering approximately 170× 183 km each, using a
standardized reference grid (USGS, 2019). In this study we
used 42 of these tiles, totaling 1 192 654 km2 (Fig. 4). Differ-
ences in Landsat satellite sensors require different processing
and correction techniques. We describe each sensor first and
then outline our harmonization efforts.

The Landsat 8 Operational Land Imager (OLI) uses data
comprised of five visible and near-infrared bands: coastal
aerosol, blue, green, red, and infrared (NIR) and two short-
wave infrared (SWIR1 and 2). All bands were atmospheri-
cally corrected using the LaSRC (Land Surface Reflectance
Code; USGS, 2019). Other auxiliary data includes cloud,
shadow, water, and snow mask layers generated with the C
Function of Mask (CFMask) algorithm version 3.3.1 and
stored in the Pixel Quality Assessment Band (QA_PIXEL;
Foga et al., 2017; USGS, 2022), as well as a saturation mask
band in the Radiometric Saturation Quality Assessment Band
(QA_RADSAT).

Landsat 5 (TM) and 7 Enhanced Thematic Mapper Plus
(ETM+) data also contain different types of observation
bands according to their position in the electromagnetic spec-
trum. In the visible, near-infrared, and SWIR bands, blue,
green, red, infrared (NIR), and SWIR1 and SWIR2 bands
are processed to convert raw values to orthorectified sur-
face reflectance values. All bands have a resolution of 30 m
per pixel. All bands were atmospherically corrected using
LEDAPS (Schmidt et al., 2013). Other auxiliary data include
cloud, shadow, water, and snow mask layers generated with
the CFMask algorithm and stored in the QA_PIXEL band, as
well as a saturation mask band in the QA_RADSAT band.

Landsat 7 has the potential to help fill the gaps between
Landsat 5 and 8, being available from the year 1999 to date.
However, the failure of the Scan Line Corrector (SLC) of
Landsat 7 in 2003 somewhat limits its utility (Markham et
al., 2004). This failure resulted in areas that are not imaged
(∼ 22 % of each tile); otherwise, data are valid for work and
analysis. These data show similar distribution of cloud cover
and revisiting times as Landsat 8 collection. Hereafter, we
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Figure 4. Spatial coverage of Landsat tiles used in this study spanning from 2000–2022. Numbers within each tile correspond to the PATH
and ROW used in the storage protocol for Landsat data.

refer to data pixels as any pixel where no masking occurred,
and valid and usable data were available.

2.2.3 Landsat collection harmonization

We used reduced major axis regression to harmonize the sur-
face reflectance values from Landsat 5 and 7 to match the
spectral information of Landsat 8 following Roy et al. (2016)
on each Landsat data tile. These transformations are per-
formed to improve temporal continuity between Landsat sen-
sors (TM, ETM+, and OLI). After harmonization, the col-
lections were merged and annual composites from 15 De-
cember to 1 March were generated using the median value
of available data pixels. We used the median value as the
mean often gets biased with cloud contaminated pixels that
were not included in the Level-1 QA_PIXEL band used for
cloud masking. In this study, the year of the annual compos-
ites corresponds to the calendar year where the composite
starts (i.e., 15 December). We selected this time interval as
it was when imagery was mostly available, thus minimizing
temporal imbalances among annual estimations. However, a
large proportion of pixels were masked as a result of heavy
cloud cover, with more than 5 % of masked pixels in 4 out
of 21 different years. The year 2006 was a particularly prob-
lematic year, where the cloud component resulted in 10 %
of pixels being masked (Fig. 5). The launch of Landsat 8 in
2013 not only implied an improvement in the sensor char-
acteristics, but also increased data collection capacity, thus

reducing the likelihood of acquiring cloud-covered imagery
as is evident in our study area (Fig. 5).

2.3 Development of training/testing datasets by
integration of in situ and HR data

2.3.1 VPI – reference dataset by visual
photo-interpretation of HR imagery

We applied this classification scheme using VPI methods
to develop training data for the classification algorithms for
both LCC and VFC. We started first at the Borana Zone in
southern Ethiopia, in the northern portion of our area of in-
terest (AOI) where a rich source of georeferenced, ground-
based photography (N = 1419 photos) was available for both
a dry season (28 June–26 August 2013) and a wet season (6–
31 May 2014; Liao et al., 2018). In this VPI work, we lever-
aged this photography with HR satellite imagery of the same
locations and approximate time frames to capitalize on the
differing contextual strengths of each data source. The pho-
tography provided a low-angle oblique view of vegetation
functional groups and canopy layers for better class identi-
fication. The HR imagery, viewed via Google Earth (GE) or
via United States National Geospatial-intelligence Agency’s
(NGA) Global Enhanced GEOINT Delivery (G-EGD), pro-
vided a broader, nadir-oriented view of differing vegetation
stands in context with one another, allowing more confident
class separation.

Specifically, a team of four VPI analysts was trained to
identify eight land cover classes following those employed
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Figure 5. Cloud-covered pixels present in the short, dry (SD) season composites of Landsat imagery used in this study.

by Liao and Clark (2018). We made additional refinements
to these classes as detailed in Table 1. A detailed protocol
was developed to ensure effective quality control. Training
materials included reference flash card sets (see Appendix B)
created for each of our land cover classes depicting a ground-
based oblique view of a stand of representative vegetation
in addition to a nadir HR satellite view of that same stand
in context with other surrounding vegetation in the locale.
Canopy cover flash card sets were also created for 2, 4, and
8 m shrub and tree crown diameters to aid in visually esti-
mating cover percentages relative to the thresholds separat-
ing each land cover class. The VPI classification was cali-
brated using the reference card sets and a standardized set of
VPI points and associated photographs and imagery. Upon
implementation, periodic spot checks of each analyst’s VPI
classifications were conducted to affirm consistency and ac-
curacy.

