Articles | Volume 16, issue 1
https://doi.org/10.5194/essd-16-525-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-16-525-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A global FAOSTAT reference database of cropland nutrient budgets and nutrient use efficiency (1961–2020): nitrogen, phosphorus and potassium
Cameron I. Ludemann
Plant Production Systems Group, Wageningen University & Research, Wageningen, the Netherlands
Nathan Wanner
Statistics Division, Food and Agriculture Organization, Rome, Italy
Pauline Chivenge
African Plant Nutrition Institute, Benguérir, Morocco
currently at: International Rice Research Institute (IRRI), Sustainable Impact Department, Dar es Salaam, Tanzania
Achim Dobermann
International Fertilizer Association, Paris, France
Rasmus Einarsson
Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala, Sweden
Patricio Grassini
Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, USA
Armelle Gruere
International Fertilizer Association, Paris, France
Kevin Jackson
Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, Maryland, USA
Luis Lassaletta
Department of Agricultural Production, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
CEIGRAM, Universidad Politécnica de Madrid, Madrid, Spain
Federico Maggi
Environmental Engineering, School of Civil Engineering, The University of Sydney, NSW 2006, Australia
Griffiths Obli-Laryea
Statistics Division, Food and Agriculture Organization, Rome, Italy
Martin K. van Ittersum
Plant Production Systems Group, Wageningen University & Research, Wageningen, the Netherlands
Srishti Vishwakarma
Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, Maryland, USA
currently at: Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, Maryland, USA
Xin Zhang
Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, Maryland, USA
Francesco N. Tubiello
CORRESPONDING AUTHOR
Statistics Division, Food and Agriculture Organization, Rome, Italy
Related authors
No articles found.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Carla F. Berghoff, Henry C. Bittig, Laurent Bopp, Patricia Cadule, Katie Campbell, Matthew A. Chamberlain, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Thomas Colligan, Jeanne Decayeux, Laique Djeutchouang, Xinyu Dou, Carolina Duran Rojas, Kazutaka Enyo, Wiley Evans, Amanda Fay, Richard A. Feely, Daniel J. Ford, Adrianna Foster, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Siv K. Lauvset, Nathalie Lefèvre, Zhu Liu, Junjie Liu, Lei Ma, Shamil Maksyutov, Gregg Marland, Nicolas Mayot, Patrick McGuire, Nicolas Metzl, Natalie M. Monacci, Eric J. Morgan, Shin-Ichiro Nakaoka, Craig Neill, Yosuke Niwa, Tobias Nützel, Lea Olivier, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Zhangcai Qin, Laure Resplandy, Alizée Roobaert, Thais M. Rosan, Christian Rödenbeck, Jörg Schwinger, T. Luke Smallman, Stephen Smith, Reinel Sospedra-Alfonso, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Roland Séférian, Shintaro Takao, Hiroaki Tatebe, Hanqin Tian, Bronte Tilbrook, Olivier Torres, Etienne Tourigny, Hiroyuki Tsujino, Francesco Tubiello, Guido van der Werf, Rik Wanninkhof, Xuhui Wang, Dongxu Yang, Xiaojuan Yang, Zhen Yu, Wenping Yuan, Xu Yue, Sönke Zaehle, Ning Zeng, and Jiye Zeng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-519, https://doi.org/10.5194/essd-2024-519, 2024
Preprint under review for ESSD
Short summary
Short summary
The Global Carbon Budget 2024 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2024). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Ana Maria Roxana Petrescu, Glen P. Peters, Richard Engelen, Sander Houweling, Dominik Brunner, Aki Tsuruta, Bradley Matthews, Prabir K. Patra, Dmitry Belikov, Rona L. Thompson, Lena Höglund-Isaksson, Wenxin Zhang, Arjo J. Segers, Giuseppe Etiope, Giancarlo Ciotoli, Philippe Peylin, Frédéric Chevallier, Tuula Aalto, Robbie M. Andrew, David Bastviken, Antoine Berchet, Grégoire Broquet, Giulia Conchedda, Stijn N. C. Dellaert, Hugo Denier van der Gon, Johannes Gütschow, Jean-Matthieu Haussaire, Ronny Lauerwald, Tiina Markkanen, Jacob C. A. van Peet, Isabelle Pison, Pierre Regnier, Espen Solum, Marko Scholze, Maria Tenkanen, Francesco N. Tubiello, Guido R. van der Werf, and John R. Worden
Earth Syst. Sci. Data, 16, 4325–4350, https://doi.org/10.5194/essd-16-4325-2024, https://doi.org/10.5194/essd-16-4325-2024, 2024
Short summary
Short summary
This study provides an overview of data availability from observation- and inventory-based CH4 emission estimates. It systematically compares them and provides recommendations for robust comparisons, aiming to steadily engage more parties in using observational methods to complement their UNFCCC submissions. Anticipating improvements in atmospheric modelling and observations, future developments need to resolve knowledge gaps in both approaches and to better quantify remaining uncertainty.
Marliana Tri Widyastuti, Budiman Minasny, José Padarian, Federico Maggi, Matt Aitkenhead, Amélie Beucher, John Connolly, Dian Fiantis, Darren Kidd, Yuxin Ma, Fraser Macfarlane, Ciaran Robb, Rudiyanto, Budi Indra Setiawan, and Muh Taufik
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-333, https://doi.org/10.5194/essd-2024-333, 2024
Preprint under review for ESSD
Short summary
Short summary
PEATGRIDS, the first dataset containing maps of global peat thickness and carbon stock at 1 km resolution. The dataset has been publicly available at Zenodo to support further analyses and modelling of peatlands across the globe. This work employed the random forest machine learning model to provide spatially explicit peat carbon stock at pixel basis.
Hanqin Tian, Naiqing Pan, Rona L. Thompson, Josep G. Canadell, Parvadha Suntharalingam, Pierre Regnier, Eric A. Davidson, Michael Prather, Philippe Ciais, Marilena Muntean, Shufen Pan, Wilfried Winiwarter, Sönke Zaehle, Feng Zhou, Robert B. Jackson, Hermann W. Bange, Sarah Berthet, Zihao Bian, Daniele Bianchi, Alexander F. Bouwman, Erik T. Buitenhuis, Geoffrey Dutton, Minpeng Hu, Akihiko Ito, Atul K. Jain, Aurich Jeltsch-Thömmes, Fortunat Joos, Sian Kou-Giesbrecht, Paul B. Krummel, Xin Lan, Angela Landolfi, Ronny Lauerwald, Ya Li, Chaoqun Lu, Taylor Maavara, Manfredi Manizza, Dylan B. Millet, Jens Mühle, Prabir K. Patra, Glen P. Peters, Xiaoyu Qin, Peter Raymond, Laure Resplandy, Judith A. Rosentreter, Hao Shi, Qing Sun, Daniele Tonina, Francesco N. Tubiello, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Kelley C. Wells, Luke M. Western, Chris Wilson, Jia Yang, Yuanzhi Yao, Yongfa You, and Qing Zhu
Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, https://doi.org/10.5194/essd-16-2543-2024, 2024
Short summary
Short summary
Atmospheric concentrations of nitrous oxide (N2O), a greenhouse gas 273 times more potent than carbon dioxide, have increased by 25 % since the preindustrial period, with the highest observed growth rate in 2020 and 2021. This rapid growth rate has primarily been due to a 40 % increase in anthropogenic emissions since 1980. Observed atmospheric N2O concentrations in recent years have exceeded the worst-case climate scenario, underscoring the importance of reducing anthropogenic N2O emissions.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter Raymond, Pierre Regnier, Joseph G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihito Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joel Thanwerdas, Hanquin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido van der Werf, Doug E. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-115, https://doi.org/10.5194/essd-2024-115, 2024
Preprint under review for ESSD
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesize and update the budget of the sources and sinks of CH4. This edition benefits from important progresses in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Wolfgang Alexander Obermeier, Clemens Schwingshackl, Ana Bastos, Giulia Conchedda, Thomas Gasser, Giacomo Grassi, Richard A. Houghton, Francesco Nicola Tubiello, Stephen Sitch, and Julia Pongratz
Earth Syst. Sci. Data, 16, 605–645, https://doi.org/10.5194/essd-16-605-2024, https://doi.org/10.5194/essd-16-605-2024, 2024
Short summary
Short summary
We provide and compare country-level estimates of land-use CO2 fluxes from a variety and large number of models, bottom-up estimates, and country reports for the period 1950–2021. Although net fluxes are small in many countries, they are often composed of large compensating emissions and removals. In many countries, the estimates agree well once their individual characteristics are accounted for, but in other countries, including some of the largest emitters, substantial uncertainties exist.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Francesco N. Tubiello, Giulia Conchedda, Leon Casse, Pengyu Hao, Giorgia De Santis, and Zhongxin Chen
Earth Syst. Sci. Data, 15, 4997–5015, https://doi.org/10.5194/essd-15-4997-2023, https://doi.org/10.5194/essd-15-4997-2023, 2023
Short summary
Short summary
We describe a new dataset of cropland area circa the year 2020, with global coverage and country detail. Data are generated from geospatial information on the agreement characteristics of six high-resolution cropland maps. By helping to highlight features of cropland characteristics and underlying causes for agreement across land cover products, the dataset can be used as a tool to help guide future mapping efforts towards improved agricultural monitoring.
Gudeta Sileshi, Edmundo Barrios, Johannes Lehmann, and Francesco N. Tubiello
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-288, https://doi.org/10.5194/essd-2023-288, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
Agricultural, fisheries, forestry and agro-processing activities produce large quantities of residues, by-products and waste materials every year. Here, we present a global organic matter database (OMD, the first of its kind, consolidating estimates of residues and by-products potentially available for use in a circular bio-economy. It also provides definitions, typologies and methods to aid consistent classification, estimation and reporting of the various residues and by-products.
Matthew J. McGrath, Ana Maria Roxana Petrescu, Philippe Peylin, Robbie M. Andrew, Bradley Matthews, Frank Dentener, Juraj Balkovič, Vladislav Bastrikov, Meike Becker, Gregoire Broquet, Philippe Ciais, Audrey Fortems-Cheiney, Raphael Ganzenmüller, Giacomo Grassi, Ian Harris, Matthew Jones, Jürgen Knauer, Matthias Kuhnert, Guillaume Monteil, Saqr Munassar, Paul I. Palmer, Glen P. Peters, Chunjing Qiu, Mart-Jan Schelhaas, Oksana Tarasova, Matteo Vizzarri, Karina Winkler, Gianpaolo Balsamo, Antoine Berchet, Peter Briggs, Patrick Brockmann, Frédéric Chevallier, Giulia Conchedda, Monica Crippa, Stijn N. C. Dellaert, Hugo A. C. Denier van der Gon, Sara Filipek, Pierre Friedlingstein, Richard Fuchs, Michael Gauss, Christoph Gerbig, Diego Guizzardi, Dirk Günther, Richard A. Houghton, Greet Janssens-Maenhout, Ronny Lauerwald, Bas Lerink, Ingrid T. Luijkx, Géraud Moulas, Marilena Muntean, Gert-Jan Nabuurs, Aurélie Paquirissamy, Lucia Perugini, Wouter Peters, Roberto Pilli, Julia Pongratz, Pierre Regnier, Marko Scholze, Yusuf Serengil, Pete Smith, Efisio Solazzo, Rona L. Thompson, Francesco N. Tubiello, Timo Vesala, and Sophia Walther
Earth Syst. Sci. Data, 15, 4295–4370, https://doi.org/10.5194/essd-15-4295-2023, https://doi.org/10.5194/essd-15-4295-2023, 2023
Short summary
Short summary
Accurate estimation of fluxes of carbon dioxide from the land surface is essential for understanding future impacts of greenhouse gas emissions on the climate system. A wide variety of methods currently exist to estimate these sources and sinks. We are continuing work to develop annual comparisons of these diverse methods in order to clarify what they all actually calculate and to resolve apparent disagreement, in addition to highlighting opportunities for increased understanding.
Alessandro Flammini, Hanif Adzmir, Kevin Karl, and Francesco Nicola Tubiello
Earth Syst. Sci. Data, 15, 2179–2187, https://doi.org/10.5194/essd-15-2179-2023, https://doi.org/10.5194/essd-15-2179-2023, 2023
Short summary
Short summary
This paper estimates the share of greenhouse gas (GHG) emissions attributable to non-renewable wood fuel harvesting for use in residential food-related activities. It adds to a growing research base estimating GHG emissions from across the entire agri-food value chain and contributes to the development of the FAOSTAT climate change domain.
Fiona H. M. Tang, Thu Ha Nguyen, Giulia Conchedda, Leon Casse, Francesco N. Tubiello, and Federico Maggi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-130, https://doi.org/10.5194/essd-2023-130, 2023
Preprint withdrawn
Short summary
Short summary
CROPGRIDS is a comprehensive global, geo-referenced dataset that provides information on harvested and crop areas of 173 crops circa the year 2020. This new product provides more recent crop type information for 80 crops, covering about 1.2 billion hectares of crop area globally. CROPGRIDS will facilitate global-scale assessments in various disciplines, including agriculture and resource management, food systems, environmental impact and sustainability analyses, and agroeconomics.
Ana Maria Roxana Petrescu, Chunjing Qiu, Matthew J. McGrath, Philippe Peylin, Glen P. Peters, Philippe Ciais, Rona L. Thompson, Aki Tsuruta, Dominik Brunner, Matthias Kuhnert, Bradley Matthews, Paul I. Palmer, Oksana Tarasova, Pierre Regnier, Ronny Lauerwald, David Bastviken, Lena Höglund-Isaksson, Wilfried Winiwarter, Giuseppe Etiope, Tuula Aalto, Gianpaolo Balsamo, Vladislav Bastrikov, Antoine Berchet, Patrick Brockmann, Giancarlo Ciotoli, Giulia Conchedda, Monica Crippa, Frank Dentener, Christine D. Groot Zwaaftink, Diego Guizzardi, Dirk Günther, Jean-Matthieu Haussaire, Sander Houweling, Greet Janssens-Maenhout, Massaer Kouyate, Adrian Leip, Antti Leppänen, Emanuele Lugato, Manon Maisonnier, Alistair J. Manning, Tiina Markkanen, Joe McNorton, Marilena Muntean, Gabriel D. Oreggioni, Prabir K. Patra, Lucia Perugini, Isabelle Pison, Maarit T. Raivonen, Marielle Saunois, Arjo J. Segers, Pete Smith, Efisio Solazzo, Hanqin Tian, Francesco N. Tubiello, Timo Vesala, Guido R. van der Werf, Chris Wilson, and Sönke Zaehle
Earth Syst. Sci. Data, 15, 1197–1268, https://doi.org/10.5194/essd-15-1197-2023, https://doi.org/10.5194/essd-15-1197-2023, 2023
Short summary
Short summary
This study updates the state-of-the-art scientific overview of CH4 and N2O emissions in the EU27 and UK in Petrescu et al. (2021a). Yearly updates are needed to improve the different respective approaches and to inform on the development of formal verification systems. It integrates the most recent emission inventories, process-based model and regional/global inversions, comparing them with UNFCCC national GHG inventories, in support to policy to facilitate real-time verification procedures.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Giacomo Grassi, Giulia Conchedda, Sandro Federici, Raul Abad Viñas, Anu Korosuo, Joana Melo, Simone Rossi, Marieke Sandker, Zoltan Somogyi, Matteo Vizzarri, and Francesco N. Tubiello
Earth Syst. Sci. Data, 14, 4643–4666, https://doi.org/10.5194/essd-14-4643-2022, https://doi.org/10.5194/essd-14-4643-2022, 2022
Short summary
Short summary
Despite increasing attention on the role of land use CO2 fluxes in climate change mitigation, there are large differences in available databases. Here we present the most updated and complete compilation of land use CO2 data based on country submissions to United Nations Framework Convention on Climate Change and explain differences with other datasets. Our dataset brings clarity of land use CO2 fluxes and helps track country progress under the Paris Agreement.
Hanqin Tian, Zihao Bian, Hao Shi, Xiaoyu Qin, Naiqing Pan, Chaoqun Lu, Shufen Pan, Francesco N. Tubiello, Jinfeng Chang, Giulia Conchedda, Junguo Liu, Nathaniel Mueller, Kazuya Nishina, Rongting Xu, Jia Yang, Liangzhi You, and Bowen Zhang
Earth Syst. Sci. Data, 14, 4551–4568, https://doi.org/10.5194/essd-14-4551-2022, https://doi.org/10.5194/essd-14-4551-2022, 2022
Short summary
Short summary
Nitrogen is one of the critical nutrients for growth. Evaluating the change in nitrogen inputs due to human activity is necessary for nutrient management and pollution control. In this study, we generated a historical dataset of nitrogen input to land at the global scale. This dataset consists of nitrogen fertilizer, manure, and atmospheric deposition inputs to cropland, pasture, and rangeland at high resolution from 1860 to 2019.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Francesco N. Tubiello, Kevin Karl, Alessandro Flammini, Johannes Gütschow, Griffiths Obli-Laryea, Giulia Conchedda, Xueyao Pan, Sally Yue Qi, Hörn Halldórudóttir Heiðarsdóttir, Nathan Wanner, Roberta Quadrelli, Leonardo Rocha Souza, Philippe Benoit, Matthew Hayek, David Sandalow, Erik Mencos Contreras, Cynthia Rosenzweig, Jose Rosero Moncayo, Piero Conforti, and Maximo Torero
Earth Syst. Sci. Data, 14, 1795–1809, https://doi.org/10.5194/essd-14-1795-2022, https://doi.org/10.5194/essd-14-1795-2022, 2022
Short summary
Short summary
The paper presents results from the new FAOSTAT database on food system emissions, covering all countries over the time series 1990–2019. Results indicate and further clarify – updated to 2019 – the relevance of emissions from crop and livestock production processes within the farm gate; from conversion of natural ecosystems to agriculture, such as deforestation and peat degradation; and from use of fossil fuels for energy and other industrial processes along food supply chains.
Zhu Deng, Philippe Ciais, Zitely A. Tzompa-Sosa, Marielle Saunois, Chunjing Qiu, Chang Tan, Taochun Sun, Piyu Ke, Yanan Cui, Katsumasa Tanaka, Xin Lin, Rona L. Thompson, Hanqin Tian, Yuanzhi Yao, Yuanyuan Huang, Ronny Lauerwald, Atul K. Jain, Xiaoming Xu, Ana Bastos, Stephen Sitch, Paul I. Palmer, Thomas Lauvaux, Alexandre d'Aspremont, Clément Giron, Antoine Benoit, Benjamin Poulter, Jinfeng Chang, Ana Maria Roxana Petrescu, Steven J. Davis, Zhu Liu, Giacomo Grassi, Clément Albergel, Francesco N. Tubiello, Lucia Perugini, Wouter Peters, and Frédéric Chevallier
Earth Syst. Sci. Data, 14, 1639–1675, https://doi.org/10.5194/essd-14-1639-2022, https://doi.org/10.5194/essd-14-1639-2022, 2022
Short summary
Short summary
In support of the global stocktake of the Paris Agreement on climate change, we proposed a method for reconciling the results of global atmospheric inversions with data from UNFCCC national greenhouse gas inventories (NGHGIs). Here, based on a new global harmonized database that we compiled from the UNFCCC NGHGIs and a comprehensive framework presented in this study to process the results of inversions, we compared their results of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O).
Alessandro Flammini, Xueyao Pan, Francesco Nicola Tubiello, Sally Yue Qiu, Leonardo Rocha Souza, Roberta Quadrelli, Stefania Bracco, Philippe Benoit, and Ralph Sims
Earth Syst. Sci. Data, 14, 811–821, https://doi.org/10.5194/essd-14-811-2022, https://doi.org/10.5194/essd-14-811-2022, 2022
Short summary
Short summary
Fossil-fuel-based energy used in agriculture, for crop and livestock production as well as in fisheries, generates significant amounts of greenhouse gases (GHG), which are typically not accounted for within the agriculture sector of national GHG inventories. Using activity data from UNSD and IEA, we construct a new database of energy use in agriculture and related emissions, covering the period 1970–2019 by country and by fossil fuel type, including emissions from electricity used on the farm.
Ana Maria Roxana Petrescu, Chunjing Qiu, Philippe Ciais, Rona L. Thompson, Philippe Peylin, Matthew J. McGrath, Efisio Solazzo, Greet Janssens-Maenhout, Francesco N. Tubiello, Peter Bergamaschi, Dominik Brunner, Glen P. Peters, Lena Höglund-Isaksson, Pierre Regnier, Ronny Lauerwald, David Bastviken, Aki Tsuruta, Wilfried Winiwarter, Prabir K. Patra, Matthias Kuhnert, Gabriel D. Oreggioni, Monica Crippa, Marielle Saunois, Lucia Perugini, Tiina Markkanen, Tuula Aalto, Christine D. Groot Zwaaftink, Hanqin Tian, Yuanzhi Yao, Chris Wilson, Giulia Conchedda, Dirk Günther, Adrian Leip, Pete Smith, Jean-Matthieu Haussaire, Antti Leppänen, Alistair J. Manning, Joe McNorton, Patrick Brockmann, and Albertus Johannes Dolman
Earth Syst. Sci. Data, 13, 2307–2362, https://doi.org/10.5194/essd-13-2307-2021, https://doi.org/10.5194/essd-13-2307-2021, 2021
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up and top-down CH4 and N2O emissions in the EU27 and UK. The data integrate recent emission inventories with process-based model data and regional/global inversions for the European domain, aiming at reconciling them with official country-level UNFCCC national GHG inventories in support to policy and to facilitate real-time verification procedures.
Ana Maria Roxana Petrescu, Matthew J. McGrath, Robbie M. Andrew, Philippe Peylin, Glen P. Peters, Philippe Ciais, Gregoire Broquet, Francesco N. Tubiello, Christoph Gerbig, Julia Pongratz, Greet Janssens-Maenhout, Giacomo Grassi, Gert-Jan Nabuurs, Pierre Regnier, Ronny Lauerwald, Matthias Kuhnert, Juraj Balkovič, Mart-Jan Schelhaas, Hugo A. C. Denier van der
Gon, Efisio Solazzo, Chunjing Qiu, Roberto Pilli, Igor B. Konovalov, Richard A. Houghton, Dirk Günther, Lucia Perugini, Monica Crippa, Raphael Ganzenmüller, Ingrid T. Luijkx, Pete Smith, Saqr Munassar, Rona L. Thompson, Giulia Conchedda, Guillaume Monteil, Marko Scholze, Ute Karstens, Patrick Brockmann, and Albertus Johannes Dolman
Earth Syst. Sci. Data, 13, 2363–2406, https://doi.org/10.5194/essd-13-2363-2021, https://doi.org/10.5194/essd-13-2363-2021, 2021
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up and top-down CO2 fossil emissions and CO2 land fluxes in the EU27+UK. The data integrate recent emission inventories with ecosystem data, land carbon models and regional/global inversions for the European domain, aiming at reconciling CO2 estimates with official country-level UNFCCC national GHG inventories in support to policy and facilitating real-time verification procedures.
Francesco N. Tubiello, Giulia Conchedda, Nathan Wanner, Sandro Federici, Simone Rossi, and Giacomo Grassi
Earth Syst. Sci. Data, 13, 1681–1691, https://doi.org/10.5194/essd-13-1681-2021, https://doi.org/10.5194/essd-13-1681-2021, 2021
Short summary
Short summary
This paper presents the first estimates of forest carbon fluxes (1990–2020) based on the new Global Forest Resources Assessment (FRA) 2020. We document for the first time in the literature forest carbon fluxes for the last decade 2011–2020. Results show that carbon losses from net forest conversion (3.1 billion tonnes of CO2) were counterbalanced by carbon gains on forest land (−3.3 billion tonnes of CO2), resulting in the world's forests acting overall as a small carbon sink in the past decade.