VPI classification took place as follows. The VPI point set
from the georeferenced photograph locations was randomly
subset into equal partitions, and each partition was assigned
to a VPI analyst. The software package Nikon ViewNXi™
was used to view the photographs and mapped camera loca-
tion and oblique view direction on a satellite imagery back-
ground provided by the software. The camera location coor-
dinates were then plotted in GE, and vegetation at the loca-
tion was evaluated using HR imagery that was concurrent or
nearly concurrent with that of the photograph. Where concur-
rent imagery was missing from GE, imagery from the NGA
archive was ordered and viewed via G-EGD, and a VPI-
based classification was made for the camera location. Where
the camera location occurred in a mixed or ecotonal area,
a new point in a nearby, more representative location (i.e.,
more homogenous vegetation structure, cover, and composi-
tion) was selected by the analyst and classified in a land cover
class. Upon completion of the VPI classification, a random
sample of 10 % of the 1419 VPI points was spot-checked
to confirm overall consistency and accuracy across analysts.
Where consistent bias or misclassification was found, addi-
tional training was provided, and the analyst(s) re-visited all
assigned points for the troublesome class or classes and re-
classified these points as necessary.

As the extent of this dataset was limited to the north area
of our AOI, we extended the use of this dataset as refer-
ence to inform recognition of the vegetation functional group
components of each land cover class used here. Vegetation
functional groups generally refer to different types of vege-
tation that are functionally and structurally different. In our
setting, the primary groups are trees, shrubs, and grasses.
Using pan-sharpened HR imagery, we then performed inde-
pendent VPI classifications of VFGs within classes to de-
velop and refine a supervised machine classifier and to sup-
port fractional cover analyses which are described in the next
sections. This additional VPI work followed a procedure to
spatially label the key components within each of the land
cover classes and was focused on a grid of 8× 8 km squares
centered in a regular point pattern where HR imagery was
available (see Fig. 3). These reference compositional com-
ponents (RCCs) included the vegetation functional groups
(trees, shrubs, grass) as well as bare ground, water, cultivated
land, and impervious surfaces. We leveraged the combina-
tion of nadir views from HR satellite imagery and the large
set of available landscape photographs from the northern por-
tions of our AOI to recognize visible characteristics of each
sub-class component and apply these characteristics in VPI
classification of the entire study area.

2.3.2 RCC – reference compositional component
classification of HR imagery

To create the reference dataset for calibration and valida-
tion of LCC and VFC estimations for our entire study area,
we relied on RCC data generated from the classification of
HR imagery. RCCs represent the basis of LCC as our land
cover scheme (see below) follows a compositional combi-
nation of them. In addition, RCCs are an important input
for VFC estimation, which needs to be complemented with
non-photosynthetic vegetation reference points, created with
a different approach (see below).

We calculated the normalized difference vegetation index
(NDVI) from the red and NIR-1 bands of the HR imagery and
then added the NDVI as a new band to the HR dataset. Spec-
tral signals were then extracted and assigned to the points
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Table 1. Land cover classes used for the Landsat land cover mapping (modified from Liao and Clark, 2018).

Land cover class Code Description

Closed-canopy
woodland

CCW Areas vegetated by a stand of trees with an interlaced canopy. Shrubs are usually present and
interspersed within the woodland. Tree canopy cover is > 50 %. The CCW class represents a
state that is usually distributed in relatively humid areas at upland elevations, on ridge crowns, or
within riparian corridors, where favorable edaphic and/or climatic conditions facilitate relatively
dense tree growth.

Dense scrubland DS Areas vegetated by an abundance of shrubs with a low to moderately productive herbaceous
component. Shrub canopy cover is > 50 %. Herbaceous cover generally decreases with increas-
ing shrub cover due to competitive relationships. Trees, if present, are sparsely to moderately
conspicuous with canopy cover typically < 10 %. The DS class represents a state to which the
sparse scrubland (SS) state can transition to via shrub recruitment. The DS state can, itself, tran-
sition to the closed-canopy woodland (CCW) state via tree recruitment under favorable edaphic
and/or climatic conditions.

Bushland BU Areas sparsely to abundantly vegetated almost exclusively by shrubs. This class is largely lim-
ited to arid lowland areas where climatic and edaphic conditions severely limit herbaceous
presence. Woody plant cover ranges 10 %–100 %. Although bushland thickets can and do form,
this class represents a state that is separated from the sparse scrubland (SS) and dense scrubland
(DS) states by its severe, site-based limitation on herbaceous presence.

Open-canopy
woodland

OCW Areas vegetated by an open stand of trees with a sparse to abundant herbaceous or herba-
ceous/shrub component. Trees are always conspicuous, occurring as scattered individuals or
clumps of a few individuals with canopy cover of 10 %–50 %. A woodland aspect is always re-
tained. If shrubs are present, their occurrence ranges from sparse to common, but shrub canopy
cover is < 50 %. The OCW class represents a state which can transition to sparse scrubland (SS)
by tree loss and shrub encroachment or, under favorable climatic and/or edaphic conditions, to
closed-canopy woodland (CCW) by tree recruitment.

Sparse scrubland SS Areas vegetated by scattered shrubs with a sparse to very abundant, productive herbaceous
component. Shrubs are always conspicuous. Shrub canopy cover ranges from 10 %–50 %.
Herbaceous cover generally decreases with increasing shrub cover due to competitive relation-
ships. Trees, if present, are sparsely to moderately conspicuous, with canopy cover of < 10 %.
This vegetation class represents a state that lies between the grassland (GR) and dense scrubland
(DS) states.

Cultivated land CL Areas currently being used for crop cultivation or, in cases of field abandonment, cropping
disturbance is still visually evident (bare soil, tillage boundaries, etc.). Seasonally fallow fields
(bare) are included in this class as well as those with growing crops. Common crops include
Zea sp., Sorghum sp., and Eragrostis tef. CL areas are usually fenced and located in places of
relatively deep and moist soils (e.g., near seasonal river or stream courses).

Grassland GR Areas where the vegetation cover is dominated by grasses and occasionally other herbs. Herba-
ceous canopy cover ranges from 10 % to 100 %. Widely scattered trees and shrubs may be
present, but woody canopy cover is < 10 %. The vegetation state represented by this class can
transition to the open-canopy wood (OCW) state by tree recruitment or to the sparse scrubland
(SS) state by shrub recruitment.

Sparsely vegetated
land

SV Areas poorly covered by vascular herbaceous or woody plants. Plant cover is < 10 %. SV typ-
ically represents areas where vegetation presence is severely limited by soil chemical (e.g.,
hypersalinity) or physical conditions (very shallow depth). Rock outcrops are included in this
class. SV can also occur in areas which have suffered topsoil loss due to heavy disturbance (e.g.,
recursive, heavy grazing and/or trampling) and subsequent wind and/or water erosion.
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Figure 6. Example of a RCC classification result using a
Worldview-3 image.

generated in the HR VPI work with each assigned RCC class,
and a random forest classification was performed to predict
RCCs using the spectral information as covariates. The num-
ber of trees was set to 1000, with two variables tried at each
split. After model fitting, we used a graph showing the out-
of-bag error of each class versus the number of trees in the
classification to explore the effects of sample sizes on the
accuracy of the method and increase it when needed. Classi-
fication of HR imagery focused on classifying RCCs – trees,
shrubs, grasses, bare ground, water, cultivated land, and im-
pervious surfaces (e.g., Fig. 6). After training our classifica-
tion algorithms on 90 % of the generated labels, we then used
the remaining 10 % to compare the (out-of-sample, OOS)
prediction of the classifier against the actual reference labels
using confusion matrices. We set a threshold minimum value
of 85 % overall accuracy for using the resulting classifica-
tions in the following analysis steps. A random sample of
HR classified imagery with accuracies above the threshold
was selected and visually inspected to understand misclassi-
fications and their potential drivers. We increased our RCC-
oriented VPI effort if threshold levels were not met until ac-
curacy met our threshold value. Despite our efforts and due
to cloud cover and other factors such as cropland misclassi-
fications in humid areas, only 44.5 % (n = 143) of the total
RCC classifications were retained using the 85 % accuracy
threshold. Lower-accuracy classifications occurred in areas
of highlands on the west and southeast portions of our study
area, characterized by higher precipitation. After contrasting
classification predictions against pan-sharpened images, we
recognized that most of the misclassifications corresponded
to classes including green vegetation such as grass, crops,
and trees. Other sources of error included areas with cloud
shadows and impervious surfaces.

2.3.3 Composition-based algorithm for HR reference
data creation

After classifying HR strips and selecting those with higher
accuracy, we applied a custom-made algorithm that uses
a squared moving window of the size of a Landsat pixel
(30× 30 m) and calculates the proportion of HR pixels, rep-
resenting the area in the window covered by each of the RCC
classes from the predicted HR classification. Using the pro-
portion of HR pixels for each RCC class allowed us to use
both Worldview datasets, as they have different spatial res-
olution. Then, using the list of defined threshold composi-
tional percentages of RCC classes per land cover class in Ta-
ble 1, we built code to meet the criteria for each land cover
class. We then selected a stratified random sample of 80 000
points to be used as training points for the Landsat classi-
fication, described next. Points retained the date of the HR
strip used to generate them. Due to misclassifications asso-
ciated with scattered cloud cover in some imagery, we fur-
ther applied a buffer of 500 m around areas where more than
100 pixels of cloud or shadows were detected inside the mov-
ing window described above and excluded these from the
RCC proportion calculation and class assignment.

2.4 Land cover classification

2.4.1 Land cover classification model

Our LCC scheme is based on the state-and-transition model
(STM; Bestelmeyer et al., 2017; Steele et al., 2012; Blanco
et al., 2014) developed for this region by Liao and Clark
(2018), with adjustments based on contributions from Pratt
et al. (1966) and Liao et al. (2018) (Fig. 7). Specific changes
included the addition of classes not included in Liao and
Clark (2018) and more precise definitions of the character-
istics of each class and the trajectories between them, given
the extension of our study area. The scheme includes eight
land cover classes, each representing a vegetation state de-
fined by structure, cover, and functional group composition.
The potential transitions among these states or classes are
described in the mapping legend provided in Table 1, which
adapts Table 1 from Liao and Clark (2018). However, tree,
shrub, and herbaceous cover thresholds have been further re-
fined to better define class separations. The bushland class
was also more clearly defined as a state where herbaceous
presence was severely limited by climatic and/or edaphic fac-
tors rather than interspecific competition with shrubs and/or
trees for resources. Transition pathways associated with wild
or prescribed fires have been excluded from Fig. 7 and the
legend (Table 1) to simplify description and presentation
given the complexities associated with fire-tolerant versus
fire-intolerant woody species, wildfire control, and past pro-
hibitions on prescribed fire.
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Figure 7. States and transition pathways among eight land cover classes.