Giulia Conchedda and Francesco N. Tubiello
Earth Syst. Sci. Data, 12, 3113–3137, https://doi.org/10.5194/essd-12-3113-2020, https://doi.org/10.5194/essd-12-3113-2020, 2020
Short summary
Short summary
This paper describes the FAO methodology used to globally assess areas of drained organic soils and peatlands due to agriculture over the period 1990–2019. We overlay geospatial information of soil type, land cover, agro-climatic zones, livestock distribution and IPCC coefficients, then aggregate it at national level for over 200 countries and territories. Results are compared to inventory data reported to UNFCCC, showing good agreement between the FAO estimates and country data.
George C. Hurtt, Louise Chini, Ritvik Sahajpal, Steve Frolking, Benjamin L. Bodirsky, Katherine Calvin, Jonathan C. Doelman, Justin Fisk, Shinichiro Fujimori, Kees Klein Goldewijk, Tomoko Hasegawa, Peter Havlik, Andreas Heinimann, Florian Humpenöder, Johan Jungclaus, Jed O. Kaplan, Jennifer Kennedy, Tamás Krisztin, David Lawrence, Peter Lawrence, Lei Ma, Ole Mertz, Julia Pongratz, Alexander Popp, Benjamin Poulter, Keywan Riahi, Elena Shevliakova, Elke Stehfest, Peter Thornton, Francesco N. Tubiello, Detlef P. van Vuuren, and Xin Zhang
Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, https://doi.org/10.5194/gmd-13-5425-2020, 2020
Short summary
Short summary
To estimate the effects of human land use activities on the carbon–climate system, a new set of global gridded land use forcing datasets was developed to link historical land use data to eight future scenarios in a standard format required by climate models. This new generation of land use harmonization (LUH2) includes updated inputs, higher spatial resolution, more detailed land use transitions, and the addition of important agricultural management layers; it will be used for CMIP6 simulations.
Marielle Saunois, Ann R. Stavert, Ben Poulter, Philippe Bousquet, Josep G. Canadell, Robert B. Jackson, Peter A. Raymond, Edward J. Dlugokencky, Sander Houweling, Prabir K. Patra, Philippe Ciais, Vivek K. Arora, David Bastviken, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Kimberly M. Carlson, Mark Carrol, Simona Castaldi, Naveen Chandra, Cyril Crevoisier, Patrick M. Crill, Kristofer Covey, Charles L. Curry, Giuseppe Etiope, Christian Frankenberg, Nicola Gedney, Michaela I. Hegglin, Lena Höglund-Isaksson, Gustaf Hugelius, Misa Ishizawa, Akihiko Ito, Greet Janssens-Maenhout, Katherine M. Jensen, Fortunat Joos, Thomas Kleinen, Paul B. Krummel, Ray L. Langenfelds, Goulven G. Laruelle, Licheng Liu, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Joe McNorton, Paul A. Miller, Joe R. Melton, Isamu Morino, Jurek Müller, Fabiola Murguia-Flores, Vaishali Naik, Yosuke Niwa, Sergio Noce, Simon O'Doherty, Robert J. Parker, Changhui Peng, Shushi Peng, Glen P. Peters, Catherine Prigent, Ronald Prinn, Michel Ramonet, Pierre Regnier, William J. Riley, Judith A. Rosentreter, Arjo Segers, Isobel J. Simpson, Hao Shi, Steven J. Smith, L. Paul Steele, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Francesco N. Tubiello, Aki Tsuruta, Nicolas Viovy, Apostolos Voulgarakis, Thomas S. Weber, Michiel van Weele, Guido R. van der Werf, Ray F. Weiss, Doug Worthy, Debra Wunch, Yi Yin, Yukio Yoshida, Wenxin Zhang, Zhen Zhang, Yuanhong Zhao, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 12, 1561–1623, https://doi.org/10.5194/essd-12-1561-2020, https://doi.org/10.5194/essd-12-1561-2020, 2020
Short summary
Short summary
Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. We have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. This is the second version of the review dedicated to the decadal methane budget, integrating results of top-down and bottom-up estimates.
Ana Maria Roxana Petrescu, Glen P. Peters, Greet Janssens-Maenhout, Philippe Ciais, Francesco N. Tubiello, Giacomo Grassi, Gert-Jan Nabuurs, Adrian Leip, Gema Carmona-Garcia, Wilfried Winiwarter, Lena Höglund-Isaksson, Dirk Günther, Efisio Solazzo, Anja Kiesow, Ana Bastos, Julia Pongratz, Julia E. M. S. Nabel, Giulia Conchedda, Roberto Pilli, Robbie M. Andrew, Mart-Jan Schelhaas, and Albertus J. Dolman
Earth Syst. Sci. Data, 12, 961–1001, https://doi.org/10.5194/essd-12-961-2020, https://doi.org/10.5194/essd-12-961-2020, 2020
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up GHG anthropogenic emissions from agriculture, forestry and other land use (AFOLU) in the EU28. The data integrate recent AFOLU emission inventories with ecosystem data and land carbon models, aiming at reconciling GHG budgets with official country-level UNFCCC inventories. We provide comprehensive emission assessments in support to policy, facilitating real-time verification procedures.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Judith Hauck, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Dorothee C. E. Bakker, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Peter Anthoni, Leticia Barbero, Ana Bastos, Vladislav Bastrikov, Meike Becker, Laurent Bopp, Erik Buitenhuis, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Kim I. Currie, Richard A. Feely, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Daniel S. Goll, Nicolas Gruber, Sören Gutekunst, Ian Harris, Vanessa Haverd, Richard A. Houghton, George Hurtt, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Jed O. Kaplan, Etsushi Kato, Kees Klein Goldewijk, Jan Ivar Korsbakken, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Danica Lombardozzi, Gregg Marland, Patrick C. McGuire, Joe R. Melton, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Craig Neill, Abdirahman M. Omar, Tsuneo Ono, Anna Peregon, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Roland Séférian, Jörg Schwinger, Naomi Smith, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Guido R. van der Werf, Andrew J. Wiltshire, and Sönke Zaehle
Earth Syst. Sci. Data, 11, 1783–1838, https://doi.org/10.5194/essd-11-1783-2019, https://doi.org/10.5194/essd-11-1783-2019, 2019
Short summary
Short summary
The Global Carbon Budget 2019 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Rongting Xu, Hanqin Tian, Shufen Pan, Shree R. S. Dangal, Jian Chen, Jinfeng Chang, Yonglong Lu, Ute Maria Skiba, Francesco N. Tubiello, and Bowen Zhang
Earth Syst. Sci. Data, 11, 175–187, https://doi.org/10.5194/essd-11-175-2019, https://doi.org/10.5194/essd-11-175-2019, 2019
Short summary
Short summary
We provide three gridded datasets of synthetic nitrogen (N) fertilizer and manure N inputs in global pastures and rangelands at a resolution of 0.5° × 0.5° for the period 1860–2016 (i.e., annual manure N deposition (by grazing animals) rate, synthetic N fertilizer use rate and manure N application rate). These three datasets could fill data gaps of N inputs in global and regional grasslands and serve as input drivers for earth system models.
Corinne Le Quéré, Robbie M. Andrew, Pierre Friedlingstein, Stephen Sitch, Judith Hauck, Julia Pongratz, Penelope A. Pickers, Jan Ivar Korsbakken, Glen P. Peters, Josep G. Canadell, Almut Arneth, Vivek K. Arora, Leticia Barbero, Ana Bastos, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Scott C. Doney, Thanos Gkritzalis, Daniel S. Goll, Ian Harris, Vanessa Haverd, Forrest M. Hoffman, Mario Hoppema, Richard A. Houghton, George Hurtt, Tatiana Ilyina, Atul K. Jain, Truls Johannessen, Chris D. Jones, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Peter Landschützer, Nathalie Lefèvre, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Craig Neill, Are Olsen, Tsueno Ono, Prabir Patra, Anna Peregon, Wouter Peters, Philippe Peylin, Benjamin Pfeil, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Matthias Rocher, Christian Rödenbeck, Ute Schuster, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Tobias Steinhoff, Adrienne Sutton, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Nicolas Viovy, Anthony P. Walker, Andrew J. Wiltshire, Rebecca Wright, Sönke Zaehle, and Bo Zheng
Earth Syst. Sci. Data, 10, 2141–2194, https://doi.org/10.5194/essd-10-2141-2018, https://doi.org/10.5194/essd-10-2141-2018, 2018
Short summary
Short summary
The Global Carbon Budget 2018 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Corinne Le Quéré, Robbie M. Andrew, Pierre Friedlingstein, Stephen Sitch, Julia Pongratz, Andrew C. Manning, Jan Ivar Korsbakken, Glen P. Peters, Josep G. Canadell, Robert B. Jackson, Thomas A. Boden, Pieter P. Tans, Oliver D. Andrews, Vivek K. Arora, Dorothee C. E. Bakker, Leticia Barbero, Meike Becker, Richard A. Betts, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Catherine E. Cosca, Jessica Cross, Kim Currie, Thomas Gasser, Ian Harris, Judith Hauck, Vanessa Haverd, Richard A. Houghton, Christopher W. Hunt, George Hurtt, Tatiana Ilyina, Atul K. Jain, Etsushi Kato, Markus Kautz, Ralph F. Keeling, Kees Klein Goldewijk, Arne Körtzinger, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Ivan Lima, Danica Lombardozzi, Nicolas Metzl, Frank Millero, Pedro M. S. Monteiro, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Yukihiro Nojiri, X. Antonio Padin, Anna Peregon, Benjamin Pfeil, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Janet Reimer, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Benjamin D. Stocker, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Steven van Heuven, Nicolas Viovy, Nicolas Vuichard, Anthony P. Walker, Andrew J. Watson, Andrew J. Wiltshire, Sönke Zaehle, and Dan Zhu
Earth Syst. Sci. Data, 10, 405–448, https://doi.org/10.5194/essd-10-405-2018, https://doi.org/10.5194/essd-10-405-2018, 2018
Short summary
Short summary
The Global Carbon Budget 2017 describes data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. It is the 12th annual update and the 6th published in this journal.
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Ray Weiss, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
Atmos. Chem. Phys., 17, 11135–11161, https://doi.org/10.5194/acp-17-11135-2017, https://doi.org/10.5194/acp-17-11135-2017, 2017
Short summary
Short summary
Following the Global Methane Budget 2000–2012 published in Saunois et al. (2016), we use the same dataset of bottom-up and top-down approaches to discuss the variations in methane emissions over the period 2000–2012. The changes in emissions are discussed both in terms of trends and quasi-decadal changes. The ensemble gathered here allows us to synthesise the robust changes in terms of regional and sectorial contributions to the increasing methane emissions.
Justin Gibson, Trenton E. Franz, Tiejun Wang, John Gates, Patricio Grassini, Haishun Yang, and Dean Eisenhauer
Hydrol. Earth Syst. Sci., 21, 1051–1062, https://doi.org/10.5194/hess-21-1051-2017, https://doi.org/10.5194/hess-21-1051-2017, 2017
Short summary
Short summary
The human use of water for irrigation is often ignored in models and operational forecasts. We describe four plausible and relatively simple irrigation routines that can be coupled to the next generation of models. The routines are tested against a unique irrigation dataset from western Nebraska. The most aggressive water-saving irrigation routine indicates a potential irrigation savings of 120 mm yr−1 and yield losses of less than 3 % against the crop model benchmark and historical averages.