2.4.2 Land cover classification algorithm

The land cover classification consists of two general steps.
First, the HR imagery was classified using the combina-
tion of RCC labels generated from VPI work (described in
Sect. 2.3.2) and random forest classifiers (Belgiu and Drăguţ,
2016), producing RCC classifications. Second, an automatic
algorithm, based on conditionals and the percentage thresh-
olds of RCC defining each LCC (described in Table 1), was
run over the RCC classifications to generate new training la-
bels for the classification of the Landsat collections with a
second random forest classifier. Here, we describe the Land-
sat classifications.

Landsat collections were classified using the ran-
dom points generated from the RCC classifications (see
Sect. 2.3.3). We reserved 1419 in situ points from Liao and
Clark (2018), so we could later use this dataset with HR
ground reference data to independently assess the accuracy
of our results. We first masked all Landsat images using the
SR_CLOUD_QA band generated from the CFMASK algo-
rithm of Landsat Surface Reflectance data. To eliminate wa-
ter bodies and rivers in our AOI, we applied a normalized
difference water index (NDWI) mask, whereby pixels with
values > 0.2 were removed (Gao, 1996). We also calculated
and added enhanced vegetation index (EVI), modified soil
adjusted vegetation index 2 (MSAVI2), and normalized dif-
ference water index (NDWI) bands to the collections (Qi et
al., 1994; Liu and Huete., 1995; McFeeters, 1996). We also
used CGIAR SRTM 90 m Digital Elevation Database ver-
sion 4 to include elevation and derived slope and horizon-
tal curvature (Jarvis et al., 2008; Safanelli et al., 2020). Last,
we included the bare-ground and photosynthetic vegetation
fractions from our fractional cover results (see Fig. 1) as co-

variates, which were found to increase accuracy during our
testing/tuning stage. We used the 80 000 algorithm-generated
training points through the RCC classification protocol ex-
plained in Sect. 2.3 and randomly partitioned them into 90 %
training and 10 % for accuracy assessment. We then ex-
tracted the spectral information from the Landsat compos-
ite corresponding to the year of the date of each HR image
used to generate the training points through VPI work (see
Sect. 2.3.1). With these points, we trained a random forest
algorithm to predict the vegetation classes of the entire col-
lection. Thus, a single multi-year random forest classifier was
used for prediction on the harmonized Landsat collection.
After initial tuning of the classifier, we used 20 trees and a
maximum number of 50 nodes. The resulting classified col-
lection includes images with pixel values associated with our
main land cover classes and masked pixels of cloud cover,
shadows, and water.

2.4.3 Accuracy assessment of land cover classification

We used multiple reference year calibration to generate a
classification model dependent on the surface reflectance
data (Gómez et al., 2016). Based on the standard assump-
tion that surface reflectance data represent the true ground
response of features to sunlight, the classification model is
then used to predict past and future time steps in the re-
mote sensing time series. Often, these data are referred to
as absolute-normalized data (radiometrically and atmospher-
ically corrected and orthorectified; Thenkabail, 2015). Af-
ter generating reference labels through the combination of
HR imagery classification and an area-proportional classifier
to upscale VFGs to land cover classes, we randomly parti-
tioned this reference dataset into training (90 %) and valida-
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tion (10 %). We used the validation partition with the addi-
tion of the 1419 points from Liao and Clark (2018) to create
confusion matrices to assess the accuracy of the predictions.
The percentage of classes in the random validation sample
relative to the total amount of reference data was 9.3 % for
CCW, 14.5 % for DS, 13.6 % for BU, 7.7 % for OCW, 9.6 %
for SS, 1.7 % for CL, 8.8 % for GR, and 16.7 % for SV (see
Table 1 for class names).

2.5 Fractional cover classification

We used bilinear unmixing to estimate fractional cover
(Quintano et al., 2012) of three components of rangeland:
bare ground (BG), photosynthetic vegetation (PV), and non-
photosynthetic vegetation (NPV). We combined HR and
Landsat imagery to identify homogeneous areas where the
spatial footprint of Landsat pixels could capture pure spec-
tral signals for the three components of fractional cover. In
this context, pure refers to pixels with 100 % cover of one
of our three main components (Roberts et al., 1998). Given
the heterogeneity of soil types in our study area, we allocated
special effort on finding as many BG pixels as possible. To
find these, we used the resulting RCC classification of HR
imagery (see Sect. 2.2.2) and performed image segmenta-
tion to identify homogeneous areas covered by bare ground.
Because Landsat pixels are 30 by 30 m and their footprints
could change with each revisit, we built an algorithm to scan
the classifications to find homogeneous areas larger than 50
by 50 m, in order to allocate Landsat pixels with a margin of
10 m in both spatial axes.

We used GEE to manually create a sample of pure pixels,
by mapping different Landsat color composites and creating
graphs of 10-year-long NDVI and MSAVI2 time series and
spectral profiles (i.e., spectral signatures) including all bands
from the Landsat imagery for visually selected locations in
the map. Using these visualizations, we checked that Landsat
pixels corresponding to BG always covered the extent of the
focal area and were not contaminated by vegetation or other
features such as litter or impervious surfaces. To identify PV,
we checked NDVI and MSAVI2 time series and natural color
composites and selected a given acquisition time for a Land-
sat image containing green vegetation. Finally, to identify
NPV, we used the reflectance profiles, NDVI and MSAVI2
time series, and natural color composites to identify senes-
cent vegetation and pixels of where and when crops were
harvested and dead vegetation was left behind.

After a sample of 108 locations for bare ground, 900 loca-
tions for NPV, and 900 locations for PV were established, the
spectral information of the temporally closest Landsat image
was extracted for its use in the endmember estimation. We es-
timated the endmembers from the spectral signatures of the
sampled pure points using an R-based function for model-
ing of endmember compositions based on bilinear unmixing
(Seidel and Hlawitschka, 2015; Weltje, 1997). We used blue,
green, red, NIR, SWIR1, and SWIR2 bands as input spectral

data for each point and established a convexity threshold of
−6 and 10 000 iterations with a standard weighting exponent
of 1, as suggested by Weltje (1997).

We used a pseudo-inverse unmixing algorithm on GEE
with two constraints to calculate fractional covers. The first
constraint forces the fractions to sum to 1; therefore each
fraction represents an actual percentage of each class. The
second constraint forces all fractional values to be non-
negative. The resulting maps include three bands correspond-
ing to each of the three calculated fractions.

2.5.1 Accuracy assessment of fractional cover

We used RCC classifications to assess the performance of our
fractional cover estimations, as the RCC classifications pro-
vide very accurate measures of class fractions at the Land-
sat pixel scale. Using the results from the classifications
performed over HR imagery, we aggregated the classified
classes into vegetation, BG, and other (including impervious
surfaces, water, and cloud classes). Since NPV is difficult to
detect with available HR datasets, this aggregation permits
a separation between vegetation classes (which logically in-
clude PV and NPV) and BG, since BG is the complementary
proportion of vegetation when just the two classes occur (i.e.,
where there is no cloud obstruction, water or impervious sur-
faces, or: 1 − BG = PV + NPV). Second, we selected the
temporally closest Landsat-based fractional cover layer to a
subset of 10 RCC classifications. Third, we generated a layer
of the centroids of pixels for these fractional cover estimates
and randomly selected 5000 centroids. Fourth, we generated
circles of 15 m radius (approximate size of Landsat pixels)
at the locations of the sampled centroids and clipped the ag-
gregated classification. From this sample, we only selected
the circles fully overlapping vegetation and BG pixels. Fifth,
we calculated the proportion of pixels of vegetation and BG
within each circle. Finally, after completion of this process,
we compared the values of these proportions to the Landsat-
derived fractional cover using regression statistics: R2, nor-
malized root mean squared error (nRMSE) in units of percent
cover, and p values.

3 Analysis

3.1 Land cover classification

Overall, the LCC procedure resulted in an overall accuracy of
85.57 %, with a kappa of 0.832, which is above the recom-
mended threshold of 85 % for LCC predictions and remark-
able for such a large area as our study area (Foody, 2002;
see Fig. 8). The resulting confusion matrix from the accu-
racy testing partition of the 8191 randomly selected points
is presented in Table 2. The random forest model using all
bands was more accurate than that using subsets of input
bands. In decreasing order, variable importance derived from
the random forest classifier for every band was elevation,

https://doi.org/10.5194/essd-16-5375-2024 Earth Syst. Sci. Data, 16, 5375–5404, 2024



5386 G. E. Soto et al.: Mapping rangeland health indicators in eastern Africa from 2000 to 2022

Table 2. Confusion matrix of the random forest classifier using multi-year validation samples. Class codes are presented in Table 1.

Class Reference data Sum User’s accuracy (%)

CCW DS BU OCW SS CL GR SV

Predicted LCC CCW 918 6 0 13 4 3 1 0 945 97.1
DS 13 969 15 109 29 6 2 0 1143 84.8
BU 0 26 1064 138 7 5 3 0 1243 85.6
OCW 81 18 138 1080 7 8 4 0 1336 80.8
SS 0 9 110 98 914 14 82 5 1232 74.2
CL 2 3 4 0 4 23 31 0 67 34.3
GR 4 3 1 2 109 26 823 9 977 84.2
SV 0 0 9 7 3 8 3 1218 1248 97.6

Sum 1018 1034 1341 1447 1077 93 949 1232 8191

Producer’s accuracy (%) 90.2 93.7 79.3 74.6 84.9 24.7 86.7 98.9

CCW: closed-canopy woodland. DS: dense scrubland. BU: bushland. OCW: open-canopy woodland. SS: sparse scrubland. CL: cultivated land. GR: grassland. SV:
sparsely vegetated land.

Figure 8. The 30 m resolution predicted land cover classification for 2015. Class codes and descriptions are presented in Table 1. Basemap:
© MapTiler, https://www.maptiler.com/copyright/ (last access: 10 November 2023). Class codes correspond to the following: CCW – closed-
canopy woodland, DS – dense scrubland, BU – bushland, OCW – open-canopy woodland, SS – sparse scrubland, CL – cultivated land, GR
– grassland, SV – sparsely vegetated land.

green, EVI, red, SWIR2, blue, slope, photosynthetic vegeta-
tion, SWIR1, MSAVI2, horizontal curvature, NIR, and bare
ground (Fig. 9). The proportion of importance on the eleva-
tion covariate is almost double the next most important vari-
able, the green band. Figure 10 shows the proportion of ref-
erence data, including training and validation sets, showing
the apparent elevation segregation of the samples.