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Victor Brovkin, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Charles Curry, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Julia Marshall, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Catherine Prigent, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Paul Steele, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Michiel van Weele, Guido R. van der Werf, Ray Weiss, Christine Wiedinmyer, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
Earth Syst. Sci. Data, 8, 697–751, https://doi.org/10.5194/essd-8-697-2016, https://doi.org/10.5194/essd-8-697-2016, 2016
Short summary
Short summary
An accurate assessment of the methane budget is important to understand the atmospheric methane concentrations and trends and to provide realistic pathways for climate change mitigation. The various and diffuse sources of methane as well and its oxidation by a very short lifetime radical challenge this assessment. We quantify the methane sources and sinks as well as their uncertainties based on both bottom-up and top-down approaches provided by a broad international scientific community.
W. J. Riley, F. Maggi, M. Kleber, M. S. Torn, J. Y. Tang, D. Dwivedi, and N. Guerry
Geosci. Model Dev., 7, 1335–1355, https://doi.org/10.5194/gmd-7-1335-2014, https://doi.org/10.5194/gmd-7-1335-2014, 2014
Related subject area
Domain: ESSD – Land | Subject: Land Cover and Land Use
High-resolution mapping of global winter-triticeae crops using a sample-free identification method
A flux tower site attribute dataset intended for land surface modeling
Advances in LUCAS Copernicus 2022: enhancing Earth observations with comprehensive in situ data on EU land cover and use
Global 30 m seamless data cube (2000–2022) of land surface reflectance generated from Landsat 5, 7, 8, and 9 and MODIS Terra constellations
Mapping rangeland health indicators in eastern Africa from 2000 to 2022
3D-GloBFP: the first global three-dimensional building footprint dataset
Enhancing high-resolution forest stand mean height mapping in China through an individual tree-based approach with close-range lidar data
Annual high-resolution grazing-intensity maps on the Qinghai–Tibet Plateau from 1990 to 2020
Global mapping of oil palm planting year from 1990 to 2021
A 28-time-point cropland area change dataset in Northeast China from 1000 to 2020
Mapping sugarcane globally at 10 m resolution using Global Ecosystem Dynamics Investigation (GEDI) and Sentinel-2
Annual maps of forest and evergreen forest in the contiguous United States during 2015–2017 from analyses of PALSAR-2 and Landsat images
Time-series of Landsat-based bi-monthly and annual spectral indices for continental Europe for 2000–2022
Monsoon Asia Rice Calendar (MARC): a gridded rice calendar in monsoon Asia based on Sentinel-1 and Sentinel-2 images
EARice10: A 10 m Resolution Annual Rice Distribution Map of East Asia for 2023
A 100 m gridded population dataset of China's seventh census using ensemble learning and big geospatial data
Annual time-series 1 km maps of crop area and types in the conterminous US (CropAT-US): cropping diversity changes during 1850–2021
Retrieval of dominant methane (CH4) emission sources, the first high-resolution (1–2 m) dataset of storage tanks of China in 2000–2021
A 10 m resolution land cover map of the Tibetan Plateau with detailed vegetation types
ChinaSoyArea10m: a dataset of soybean-planting areas with a spatial resolution of 10 m across China from 2017 to 2021
Annual vegetation maps in Qinghai-Tibet Plateau (QTP) from 2000 to 2022 based on MODIS series satellite imagery
A Sentinel-2 Machine Learning Dataset for Tree Species Classification in Germany
Physical, social, and biological attributes for improved understanding and prediction of wildfires: FPA FOD-Attributes dataset
ChatEarthNet: A Global-Scale Image-Text Dataset Empowering Vision-Language Geo-Foundation Models
Map of forest tree species for Poland based on Sentinel-2 data
The ABoVE L-band and P-band airborne synthetic aperture radar surveys
A 30 m annual cropland dataset of China from 1986 to 2021
Global 1 km land surface parameters for kilometer-scale Earth system modeling
ChinaRiceCalendar – seasonal crop calendars for early-, middle-, and late-season rice in China
Harmonized European Union subnational crop statistics can reveal climate impacts and crop cultivation shifts
GLC_FCS30D: the first global 30 m land-cover dynamics monitoring product with a fine classification system for the period from 1985 to 2022 generated using dense-time-series Landsat imagery and the continuous change-detection method
A global estimate of monthly vegetation and soil fractions from spatiotemporally adaptive spectral mixture analysis during 2001–2022
A 2020 forest age map for China with 30 m resolution
GMIE-100: a global maximum irrigation extent and irrigation type dataset derived through irrigation performance during drought stress and machine learning method
Country-level estimates of gross and net carbon fluxes from land use, land-use change and forestry
Annual maps of forest cover in the Brazilian Amazon from analyses of PALSAR and MODIS images
Global 500 m seamless dataset (2000–2022) of land surface reflectance generated from MODIS products
The first map of crop sequence types in Europe over 2012–2018
WorldCereal: a dynamic open-source system for global-scale, seasonal, and reproducible crop and irrigation mapping
A new cropland area database by country circa 2020
FORMS: Forest Multiple Source height, wood volume, and biomass maps in France at 10 to 30 m resolution based on Sentinel-1, Sentinel-2, and Global Ecosystem Dynamics Investigation (GEDI) data with a deep learning approach
SinoLC-1: the first 1 m resolution national-scale land-cover map of China created with a deep learning framework and open-access data
HISDAC-ES: historical settlement data compilation for Spain (1900–2020)
LCM2021 – the UK Land Cover Map 2021
ChinaWheatYield30m: a 30 m annual winter wheat yield dataset from 2016 to 2021 in China
Refined fine-scale mapping of tree cover using time series of Planet-NICFI and Sentinel-1 imagery for Southeast Asia (2016–2021)
High-resolution global map of closed-canopy coconut palm
High-resolution land use and land cover dataset for regional climate modelling: historical and future changes in Europe
Global urban fractional changes at a 1 km resolution throughout 2100 under eight scenarios of Shared Socioeconomic Pathways (SSPs) and Representative Concentration Pathways (RCPs)
China Building Rooftop Area: the first multi-annual (2016–2021) and high-resolution (2.5 m) building rooftop area dataset in China derived with super-resolution segmentation from Sentinel-2 imagery
Yangyang Fu, Xiuzhi Chen, Chaoqing Song, Xiaojuan Huang, Jie Dong, Qiongyan Peng, and Wenping Yuan
Earth Syst. Sci. Data, 17, 95–115, https://doi.org/10.5194/essd-17-95-2025, https://doi.org/10.5194/essd-17-95-2025, 2025
Short summary
Short summary
This study proposed the Winter-Triticeae Crops Index (WTCI), which had great performance and stable spatiotemporal transferability in identifying winter-triticeae crops in 66 countries worldwide, with an overall accuracy of 87.7 %. The first global 30 m resolution distribution maps of winter-triticeae crops from 2017 to 2022 were further produced based on the WTCI method. The product can serve as an important basis for agricultural applications.
Jiahao Shi, Hua Yuan, Wanyi Lin, Wenzong Dong, Hongbin Liang, Zhuo Liu, Jianxin Zeng, Haolin Zhang, Nan Wei, Zhongwang Wei, Shupeng Zhang, Shaofeng Liu, Xingjie Lu, and Yongjiu Dai
Earth Syst. Sci. Data, 17, 117–134, https://doi.org/10.5194/essd-17-117-2025, https://doi.org/10.5194/essd-17-117-2025, 2025
Short summary
Short summary
Flux tower data are widely recognized as benchmarking data for land surface models, but insufficient emphasis on and deficiency in site attribute data limits their true value. We collect site-observed vegetation, soil, and topography data from various sources. The final dataset encompasses 90 sites globally, with relatively complete site attribute data and high-quality flux validation data. This work has provided more reliable site attribute data, benefiting land surface model development.
Raphaël d'Andrimont, Momchil Yordanov, Fernando Sedano, Astrid Verhegghen, Peter Strobl, Savvas Zachariadis, Flavia Camilleri, Alessandra Palmieri, Beatrice Eiselt, Jose Miguel Rubio Iglesias, and Marijn van der Velde
Earth Syst. Sci. Data, 16, 5723–5735, https://doi.org/10.5194/essd-16-5723-2024, https://doi.org/10.5194/essd-16-5723-2024, 2024
Short summary
Short summary
The Land Use/Cover Area frame Survey (LUCAS) Copernicus 2022 is a large and systematic in situ field survey of 137 966 polygons over the European Union in 2022. The data contain 82 land cover classes and 40 land use classes.
Shuang Chen, Jie Wang, Qiang Liu, Xiangan Liang, Rui Liu, Peng Qin, Jincheng Yuan, Junbo Wei, Shuai Yuan, Huabing Huang, and Peng Gong
Earth Syst. Sci. Data, 16, 5449–5475, https://doi.org/10.5194/essd-16-5449-2024, https://doi.org/10.5194/essd-16-5449-2024, 2024
Short summary
Short summary
The inconsistent coverage of Landsat data due to its long revisit intervals and frequent cloud cover poses challenges to large-scale land monitoring. We developed a global 30 m 23-year (2000–2022) daily seamless data cube (SDC) of surface reflectance based on Landsat 5, 7, 8, and 9 and MODIS products. The SDC exhibits enhanced capabilities for monitoring land cover changes and robust consistency in both spatial and temporal dimensions, which are important for global environmental monitoring.
Gerardo E. Soto, Steven W. Wilcox, Patrick E. Clark, Francesco P. Fava, Nathaniel D. Jensen, Njoki Kahiu, Chuan Liao, Benjamin Porter, Ying Sun, and Christopher B. Barrett
Earth Syst. Sci. Data, 16, 5375–5404, https://doi.org/10.5194/essd-16-5375-2024, https://doi.org/10.5194/essd-16-5375-2024, 2024
Short summary
Short summary
This paper uses machine learning and linear unmixing to produce rangeland health indicators: Landsat time series of land cover classes and vegetation fractional cover of photosynthetic vegetation, non-photosynthetic vegetation, and bare ground in arid and semi-arid Kenya, Ethiopia, and Somalia. This represents the first multi-decadal Landsat-resolution dataset specifically designed for mapping and monitoring rangeland health in the arid and semi-arid rangelands of this portion of eastern Africa.
Yangzi Che, Xuecao Li, Xiaoping Liu, Yuhao Wang, Weilin Liao, Xianwei Zheng, Xucai Zhang, Xiaocong Xu, Qian Shi, Jiajun Zhu, Honghui Zhang, Hua Yuan, and Yongjiu Dai
Earth Syst. Sci. Data, 16, 5357–5374, https://doi.org/10.5194/essd-16-5357-2024, https://doi.org/10.5194/essd-16-5357-2024, 2024
Short summary
Short summary
Most existing building height products are limited with respect to either spatial resolution or coverage, not to mention the spatial heterogeneity introduced by global building forms. Using Earth Observation (EO) datasets for 2020, we developed a global height dataset at the individual building scale. The dataset provides spatially explicit information on 3D building morphology, supporting both macro- and microanalysis of urban areas.
Yuling Chen, Haitao Yang, Zekun Yang, Qiuli Yang, Weiyan Liu, Guoran Huang, Yu Ren, Kai Cheng, Tianyu Xiang, Mengxi Chen, Danyang Lin, Zhiyong Qi, Jiachen Xu, Yixuan Zhang, Guangcai Xu, and Qinghua Guo
Earth Syst. Sci. Data, 16, 5267–5285, https://doi.org/10.5194/essd-16-5267-2024, https://doi.org/10.5194/essd-16-5267-2024, 2024
Short summary
Short summary
The national-scale continuous maps of arithmetic mean height and weighted mean height across China address the challenges of accurately estimating forest stand mean height using a tree-based approach. These maps produced in this study provide critical datasets for forest sustainable management in China, including climate change mitigation (e.g., terrestrial carbon estimation), forest ecosystem assessment, and forest inventory practices.
Jia Zhou, Jin Niu, Ning Wu, and Tao Lu
Earth Syst. Sci. Data, 16, 5171–5189, https://doi.org/10.5194/essd-16-5171-2024, https://doi.org/10.5194/essd-16-5171-2024, 2024
Short summary
Short summary
The study provided an annual 100 m resolution glimpse into the grazing activities across the Qinghai–Tibet Plateau. The newly minted Gridded Dataset of Grazing Intensity (GDGI) not only boasts exceptional accuracy but also acts as a pivotal resource for further research and strategic planning, with the potential to shape sustainable grazing practices, guide informed environmental stewardship, and ensure the longevity of the region’s precious ecosystems.
Adrià Descals, David L. A. Gaveau, Serge Wich, Zoltan Szantoi, and Erik Meijaard
Earth Syst. Sci. Data, 16, 5111–5129, https://doi.org/10.5194/essd-16-5111-2024, https://doi.org/10.5194/essd-16-5111-2024, 2024
Short summary
Short summary
This study provides a 10 m global oil palm extent layer for 2021 and a 30 m oil palm planting-year layer from 1990 to 2021. The oil palm extent layer was produced using a convolutional neural network that identified industrial and smallholder plantations using Sentinel-1 data. The oil palm planting year was developed using a methodology specifically designed to detect the early stages of oil palm development in the Landsat time series.
Ran Jia, Xiuqi Fang, Yundi Yang, Masayuki Yokozawa, and Yu Ye
Earth Syst. Sci. Data, 16, 4971–4994, https://doi.org/10.5194/essd-16-4971-2024, https://doi.org/10.5194/essd-16-4971-2024, 2024
Short summary
Short summary
We reconstructed a cropland area change dataset in Northeast China over the past millennium by integrating multisource data with a unified standard using the historical and archaeological record, statistical yearbook, and national land survey. Cropland in Northeast China exhibited phases of expansion–reduction–expansion over the past millennium. This dataset can be used for improving the land use and land cover change (LUCC) dataset and assessing LUCC-induced carbon emission and climate change.
Stefania Di Tommaso, Sherrie Wang, Rob Strey, and David B. Lobell
Earth Syst. Sci. Data, 16, 4931–4947, https://doi.org/10.5194/essd-16-4931-2024, https://doi.org/10.5194/essd-16-4931-2024, 2024
Short summary
Short summary
Sugarcane plays a vital role in food, biofuel, and farmer income globally, yet its cultivation faces numerous social and environmental challenges. Despite its significance, accurate mapping remains limited. Our study addresses this gap by introducing a novel 10 m global dataset of sugarcane maps spanning 2019–2022. Comparisons with field data, pre-existing maps, and official government statistics all indicate the high precision and high recall of our maps.
Jie Wang, Xiangming Xiao, Yuanwei Qin, Jinwei Dong, Geli Zhang, Xuebin Yang, Xiaocui Wu, Chandrashekhar Biradar, and Yang Hu
Earth Syst. Sci. Data, 16, 4619–4639, https://doi.org/10.5194/essd-16-4619-2024, https://doi.org/10.5194/essd-16-4619-2024, 2024
Short summary
Short summary
Existing satellite-based forest maps have large uncertainties due to different forest definitions and mapping algorithms. To effectively manage forest resources, timely and accurate annual forest maps at a high spatial resolution are needed. This study improved forest maps by integrating PALSAR-2 and Landsat images. Annual evergreen and non-evergreen forest-type maps were also generated. This critical information supports the Global Forest Resources Assessment.
Xuemeng Tian, Davide Consoli, Martijn Witjes, Florian Schneider, Leandro Parente, Murat Şahin, Yu-Feng Ho, Robert Minařík, and Tomislav Hengl
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-266, https://doi.org/10.5194/essd-2024-266, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Our study introduces a Landsat-based data cube simplifying access to detailed environmental data across Europe from 2000 to 2022, covering vegetation, water, soil, and crops. Our experiments demonstrate its effectiveness in developing environmental models and maps. Tailored feature selection is crucial for its effective use in environmental modeling. It aims to support comprehensive environmental monitoring and analysis, helping researchers and policymakers in managing environmental resources.
Xin Zhao, Kazuya Nishina, Haruka Izumisawa, Yuji Masutomi, Seima Osako, and Shuhei Yamamoto
Earth Syst. Sci. Data, 16, 3893–3911, https://doi.org/10.5194/essd-16-3893-2024, https://doi.org/10.5194/essd-16-3893-2024, 2024
Short summary
Short summary
Mapping a rice calendar in a spatially explicit manner with a consistent framework remains challenging at a global or continental scale. We successfully developed a new gridded rice calendar for monsoon Asia based on Sentinel-1 and Sentinel-2 images, which characterize transplanting and harvesting dates and the number of rice croppings in a comprehensive framework. Our rice calendar will be beneficial for rice management, production prediction, and the estimation of greenhouse gas emissions.
Mingyang Song, Lu Xu, Ji Ge, Hong Zhang, Lijun Zuo, Jingling Jiang, Yinhaibin Ding, Yazhe Xie, and Fan Wu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-331, https://doi.org/10.5194/essd-2024-331, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
We designed to generate the 10 m resolution rice distribution map of EA in 2023 (EARice10). The generated EARice10 has an OA of 90.48 % on the validation samples, showing good consistency with statistical data and existing datasets, with R2 values ranging between 0.94 and 0.98 with statistical data, and between 0.79 and 0.98 with existing datasets. Moreover, EARice10 is the most up-to-date rice distribution map that comprehensively covers four rice production countries of EA in 10 m resolution.
Yuehong Chen, Congcong Xu, Yong Ge, Xiaoxiang Zhang, and Ya'nan Zhou
Earth Syst. Sci. Data, 16, 3705–3718, https://doi.org/10.5194/essd-16-3705-2024, https://doi.org/10.5194/essd-16-3705-2024, 2024
Short summary
Short summary
Population data is crucial for human–nature interactions. Gridded population data can address limitations of census data in irregular units. In China, rapid urbanization necessitates timely and accurate population grids. However, existing datasets for China are either outdated or lack recent census data. Hence, a novel approach was developed to disaggregate China’s seventh census data into 100 m population grids. The resulting dataset outperformed the existing LandScan and WorldPop datasets.
Shuchao Ye, Peiyu Cao, and Chaoqun Lu
Earth Syst. Sci. Data, 16, 3453–3470, https://doi.org/10.5194/essd-16-3453-2024, https://doi.org/10.5194/essd-16-3453-2024, 2024
Short summary
Short summary
We reconstructed annual cropland density and crop type maps, including nine major crop types (corn, soybean, winter wheat, spring wheat, durum wheat, cotton, sorghum, barley, and rice), from 1850 to 2021 at 1 km × 1 km resolution. We found that the US total crop acreage has increased by 118 × 106 ha (118 Mha), mainly driven by corn (30 Mha) and soybean (35 Mha). Additionally, the US cropping diversity experienced an increase in the 1850s–1960s, followed by a decline over the past 6 decades.
Fang Chen, Lei Wang, Yu Wang, Haiying Zhang, Ning Wang, Pengfei Ma, and Bo Yu
Earth Syst. Sci. Data, 16, 3369–3382, https://doi.org/10.5194/essd-16-3369-2024, https://doi.org/10.5194/essd-16-3369-2024, 2024
Short summary
Short summary
Storage tanks are responsible for approximately 25 % of CH4 emissions in the atmosphere, exacerbating climate warming. Currently there is no publicly accessible storage tank inventory. We generated the first high-spatial-resolution (1–2 m) storage tank dataset (STD) over 92 typical cities in China in 2021, totaling 14 461 storage tanks with the construction year from 2000–2021. It shows significant agreement with CH4 emission spatially and temporally, promoting the CH4 control strategy proposal.
Xingyi Huang, Yuwei Yin, Luwei Feng, Xiaoye Tong, Xiaoxin Zhang, Jiangrong Li, and Feng Tian
Earth Syst. Sci. Data, 16, 3307–3332, https://doi.org/10.5194/essd-16-3307-2024, https://doi.org/10.5194/essd-16-3307-2024, 2024
Short summary
Short summary
The Tibetan Plateau, with its diverse vegetation ranging from forests to alpine grasslands, plays a key role in understanding climate change impacts. Existing maps lack detail or miss unique ecosystems. Our research, using advanced satellite technology and machine learning, produced the map TP_LC10-2022. Comparisons with other maps revealed TP_LC10-2022's excellence in capturing local variations. Our map is significant for in-depth ecological studies.
Qinghang Mei, Zhao Zhang, Jichong Han, Jie Song, Jinwei Dong, Huaqing Wu, Jialu Xu, and Fulu Tao
Earth Syst. Sci. Data, 16, 3213–3231, https://doi.org/10.5194/essd-16-3213-2024, https://doi.org/10.5194/essd-16-3213-2024, 2024
Short summary
Short summary
In order to make up for the lack of long-term soybean planting area maps in China, we firstly generated a dataset of soybean planting area with a spatial resolution of 10 m for major producing areas in China from 2017 to 2021 (ChinaSoyArea10m). Compared with existing datasets, ChinaSoyArea10m has higher consistency with census data and further improvement in spatial details. The dataset can provide reliable support for subsequent studies on yield monitoring and food security.
Guangsheng Zhou, Hongrui Ren, Lei Zhang, Xiaomin Lv, and Mengzi Zhou
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-193, https://doi.org/10.5194/essd-2024-193, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
This study developed a new approach to long-time continuous annual vegetation mapping from remote sensing imagery, and mapped the vegetation of the Qinghai-Tibet Plateau (QTP) from 2000 to 2022 through the MOD09A1 product. The overall accuracy of continuous annual QTP vegetation mapping reached 80.9%, with the reference annual 2020 reaching an accuracy of 86.5% and a Kappa coefficient of 0.85. The study supports the use of remote sensing data to mapping a long-time continuous annual vegetation.
Maximilian Freudenberg, Sebastian Schnell, and Paul Magdon
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-206, https://doi.org/10.5194/essd-2024-206, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Classifying tree species in satellite images is an important task for environmental monitoring and forest management. Here we present a dataset containing Sentinel-2 satellite pixel time series of individual trees, intended for training machine learning models. The dataset was created by merging information from the German national forest inventory in 2012 with satellite data. It sparsely covers entire Germany for the years 2015 to 2022 and comprises 51 species and species groups.
Yavar Pourmohamad, John T. Abatzoglou, Erin J. Belval, Erica Fleishman, Karen Short, Matthew C. Reeves, Nicholas Nauslar, Philip E. Higuera, Eric Henderson, Sawyer Ball, Amir AghaKouchak, Jeffrey P. Prestemon, Julia Olszewski, and Mojtaba Sadegh
Earth Syst. Sci. Data, 16, 3045–3060, https://doi.org/10.5194/essd-16-3045-2024, https://doi.org/10.5194/essd-16-3045-2024, 2024
Short summary
Short summary
The FPA FOD-Attributes dataset provides > 300 biological, physical, social, and administrative attributes associated with > 2.3×106 wildfire incidents across the US from 1992 to 2020. The dataset can be used to (1) answer numerous questions about the covariates associated with human- and lightning-caused wildfires and (2) support descriptive, diagnostic, predictive, and prescriptive wildfire analytics, including the development of machine learning models.
Zhenghang Yuan, Zhitong Xiong, Lichao Mou, and Xiao Xiang Zhu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-140, https://doi.org/10.5194/essd-2024-140, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
ChatEarthNet is an image-text dataset that provides high-quality, detailed natural language descriptions for global-scale satellite data. It consists of 163,488 image-text pairs with captions generated by ChatGPT-3.5, and an additional 10,000 image-text pairs with captions generated by ChatGPT-4V(ision). This dataset has significant potential for training and evaluating vision-language geo-foundation models in remote sensing.