The annual time series of the total proportion of each land
cover class in our study area shows variations in the pro-

portion of SV, SS, and OCW classes around the same years
within the studied time frame (Fig. 11). To understand the
source of such variation, Fig. 12 presents the proportion of
inter-annual transitions of each pixel from class to class for
the study period. Potentially valid transitions are defined in
our state-and-transition model, presented in Fig. 7. Using this
model, we can use the potentially valid inter-annual transi-
tions and compare them with all inter-annual transitions in
each pair of subsequent years (only using unmasked pix-
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Figure 9. Variable importance derived from the best random forest classifier (see description of variables in Sect. 2.4.2).

Figure 10. Proportion of reference data (81 419 total pixels) for
each land cover class and 400 m elevation interval in our study area.
Class codes correspond to the following: CCW – closed-canopy
woodland, DS – dense scrubland, BU – bushland, OCW – open-
canopy woodland, SS – sparse scrubland, CL – cultivated land, GR
– grassland, SV – sparsely vegetated land.

els with class values in both years). Our expected, poten-
tially valid, inter-annual state transitions between land cover
classes (Fig. 7) were above 62.30 % in all yearly transi-
tions (Fig. 12), with a mean of 75.20 % and a maximum of
83.20 %. The number of unmasked paired pixels as a propor-
tion of the total Landsat-based pixels used for the calculation
of land cover had a minimum of 86.60 %, with a mean of
95.30 %. Three drops in the number of valid transitions are
visible in Fig. 12, which correspond to three drought events
followed by rains and a greening effect on the landscape
(Okal et al., 2020). This effect becomes evident while look-
ing at the changing proportions of closed-canopy woodland
(CCW) and sparse vegetation (SV) for 2005–2006, 2010–
2011, and 2017–2019 in Fig. 11.

Filtering out pixels with unlikely transitions as defined in
our state-and-transition model allows us to reconstruct the
history of individual pixels and help understand their change
through time. The alluvial chart is a useful visualization to
track such transitions through time by presenting the fre-
quency distributions of classes in different time periods, ag-
gregating the change of pixels with the same transitions be-

tween classes into individual ribbons. Figure 13 shows the
decadal change of 48 280 randomly selected pixels with po-
tential valid transitions and no missing data in our study area
from 2000–2020. By assigning colors to the last year in the
sequence, it is possible to visually track changes, evidenced
by the width of the lines moving from one class to another
between periods. The largest change of classes in this sample
corresponds to 1.75 % of pixels (n= 845) staying as OCW in
2000 and 2010 but changing to CCW by the year 2020 (see
dark ribbon going from OCW to CCW between 2010 and
2020). This is followed by 1.37 % of BU pixels (n = 661)
turning into SV by the year 2010 and staying in that class
until 2020 (see dark ribbon going from BU to SV between
2000 and 2010). Other classes present changes less than 1 %.

3.2 Vegetation fractional cover estimation

Endmember estimation reached the threshold convexity er-
ror of −6 after 3265 iterations, with total negative values
representing just 0.026 % of the sample, reflecting excel-
lent model fit and a very small proportion of sample points
falling off the multidimensional space between endmembers
(Weltje, 1997). Figure 14 shows the estimated spectral sig-
natures of endmembers, where a large spike in NIR is visi-
ble for PV and high values of reflectance at the SWIR bands
are also discernible for BG. Regression results from the
comparison between bare-ground estimations from HR im-
agery and Landsat-based predictions yielded R2

= 0.795, p

< 2.2×10−16, normalized root mean squared error (nRMSE)
= 0.123, with equation y = 0.959 (SE = 0.010) x+ 5.768
(SE = 0.843), F = 9201.1 on 1, and 2152 DOF, with a p

value of < 2.2× 10−16 (Fig. 15).
Final products consisted of yearly short, dry-season esti-

mations of fractional cover for our entire AOI with a total of
858 780 117 pixels (Fig. 16). Further qualitative assessment
of fractional cover predictions against natural-color Landsat
images and compositions confirmed accurate representations
of the ground conditions. The most readily identifiable com-
ponents BG and PV show regional accordance with very dry
and forested areas, respectively, within our AOI (Fig. 16).

https://doi.org/10.5194/essd-16-5375-2024 Earth Syst. Sci. Data, 16, 5375–5404, 2024



5388 G. E. Soto et al.: Mapping rangeland health indicators in eastern Africa from 2000 to 2022

Figure 11. Annual time series of proportion of pixels of land cover classes for the entire study area (total 30 m pixel count = 858 780 117).
Colored lines correspond to linear trends for each class over the study period.

Figure 12. Proportion of pixels with potentially valid yearly transitions. Dashed and dotted lines show the total number of paired unmasked
land cover classes and the total number of potentially valid transitions as per our state-and-transition model presented in Fig. 7.

Figure 13. Decadal vegetation transition between 2000–2020 of
48 280 random pixels with potentially valid land cover transitions,
as defined in our state-and-transition model for the 3 selected years.
Land cover classes are presented in Table 1. Color codes were as-
signed to land cover classes present in the locations in year 2020 in
order to track changes between decades.

Similar to the LCC time series, fractional cover showed dis-
tinct variations in three different periods (Fig. 17).

4 Data availability

Our 30 m resolution annual land cover classification
and fractional cover data are publicly available at
https://doi.org/10.5281/zenodo.7106166 (Soto et al., 2023)
and Google Earth Engine (see Appendix A).

5 Discussion

The dataset generated in this study represents a substantial
improvement over previously available data to assess range-
land health in the region, such as plain NDVI from Landsat
and MODIS products. These improvements are the result of
a high spatial resolution, a long temporal extent, and use of
land and fractional cover metrics expressly designed to in-
form monitoring and assessment of eastern African range-
land systems (e.g., Hill and Guerschman, 2022; Sexton et al.,
2013; Buchhorn et al., 2020).

Our land cover classification scheme allowed us to reach
acceptable per-class accuracy levels, using 85 % as a refer-
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Figure 14. Estimated spectral endmembers for fractional cover estimation.

Figure 15. Spatial–temporal correlation between HR imagery and
Landsat-based predictions of bare-ground fractional cover (n =
2190) at Landsat scale of 30 m from 2016 to 2020. F = 9201.1
on 1 and 2152 DOF, with a p value of < 2.2× 10−16.

ence value for most of our land cover classes (Mundia and
Aniya, 2005; Rogan et al., 2003; Treitz and Rogan, 2004;
Weng, 2002; Yang and Lo, 2002), considering the limitations
of both the availability of ground reference data and Land-
sat imagery. Our proposed method that used HR imagery to
generate training and validation data for the Landsat-based
classification has proven to be key to reaching these accuracy
levels, enabling us to increase the amplitude of spectral infor-
mation of the different features found across such a large and
heterogeneous area. HR imagery also allowed us to have ho-
mogeneous spatial representation in ground-reference data as
shown in Fig. 2, thus reducing biases from imbalanced sam-
pling (Carlotto, 2009; Elmes et al., 2020). We also included a
minimum threshold value for HR classifications and applied
a ruled-based algorithm to generate training data, therefore
helping to reduce and control our training data error (Elmes
et al., 2020; Padial-Iglesias et al., 2021). Homogenization of
the VPI process also helped standardize training data genera-
tion, accounting for the arising inconsistencies that might im-

pact the Landsat LCC estimations (Elmes et al., 2020; Foody,
2009).

One limitation of our product is its comparatively lower
classification accuracy for cultivated land areas. The close
spectral correspondence between the dominant cultivated
grain crops in the region (e.g., teff, maize and sorghum
in Ethiopia) and wild grasses makes separation of the two
challenging. In addition, other land classes such as sparse
shrub could also be difficult to separate from cultivated land
(Hansen et al., 2005; Sexton et al., 2013), because they are
dominated by either PV or NPV during the short, dry season
where our Landsat compositions were compiled. These two
factors limit the applicability of the proposed approach to ex-
tensive rangeland areas. We encourage users of this dataset to
explore the behavior of the CL class within their study areas
before carrying out further analyses. In addition, cloud cover
in this region implies that other tools such as dynamic time
warping (Müller, 2007) might not improve land cover esti-
mations, as this technique requires the extraction of temporal
features from time series that are not possible to generate
using Landsat imagery in our defined temporal extent. As
with virtually all visible-light satellite-based remote sensing,
cloud cover limits our analysis, reducing both the amount of
per-pixel available imagery and also the proportion of pixels
with available data over our study area. Other factors such as
precipitation resulted in a > 30 % drop in accuracy due to in-
creases in annual accumulated precipitation, as found in our
preliminary classifications.

In addition to class-specific issues, the multi-year classifi-
cation scheme used here has limitations and possible effects
on the classification results on years without reference data,
which can include misrepresentation of the real patterns. This
study does not explore this effect due to the lack of in situ ref-
erence data for the total length of the studied period. How-
ever, other studies in similar ecosystems where reference data
are available can help improve the products presented here
or to find the possible biases they might have. Current re-
search on the use of transfer learning, with the use of pre-
trained models and fine-tuning with limited data, provides
very good opportunities for further improvement of remote
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Figure 16. Landsat-derived 30 m resolution fractional cover estimations for the short, dry season of 2020, with mixtures of PV (photo-
synthetic vegetation), NPV (non-photosynthetic vegetation), and BG (bare ground) for our entire AOI (see legend on figure). Basemap:
© MapTiler, https://www.maptiler.com/copyright/ (last access: 10 November 2023).

Figure 17. Annual time series of average fractional cover values for BG, NPV, and PV for the entire study area (pixel count= 858 780 117).
Straight lines correspond to linear trends for each component over the study period.

sensing products and possible bias exploration (e.g., Li et al.,
2023; Račič et al., 2024; Weikmann et al., 2021).

As shown in Fig. 13, this dataset can not only provide de-
scriptions of all the land cover pixel transitions of a given
study area but also has the potential value of providing a
foundation for assessments of long-term change trajectories
that likely will extend beyond the time scope of the cur-
rent study. Ecological studies on ecosystem and community
dynamics require long-term ecological datasets (Ellis et al.,
2006; Magurran et al., 2010; Ott et al., 2019). Further use of
these products should demonstrate their usefulness as mon-
itoring, prioritization, and inventory tools for planning and
decision-making (Allred et al., 2022). Land cover mapping
will enable the isolation of signals from rangelands and in-
corporate heterogeneity into management frameworks, pro-

viding foundations for assessments of long-term change tra-
jectories that likely will extend beyond the time scope of the
current study in this specific geographical region (Fuhlendorf
et al., 2012).