Ewa Grabska-Szwagrzyk, Dirk Tiede, Martin Sudmanns, and Jacek Kozak
Earth Syst. Sci. Data, 16, 2877–2891, https://doi.org/10.5194/essd-16-2877-2024, https://doi.org/10.5194/essd-16-2877-2024, 2024
Short summary
Short summary
We accurately mapped 16 dominant tree species and genera in Poland using Sentinel-2 observations from short periods in spring, summer, and autumn (2018–2021). The classification achieved more than 80% accuracy in country-wide forest species mapping, with variation based on species, region, and observation frequency. Freely accessible resources, including the forest tree species map and training and test data, can be found at https://doi.org/10.5281/zenodo.10180469.
Charles E. Miller, Peter C. Griffith, Elizabeth Hoy, Naiara S. Pinto, Yunling Lou, Scott Hensley, Bruce D. Chapman, Jennifer Baltzer, Kazem Bakian-Dogaheh, W. Robert Bolton, Laura Bourgeau-Chavez, Richard H. Chen, Byung-Hun Choe, Leah K. Clayton, Thomas A. Douglas, Nancy French, Jean E. Holloway, Gang Hong, Lingcao Huang, Go Iwahana, Liza Jenkins, John S. Kimball, Tatiana Loboda, Michelle Mack, Philip Marsh, Roger J. Michaelides, Mahta Moghaddam, Andrew Parsekian, Kevin Schaefer, Paul R. Siqueira, Debjani Singh, Alireza Tabatabaeenejad, Merritt Turetsky, Ridha Touzi, Elizabeth Wig, Cathy J. Wilson, Paul Wilson, Stan D. Wullschleger, Yonghong Yi, Howard A. Zebker, Yu Zhang, Yuhuan Zhao, and Scott J. Goetz
Earth Syst. Sci. Data, 16, 2605–2624, https://doi.org/10.5194/essd-16-2605-2024, https://doi.org/10.5194/essd-16-2605-2024, 2024
Short summary
Short summary
NASA’s Arctic Boreal Vulnerability Experiment (ABoVE) conducted airborne synthetic aperture radar (SAR) surveys of over 120 000 km2 in Alaska and northwestern Canada during 2017, 2018, 2019, and 2022. This paper summarizes those results and provides links to details on ~ 80 individual flight lines. This paper is presented as a guide to enable interested readers to fully explore the ABoVE L- and P-band SAR data.
Ying Tu, Shengbiao Wu, Bin Chen, Qihao Weng, Yuqi Bai, Jun Yang, Le Yu, and Bing Xu
Earth Syst. Sci. Data, 16, 2297–2316, https://doi.org/10.5194/essd-16-2297-2024, https://doi.org/10.5194/essd-16-2297-2024, 2024
Short summary
Short summary
We developed the first 30 m annual cropland dataset of China (CACD) for 1986–2021. The overall accuracy of CACD reached up to 0.93±0.01 and was superior to other products. Our fine-resolution cropland maps offer valuable information for diverse applications and decision-making processes in the future.
Lingcheng Li, Gautam Bisht, Dalei Hao, and L. Ruby Leung
Earth Syst. Sci. Data, 16, 2007–2032, https://doi.org/10.5194/essd-16-2007-2024, https://doi.org/10.5194/essd-16-2007-2024, 2024
Short summary
Short summary
This study fills a gap to meet the emerging needs of kilometer-scale Earth system modeling by developing global 1 km land surface parameters for land use, vegetation, soil, and topography. Our demonstration simulations highlight the substantial impacts of these parameters on spatial variability and information loss in water and energy simulations. Using advanced explainable machine learning methods, we identified influential factors driving spatial variability and information loss.
Hui Li, Xiaobo Wang, Shaoqiang Wang, Jinyuan Liu, Yuanyuan Liu, Zhenhai Liu, Shiliang Chen, Qinyi Wang, Tongtong Zhu, Lunche Wang, and Lizhe Wang
Earth Syst. Sci. Data, 16, 1689–1701, https://doi.org/10.5194/essd-16-1689-2024, https://doi.org/10.5194/essd-16-1689-2024, 2024
Short summary
Short summary
Utilizing satellite remote sensing data, we established a multi-season rice calendar dataset named ChinaRiceCalendar. It exhibits strong alignment with field observations collected by agricultural meteorological stations across China. ChinaRiceCalendar stands as a reliable dataset for investigating and optimizing the spatiotemporal dynamics of rice phenology in China, particularly in the context of climate and land use changes.
Giulia Ronchetti, Luigi Nisini Scacchiafichi, Lorenzo Seguini, Iacopo Cerrani, and Marijn van der Velde
Earth Syst. Sci. Data, 16, 1623–1649, https://doi.org/10.5194/essd-16-1623-2024, https://doi.org/10.5194/essd-16-1623-2024, 2024
Short summary
Short summary
We present a dataset of EU-wide harmonized subnational crop area, production, and yield statistics with information on data sources, processing steps, missing and derived data, and quality checks. Statistical records (344 282) collected from 1975 to 2020 for soft and durum wheat, winter and spring barley, grain maize, sunflower, and sugar beet were aligned with the EUROSTAT crop legend and the 2016 territorial classification for 961 regions. Time series have a median length of 21 years.
Xiao Zhang, Tingting Zhao, Hong Xu, Wendi Liu, Jinqing Wang, Xidong Chen, and Liangyun Liu
Earth Syst. Sci. Data, 16, 1353–1381, https://doi.org/10.5194/essd-16-1353-2024, https://doi.org/10.5194/essd-16-1353-2024, 2024
Short summary
Short summary
This work describes GLC_FCS30D, the first global 30 m land-cover dynamics monitoring dataset, which contains 35 land-cover subcategories and covers the period of 1985–2022 in 26 time steps (its maps are updated every 5 years before 2000 and annually after 2000).
Qiangqiang Sun, Ping Zhang, Xin Jiao, Xin Lin, Wenkai Duan, Su Ma, Qidi Pan, Lu Chen, Yongxiang Zhang, Shucheng You, Shunxi Liu, Jinmin Hao, Hong Li, and Danfeng Sun
Earth Syst. Sci. Data, 16, 1333–1351, https://doi.org/10.5194/essd-16-1333-2024, https://doi.org/10.5194/essd-16-1333-2024, 2024
Short summary
Short summary
To provide multifaceted changes under climate change and anthropogenic impacts, we estimated monthly vegetation and soil fractions in 2001–2022, providing an accurate estimate of surface heterogeneous composition, better than vegetation index and vegetation continuous-field products. We find a greening trend on Earth except for the tropics. A combination of interactive changes in vegetation and soil can be adopted as a valuable measurement of climate change and anthropogenic impacts.
Kai Cheng, Yuling Chen, Tianyu Xiang, Haitao Yang, Weiyan Liu, Yu Ren, Hongcan Guan, Tianyu Hu, Qin Ma, and Qinghua Guo
Earth Syst. Sci. Data, 16, 803–819, https://doi.org/10.5194/essd-16-803-2024, https://doi.org/10.5194/essd-16-803-2024, 2024
Short summary
Short summary
To quantify forest carbon stock and its future potential accurately, we generated a 30 m resolution forest age map for China in 2020 using multisource remote sensing datasets based on machine learning and time series analysis approaches. Validation with independent field samples indicated that the mapped forest age had an R2 of 0.51--0.63. Nationally, the average forest age is 56.1 years (standard deviation of 32.7 years).
Fuyou Tian, Bingfang Wu, Hongwei Zeng, Miao Zhang, Weiwei Zhu, Nana Yan, Yuming Lu, and Yifan Li
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-536, https://doi.org/10.5194/essd-2023-536, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Our team has developed an irrigation map with 100 m resolution, which is more detailed than existing one. We used satellite images and focused on the crop status during the dry conditions. We found that 23.4 % of global cropland is irrigated, with the most extensive areas in India, China, the US, and Pakistan. We also explored the distribution of central pivot systems, which are commonly used in the US and Saudi Arabia. This new map can better support water management and food security globally.
Wolfgang Alexander Obermeier, Clemens Schwingshackl, Ana Bastos, Giulia Conchedda, Thomas Gasser, Giacomo Grassi, Richard A. Houghton, Francesco Nicola Tubiello, Stephen Sitch, and Julia Pongratz
Earth Syst. Sci. Data, 16, 605–645, https://doi.org/10.5194/essd-16-605-2024, https://doi.org/10.5194/essd-16-605-2024, 2024
Short summary
Short summary
We provide and compare country-level estimates of land-use CO2 fluxes from a variety and large number of models, bottom-up estimates, and country reports for the period 1950–2021. Although net fluxes are small in many countries, they are often composed of large compensating emissions and removals. In many countries, the estimates agree well once their individual characteristics are accounted for, but in other countries, including some of the largest emitters, substantial uncertainties exist.
Yuanwei Qin, Xiangming Xiao, Hao Tang, Ralph Dubayah, Russell Doughty, Diyou Liu, Fang Liu, Yosio Shimabukuro, Egidio Arai, Xinxin Wang, and Berrien Moore III
Earth Syst. Sci. Data, 16, 321–336, https://doi.org/10.5194/essd-16-321-2024, https://doi.org/10.5194/essd-16-321-2024, 2024
Short summary
Short summary
Forest definition has two major biophysical parameters, i.e., canopy height and canopy coverage. However, few studies have assessed forest cover maps in terms of these two parameters at a large scale. Here, we assessed the annual forest cover maps in the Brazilian Amazon using 1.1 million footprints of canopy height and canopy coverage. Over 93 % of our forest cover maps are consistent with the FAO forest definition, showing the high accuracy of these forest cover maps in the Brazilian Amazon.
Xiangan Liang, Qiang Liu, Jie Wang, Shuang Chen, and Peng Gong
Earth Syst. Sci. Data, 16, 177–200, https://doi.org/10.5194/essd-16-177-2024, https://doi.org/10.5194/essd-16-177-2024, 2024
Short summary
Short summary
The state-of-the-art MODIS surface reflectance products suffer from temporal and spatial gaps, which make it difficult to characterize the continuous variation of the terrestrial surface. We proposed a framework for generating the first global 500 m daily seamless data cubes (SDC500), covering the period from 2000 to 2022. We believe that the SDC500 dataset can interest other researchers who study land cover mapping, quantitative remote sensing, and ecological science.
Rémy Ballot, Nicolas Guilpart, and Marie-Hélène Jeuffroy
Earth Syst. Sci. Data, 15, 5651–5666, https://doi.org/10.5194/essd-15-5651-2023, https://doi.org/10.5194/essd-15-5651-2023, 2023
Short summary
Short summary
Assessing the benefits of crop diversification – a key element of agroecological transition – on a large scale requires a description of current crop sequences as a baseline, which is lacking at the scale of Europe. To fill this gap, we used a dataset that provides temporally and spatially incomplete land cover information to create a map of dominant crop sequence types for Europe over 2012–2018. This map is a useful baseline for assessing the benefits of future crop diversification.
Kristof Van Tricht, Jeroen Degerickx, Sven Gilliams, Daniele Zanaga, Marjorie Battude, Alex Grosu, Joost Brombacher, Myroslava Lesiv, Juan Carlos Laso Bayas, Santosh Karanam, Steffen Fritz, Inbal Becker-Reshef, Belén Franch, Bertran Mollà-Bononad, Hendrik Boogaard, Arun Kumar Pratihast, Benjamin Koetz, and Zoltan Szantoi
Earth Syst. Sci. Data, 15, 5491–5515, https://doi.org/10.5194/essd-15-5491-2023, https://doi.org/10.5194/essd-15-5491-2023, 2023
Short summary
Short summary
WorldCereal is a global mapping system that addresses food security challenges. It provides seasonal updates on crop areas and irrigation practices, enabling informed decision-making for sustainable agriculture. Our global products offer insights into temporary crop extent, seasonal crop type maps, and seasonal irrigation patterns. WorldCereal is an open-source tool that utilizes space-based technologies, revolutionizing global agricultural mapping.