Vegetation fractional cover estimates showed high accu-
racy. This accuracy is likely aided by the availability of HR
imagery (Brandt et al., 2020) used for generation of ground
reference data for training and validation. Even under our
limitations on ground reference data, bare ground, a key in-
dicator of rangeland health conditions for monitoring and
management (Pellant et al., 2020; Rigge et al., 2019, 2020),
was accurately identified over a relatively large area of more
than 4.6×106 ha. Figure 17 shows the potential value of this
dataset by presenting a summarization of the annual trend of
all three fractional components, which can be reconstructed
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from different spatiotemporal aggregations, down to the pixel
level. Such trajectories will likely help understand the con-
tributing factors for observed and unobserved patterns in the
past two decades (Rigge et al., 2021). While further explo-
ration of the spatial and temporal distribution of these trends
is needed, this overall assessment might reflect a slow degra-
dation of rangeland condition as bare-ground fraction gradu-
ally increases (Fig. 17).

Here, we used intensive algorithms on HR satellite im-
agery to allow training and assessment of the performance
of our proposed methods, as little ground reference informa-
tion exists in this vast and remote region. This approach helps
to maintain enough detail on the land cover classes and al-
lowed the creation of a relevant VFC estimation. Our maps
could help generate new threads of rangeland maps for east-
ern Africa, especially to improve community development,
ecological conservation, and humanitarian programming. As
the lack of ground reference data has been a bottleneck to
empirical rangelands research in this part of the world, our
HR-based estimations can help develop and improve assess-
ments of rangeland health trajectories. The increasing avail-
ability of remote sensing imagery and the application and de-
velopment of new machine learning algorithms will certainly
help develop better management tools. Relatively recent col-
lections such as Sentinel-2 and its harmonization with Land-
sat imagery (Claverie et al., 2018) will need to be tested for
their advantages and disadvantages for their use in long-term
time series in this geographic area.

The framework proposed here of harnessing HR images
to generate training labels in a semi-automatic procedure, in-
cluding manual VPI and RCC to automatically create refer-
ence data based on class proportions, will become highly rel-
evant considering recent technological advancements. Mod-
ern tools such as large language models (LLMs) and foun-
dation models carry a huge promise to improve generaliz-
ability of this approach and classification accuracies in com-
plex landscapes. With the future use of these new tools and
fine-tuning, we expect our models specifically trained in our
study domain to be generalizable to other dryland/rangeland
regions in the whole of sub-Saharan Africa or other conti-
nents (e.g., Australia, parts of central Asia), where ecosys-
tems, land cover compositions, herding intensities, and other
similar features exist.

Overall, this dataset will be useful to monitor the impacts
of different rangeland management practices or test the im-
pact of development programs. The open access to sophisti-
cated cloud computing platforms, such as GEE (Gorelick et
al., 2017), will contribute to practical use and further assess-
ment of this dataset. To accomplish this, have made these two
products available in GEE (see “Data availability”).

Appendix A: Description of access to Google Earth
Engine (GEE) data

Land cover classification data can be accessed using
GEE’s asset IDs with the following structure: projects/ee-
gerardosoto/assets/lcClass< YEAR>. For example, for the
year 2000, use “projects/ee-gerardosoto/assets/lcClass2000”.

Alternatively, use the GEE link as follows:
https://code.earthengine.google.com/?asset=_projects/
ee-gerardosoto/assets/lcClass2000 (last access: 10 Novem-
ber 2023).

Vegetation fractional cover data can be accessed
using GEE’s asset IDs with the following structure:
projects/ee-gerardosoto/assets/fracCov< YEAR> _int16.
For example, for the year 2000, use “projects/ee-
gerardosoto/assets/fracCov2000_int16”.

Alternatively, use the GEE link as follows:
https://code.earthengine.google.com/?asset=projects/
ee-gerardosoto/assets/fracCov2000_int16 (last access:
10 November 2023).
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Appendix B: Reference flash card sets

The following pages include the flash cards used to reference
land cover types and canopy cover.

Figure B1. Flash card for land cover type “closed-canopy woodland”.

Figure B2. Flash card for land cover type “dense scrubland”.

Earth Syst. Sci. Data, 16, 5375–5404, 2024 https://doi.org/10.5194/essd-16-5375-2024



G. E. Soto et al.: Mapping rangeland health indicators in eastern Africa from 2000 to 2022 5393

Figure B3. Flash card for land cover type “bushland”.

Figure B4. Flash card for land cover type “open-canopy woodland”.
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Figure B5. Flash card for land cover type “sparse scrubland”.

Figure B6. Flash card for land cover type “cultivated land”, maize crop.
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Figure B7. Flash card for land cover type “cultivated land”, cropped versus fallow.

Figure B8. Flash card for land cover type “cultivated land”, teff crop.
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Figure B9. Flash card for land cover type “grassland”.

Figure B10. Flash card for land cover type “sparsely vegetated land”.
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Figure B11. Flash card for canopy cover level “2 m diameter in a 30 by 30 m plot”.

Figure B12. Flash card for canopy cover level “4 m diameter in a 30 by 30 m plot”.
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Figure B13. Flash card for canopy cover level “8 m diameter in a 30 by 30 m plot”.

Figure B14. Flash card for canopy cover level “2 m diameter in a 10 by 10 m plot”.
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Figure B15. Flash card for canopy cover level “4 m diameter in a 10 by 10 m plot”.

Figure B16. Flash card for canopy cover level “8 m diameter in a 10 by 10 m plot”.
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