Francesco N. Tubiello, Giulia Conchedda, Leon Casse, Pengyu Hao, Giorgia De Santis, and Zhongxin Chen
Earth Syst. Sci. Data, 15, 4997–5015, https://doi.org/10.5194/essd-15-4997-2023, https://doi.org/10.5194/essd-15-4997-2023, 2023
Short summary
Short summary
We describe a new dataset of cropland area circa the year 2020, with global coverage and country detail. Data are generated from geospatial information on the agreement characteristics of six high-resolution cropland maps. By helping to highlight features of cropland characteristics and underlying causes for agreement across land cover products, the dataset can be used as a tool to help guide future mapping efforts towards improved agricultural monitoring.
Martin Schwartz, Philippe Ciais, Aurélien De Truchis, Jérôme Chave, Catherine Ottlé, Cedric Vega, Jean-Pierre Wigneron, Manuel Nicolas, Sami Jouaber, Siyu Liu, Martin Brandt, and Ibrahim Fayad
Earth Syst. Sci. Data, 15, 4927–4945, https://doi.org/10.5194/essd-15-4927-2023, https://doi.org/10.5194/essd-15-4927-2023, 2023
Short summary
Short summary
As forests play a key role in climate-related issues, their accurate monitoring is critical to reduce global carbon emissions effectively. Based on open-access remote-sensing sensors, and artificial intelligence methods, we created high-resolution tree height, wood volume, and biomass maps of metropolitan France that outperform previous products. This study, based on freely available data, provides essential information to support climate-efficient forest management policies at a low cost.
Zhuohong Li, Wei He, Mofan Cheng, Jingxin Hu, Guangyi Yang, and Hongyan Zhang
Earth Syst. Sci. Data, 15, 4749–4780, https://doi.org/10.5194/essd-15-4749-2023, https://doi.org/10.5194/essd-15-4749-2023, 2023
Short summary
Short summary
Nowadays, a very-high-resolution land-cover (LC) map with national coverage is still unavailable in China, hindering efficient resource allocation. To fill this gap, the first 1 m resolution LC map of China, SinoLC-1, was built. The results showed that SinoLC-1 had an overall accuracy of 73.61 % and conformed to the official survey reports. Comparison with other datasets suggests that SinoLC-1 can be a better support for downstream applications and provide more accurate LC information to users.
Johannes H. Uhl, Dominic Royé, Keith Burghardt, José A. Aldrey Vázquez, Manuel Borobio Sanchiz, and Stefan Leyk
Earth Syst. Sci. Data, 15, 4713–4747, https://doi.org/10.5194/essd-15-4713-2023, https://doi.org/10.5194/essd-15-4713-2023, 2023
Short summary
Short summary
Historical, fine-grained geospatial datasets on built-up areas are rarely available, constraining studies of urbanization, settlement evolution, or the dynamics of human–environment interactions to recent decades. In order to provide such historical data, we used publicly available cadastral building data for Spain and created a series of gridded surfaces, measuring age, physical, and land-use-related features of the built environment in Spain and the evolution of settlements from 1900 to 2020.
Christopher G. Marston, Aneurin W. O'Neil, R. Daniel Morton, Claire M. Wood, and Clare S. Rowland
Earth Syst. Sci. Data, 15, 4631–4649, https://doi.org/10.5194/essd-15-4631-2023, https://doi.org/10.5194/essd-15-4631-2023, 2023
Short summary
Short summary
The UK Land Cover Map 2021 (LCM2021) is a UK-wide land cover data set, with 21- and 10-class versions. It is intended to support a broad range of UK environmental research, including ecological and hydrological research. LCM2021 was produced by classifying Sentinel-2 satellite imagery. LCM2021 is distributed as a suite of products to facilitate easy use for a range of applications. To support research at different spatial scales it includes 10 m, 25 m and 1 km resolution products.
Yu Zhao, Shaoyu Han, Jie Zheng, Hanyu Xue, Zhenhai Li, Yang Meng, Xuguang Li, Xiaodong Yang, Zhenhong Li, Shuhong Cai, and Guijun Yang
Earth Syst. Sci. Data, 15, 4047–4063, https://doi.org/10.5194/essd-15-4047-2023, https://doi.org/10.5194/essd-15-4047-2023, 2023
Short summary
Short summary
In the present study, we generated a 30 m Chinese winter wheat yield dataset from 2016 to 2021, called ChinaWheatYield30m. The dataset has high spatial resolution and great accuracy. It is the highest-resolution yield dataset known. Such a dataset will provide basic knowledge of detailed wheat yield distribution, which can be applied for many purposes including crop production modeling or regional climate evaluation.
Feng Yang and Zhenzhong Zeng
Earth Syst. Sci. Data, 15, 4011–4021, https://doi.org/10.5194/essd-15-4011-2023, https://doi.org/10.5194/essd-15-4011-2023, 2023
Short summary
Short summary
We generated a 4.77 m resolution annual tree cover map product for Southeast Asia (SEA) for 2016–2021 using Planet-NICFI and Sentinel-1 imagery. Maps were created with good accuracy and high consistency during 2016–2021. The baseline maps at 4.77 m can be converted to forest cover maps for SEA at various resolutions to meet different users’ needs. Our products can help resolve rounding errors in forest cover mapping by counting isolated trees and monitoring long, narrow forest cover removal.
Adrià Descals, Serge Wich, Zoltan Szantoi, Matthew J. Struebig, Rona Dennis, Zoe Hatton, Thina Ariffin, Nabillah Unus, David L. A. Gaveau, and Erik Meijaard
Earth Syst. Sci. Data, 15, 3991–4010, https://doi.org/10.5194/essd-15-3991-2023, https://doi.org/10.5194/essd-15-3991-2023, 2023
Short summary
Short summary
The spatial extent of coconut palm is understudied despite its increasing demand and associated impacts. We present the first global coconut palm layer at 20 m resolution. The layer was produced using deep learning and remotely sensed data. The global coconut area estimate is 12.31 Mha for dense coconut palm, but the estimate is 3 times larger when sparse coconut palm is considered. This means that coconut production can likely increase on the lands currently allocated to coconut palm.
Peter Hoffmann, Vanessa Reinhart, Diana Rechid, Nathalie de Noblet-Ducoudré, Edouard L. Davin, Christina Asmus, Benjamin Bechtel, Jürgen Böhner, Eleni Katragkou, and Sebastiaan Luyssaert
Earth Syst. Sci. Data, 15, 3819–3852, https://doi.org/10.5194/essd-15-3819-2023, https://doi.org/10.5194/essd-15-3819-2023, 2023
Short summary
Short summary
This paper introduces the new high-resolution land use and land cover change dataset LUCAS LUC for Europe (version 1.1), tailored for use in regional climate models. Historical and projected future land use change information from the Land-Use Harmonization 2 (LUH2) dataset is translated into annual plant functional type changes from 1950 to 2015 and 2016 to 2100, respectively, by employing a newly developed land use translator.
Wanru He, Xuecao Li, Yuyu Zhou, Zitong Shi, Guojiang Yu, Tengyun Hu, Yixuan Wang, Jianxi Huang, Tiecheng Bai, Zhongchang Sun, Xiaoping Liu, and Peng Gong
Earth Syst. Sci. Data, 15, 3623–3639, https://doi.org/10.5194/essd-15-3623-2023, https://doi.org/10.5194/essd-15-3623-2023, 2023
Short summary
Short summary
Most existing global urban products with future projections were developed in urban and non-urban categories, which ignores the gradual change of urban development at the local scale. Using annual global urban extent data from 1985 to 2015, we forecasted global urban fractional changes under eight scenarios throughout 2100. The developed dataset can provide spatially explicit information on urban fractions at 1 km resolution, which helps support various urban studies (e.g., urban heat island).
Zeping Liu, Hong Tang, Lin Feng, and Siqing Lyu
Earth Syst. Sci. Data, 15, 3547–3572, https://doi.org/10.5194/essd-15-3547-2023, https://doi.org/10.5194/essd-15-3547-2023, 2023
Short summary
Short summary
Large-scale maps of building rooftop area (BRA) are crucial for addressing policy decisions and sustainable development. In this paper, we propose a deep-learning method for high-resolution BRA mapping (2.5 m) from Sentinel-2 imagery (10 m). The resulting China building rooftop area dataset (CBRA) is the first multi-annual (2016–2021) and high-resolution (2.5 m) BRA dataset in China. Cross-comparisons show that the CBRA achieves the best performance in capturing the spatiotemporal information.
Cited articles
Bodirsky, B. L., Popp, A., Weindl, I., Dietrich, J. P., Rolinski, S., Scheiffele, L., Schmitz, C., and Lotze-Campen, H.: N2O emissions from the global agricultural nitrogen cycle – current state and future scenarios, Biogeosciences, 9, 4169–4197, https://doi.org/10.5194/bg-9-4169-2012, 2012.
Bouwman, A. F., Beusen, A. H. W., Lassaletta, L., van Apeldoorn, D. F., van Grinsven, H. J. M., Zhang, J., and Ittersum van, M. K.: Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland, Sci. Rep.-UK, 7, 40366, https://doi.org/10.1038/srep40366, 2017.
Bouwman, L., Klein Goldewijk, K., van der Hoek, K. W., Beusen, A. H., van Vuuren, D. P., Willems, J., Rufino, M. C., and Stehfest, E.: Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period, P. Natl. Acad. Sci. USA, 110, 20882–20887, 2013.
Cassou, E.: The greening of farm support programs: international experiences with agricultural subsidy reform, The World Bank, 68, https://documents1.worldbank.org/curated/en/827371554284501 204/pdf/The-Greening-of-Farm-Support-Programs-International-Experiences-with-Agricultural-Subsidy-Reform.pdf (last access: 10 October 2023), 2018.
Cobo, J. G., Dercon, G., and Cadisch, G.: Nutrient balances in African land use systems across different spatial scales: A review of approaches, challenges and progress, Agricult. Ecosyst. Environ., 136, 1–15, https://doi.org/10.1016/j.agee.2009.11.006, 2010.
Conant, R. T., Berdanier, A. B., and Grace, P. R.: Patterns and trends in nitrogen use and nitrogen recovery efficiency in world agriculture, Global Biogeochem. Cycles, 27, 558–566, https://doi.org/10.1002/gbc.20053, 2013.
Einarsson, R.: Biological nitrogen fixation in cropland (v1.3), Zenodo [data set], https://doi.org/10.5281/zenodo.7133340, 2023a.
Einarsson, R.: Source code for estimation of cropland biological nitrogen fixation (v1.3), Zenodo [code], https://doi.org/10.5281/zenodo.7133336, 2023b.
Einarsson, R., Pitulia, D., and Cederberg, C.: Subnational nutrient budgets to monitor environmental risks in EU agriculture: calculating phosphorus budgets for 243 EU28 regions using public data, Nutrient Cycling in Agroecosystems, https://doi.org/10.1007/s10705-020-10064-y, 2020.
Einarsson, R., Sanz-Cobeña, A., Aguilera, E., Billen, G., Garnier, J., van Grinsven, H., and Lassaletta, L.: Crop production and nitrogen use in European cropland and grassland 1961–2013, Sci. Data, 8, 1–30, https://doi.org/10.1038/s41597-021-01061-z, 2021.
EU Nitrogen Expert Panel: Nitrogen Use Efficiency (NUE) – an indicator for the utilization of nitrogen in agriculture and food systems, Wageningen University, Alterra, PO Box 47, 6700 Wageningen, the Netherlands, 2016.
FAO: Soil Nutrient Budget. Global, regional and country trends 1961–2018, FAOSTAT Analytical Brief Series No 20, FAO, Rome, 13, 2021.
FAO: Cropland nutrient budget, https://www.fao.org/faostat/en/#data/ESB (last access: 5 November 2022), 2022a.
FAO: Cropland nutrient budget: Gobal, regional and country trends, 1961–2020, FAOSTAT analytical brief no. 52, edited by: d'Ortigue, O. L., Gnetti, C., and Gordon, A., FAO, Rome, 14, https://www.fao.org/3/cc2904en/cc2904en.pdf (last access: 1 December 2022), 2022b.
FAO: FAOSTAT Domain manure Applied to Soils. Methodological note, release October 2022, FAO,, Rome, Italy, 5, https://fenixservices.fao.org/faostat/static/documents/GU/GU_e.pdf (last access: 1 November 2022), 2022c.
FAO: Land use statistics and indicators. Global, regional and country trends- 2000–2020. Analytical brief no. 48, FAO, Rome, https://www.fao.org/3/cc0963en/cc0963en.pdf (last access: 27 March 2023), 15, 2022d.
FAOSTAT: https://www.fao.org/faostat/en/#data (last access: 10 October 2022), 2022.
Herridge, D. F., Giller, K. E., Jensen, E. S., and Peoples, M. B.: Quantifying country-to-global scale nitrogen fixation for grain legumes II. Coefficients, templates and estimates for soybean, groundnut and pulses, Plant Soil, 474, 1–15, https://doi.org/10.1007/s11104-021-05166-7, 2022.
Hurtt, G. C., Chini, L., Sahajpal, R., Frolking, S., Bodirsky, B. L., Calvin, K., Doelman, J. C., Fisk, J., Fujimori, S., Klein Goldewijk, K., Hasegawa, T., Havlik, P., Heinimann, A., Humpenöder, F., Jungclaus, J., Kaplan, J. O., Kennedy, J., Krisztin, T., Lawrence, D., Lawrence, P., Ma, L., Mertz, O., Pongratz, J., Popp, A., Poulter, B., Riahi, K., Shevliakova, E., Stehfest, E., Thornton, P., Tubiello, F. N., van Vuuren, D. P., and Zhang, X.: Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6, Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, 2020.
IFA: Fertilizer use by crop and country for the 2017–2018 period, 45, https://www.ifastat.org/consumption/fertilizer-use-by-crop (last access: 1 November 2022), 2022.
IFASTAT Fertilizer consumption: https://www.ifastat.org/databases/plant-nutrition, last access: 16 February 2022.
IPCC: Chapter 3: Uncertainties, IPCC, 66, https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/1_Volume1/V1_3_Ch3_Uncertainties.pdf (last access: 1 September 2023), 2006.
Jackson, K.: KEJackson-94/Fr_Crop_Estimates: Methods for derivation of cropland fraction estimates as used in the FAOSTAT Cropland Nutrient Budget database (v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.10511851, 2024.
Kremer, A. M.: Methodology and Handbook Eurostat/OECD: Nutrient Budgets, EU27, Norway and Switzerland, 112, https://ec.europa.eu/eurostat/documents/2393397/2518760/Nutrient_Budgets_Handbook_%28CPSA_AE_109%29_corrected3.pdf/4a3647de-da73-4d23-b94b-e2b23844dc31 (last access: 26 July 2022), 2013.
Lassaletta, L., Billen, G., Grizzetti, B., Juliette, A., and Garnier, J.: 50 year trends in nitrogen use efficiency of world cropping systems: The relationship between yield and nitrogen input to cropland, Environ. Res. Lett., 9, 105011, https://doi.org/10.1088/1748-9326/9/10/105011, 2014.
Lassaletta, L., Billen, G., Garnier, J., Bouwman, L., Velazquez, E., Mueller, N. D., and Gerber, J. S.: Nitrogen use in the global food system: past trends and future trajectories of agronomic performance, pollution, trade, and dietary demand, Environ. Res. Lett., 11, 095007, https://doi.org/10.1088/1748-9326/11/9/095007, 2016.
Lesschen, J. P., Stoorvogel, J. J., Smaling, E. M. A., Heuvelink, G. B. M., and Veldkamp, A.: A spatially explicit methodology to quantify soil nutrient balances and their uncertainties at the national level, Nutrient Cycling in Agroecosystems, 78, 111–131, https://doi.org/10.1007/s10705-006-9078-y, 2007.
Lu, C. and Tian, H.: Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance, Earth Syst. Sci. Data, 9, 181–192, https://doi.org/10.5194/essd-9-181-2017, 2017.
Ludemann, C.: ludemannc/fao_cnb: FAO cropland nutrient budget analysis (v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.10491880, 2024.
Ludemann, C. I.: Tier 1 and 2 crop nutrient coefficients, Zenodo [code], https://doi.org/10.5281/zenodo.10492448 [code], 2022.
Ludemann, C. I., Gruere, A., Heffer, P., and Dobermann, A.: Global data on fertilizer use by crop and by country, Sci. Data, 9, 1–8, https://doi.org/10.1038/s41597-022-01592-z 2022a.
Ludemann, C. I., Hijbeek, R., van Loon, M. P., Murrell, T. S., Dobermann, A., and van Ittersum, M. K.: Estimating maize harvest index and nitrogen concentrations in grain and residue using globally available data, Field Crops Res., 284, 1–25, https://doi.org/10.1016/j.fcr.2022.108578, 2022b.
Ludemann, C. I., Hijbeek, R., van Loon, M., Murrell, S. T., Dobermann, A., and van Ittersum, M. K.: Global data on crop nutrient concentration and harvest indices, Dryad [data set], https://doi.org/10.5061/dryad.n2z34tn0x, 2023a.
Ludemann, C. I., Wanner, N., Chivenge, P., Dobermann, A., Einarsson, R., Grassini, P., Gruere, A., Jackson, K., Lassaletta, L., Maggi, F., Obli-Laryea, G., van Ittersum, M. K., Vishwakarma, S., Zhang, X., and Tubiello, F.: Data from: A global reference database in FAOSTAT of cropland nutrient budgets and nutrient use efficiency: Nitrogen, phosphorus and potassium, 1961–2020 [data set], https://doi.org/10.5061/dryad.hx3ffbgkh, 2023b.
Mueller, N. D., Gerber, J. S., Johnston, M., Ray, D. K., Ramankutty, N., and Foley, J. A.: Closing yield gaps through nutrient and water management, Nature, 490, 254–257, https://doi.org/10.1038/nature11420, 2012.
Nishina, K., Ito, A., Hanasaki, N., and Hayashi, S.: Reconstruction of spatially detailed global map of NH and NO application in synthetic nitrogen fertilizer, Earth Syst. Sci. Data, 9, 149–162, https://doi.org/10.5194/essd-9-149-2017, 2017.
Oenema, O., Kros, H., and de Vries, W.: Approaches and uncertainties in nutrient budgets: implications for nutrient management and environmental policies, Eur. J. Agron., 20, 3–16, https://doi.org/10.1016/S1161-0301(03)00067-4, 2003.
Pathak, H., Mohanty, S., Jain, N., and Bhatia, A.: Nitrogen, phosphorus, and potassium budgets in Indian agriculture, Nutrient Cycling in Agroecosystems, 86, 287–299, https://doi.org/10.1007/s10705-009-9292-5, 2010.
Peoples, M. B., Giller, K. E., Jensen, E. S., and Herridge, D. F.: Quantifying country-to-global scale nitrogen fixation for grain legumes: I. Reliance on nitrogen fixation of soybean, groundnut and pulses, Plant Soil, 469, 1–14, https://doi.org/10.1007/s11104-021-05167-6, 2021.
Quan, Z., Zhang, X., Fang, Y., and Davidson, E. A.: Different quantification approaches for nitrogen use efficiency lead to divergent estimates with varying advantages, Nature Food, 2, 241–245, https://doi.org/10.1038/s43016-021-00263-3, 2021.
Schils, R., Velthof, G., Mucher, S., Hazeu, G., Oenema, O., de Wit, A., and A., S.: Methods to estimate grassland production and biological fixation, Alterra, Wageningen, Netherlands, 77, https://ec.europa.eu/eurostat/documents/2393397/8259002/Grassland_2014_Task+2.pdf/42873c7f-dfdf-49ca-b2ef-7c7b5bcabfc8 (last access: 1 September 2023), 2013.
Serra, J., Marques-dos-Santos, C., Marinheiro, J., Aguilera, E., Lassaletta, L., Sanz-Cobeña, A., Garnier, J., Billen, G., de Vries, W., Dalgaard, T., Hutchings, N., and do Rosário Cameira, M.: Nitrogen inputs by irrigation is a missing link in the agricultural nitrogen cycle and related policies in Europe, Sci. Total Environ., 889, 164249, https://doi.org/10.1016/j.scitotenv.2023.164249, 2023.
Shang, Z., Zhou, F., Smith, P., Saikawa, E., Ciais, P., Chang, J., Tian, H., Del Grosso, S. J., Ito, A., Chen, M., Wang, Q., Bo, Y., Cui, X., Castaldi, S., Juszczak, R., Kasimir, Å., Magliulo, V., Medinets, S., Medinets, V., Rees, R. M., Wohlfahrt, G., and Sabbatini, S.: Weakened growth of cropland-N(2) O emissions in China associated with nationwide policy interventions, Glob. Chang. Biol., 25, 3706–3719, https://doi.org/10.1111/gcb.14741, 2019.
Sheldrick, W., Keith Syers, J., and Lingard, J.: Contribution of livestock excreta to nutrient balances, Nutrient Cycling in Agroecosystems, 66, 119–131, https://doi.org/10.1023/A:1023944131188, 2003.
Statistics Netherlands: Standardised calculation methods for animal manure and nutrients: Standard data 1990–2008, 2012.
Tubiello, F. N., Wanner, N., Asprooth, L., Mueller, M., Ignaciuk, A., Khan, A. A., and Rosero Moncayo, J.: Measuring progress towards sustainable agriculture. FAO Statistics Working Paper 21-24, FAO, Rome, 48, http://www.fao.org/documents/card/en/c/cb4549en (last access: 11 May 2021), 2021.
Tubiello, F. N., Conchedda, G., Casse, L., Pengyu, H., Zhongxin, C., De Santis, G., Fritz, S., and Muchoney, D.: Measuring the world's cropland area, Nature Food, 4, 30–32, https://doi.org/10.1038/s43016-022-00667-9, 2023.
Vishwakarma, S., Zhang, X., Dobermann, A., Heffer, P., and Zhou, F.: Global nitrogen deposition inputs to cropland at national scale from 1961 to 2020, Sci. Data, 10, 488, https://doi.org/10.1038/s41597-023-02385-8, 2023.
Vitousek, P. M., Naylor, R., Crews, T., David, M. B., Drinkwater, L. E., Holland, E., Johnes, P. J., Katzenberger, J., Martinelli, L. A., Matson, P. A., Nziguheba, G., Ojima, D., Palm, C. A., Robertson, G. P., Sanchez, P. A., Townsend, A. R., and Zhang, F. S.: Nutrient Imbalances in Agricultural Development, Science, 324, 1519–1520, https://doi.org/10.1126/science.1170261, 2009.
Wang, Q., Zhou, F., Shang, Z., Ciais, P., Winiwarter, W., Jackson, R. B., Tubiello, F. N., Janssens-Maenhout, G., Tian, H., Cui, X., Canadell, J. G., Piao, S., and Tao, S.: Data-driven estimates of global nitrous oxide emissions from croplands, Nat. Sci. Rev., 7, 441–452, https://doi.org/10.1093/nsr/nwz087, 2019.
Wang, R., Goll, D., Balkanski, Y., Hauglustaine, D., Boucher, O., Ciais, P., Janssens, I., Penuelas, J., Guenet, B., Sardans, J., Bopp, L., Vuichard, N., Zhou, F., Li, B., Piao, S., Peng, S., Huang, Y., and Tao, S.: Global forest carbon uptake due to nitrogen and phosphorus deposition from 1850 to 2100, Glob. Chang. Biol., 23, 4854–4872, https://doi.org/10.1111/gcb.13766, 2017.
West, P. C., Gerber, J. S., Engstrom, P. M., Mueller, N. D., Brauman, K. A., Carlson, K. M., Cassidy, E. S., Johnston, M., MacDonald, G. K., Ray, D. K., and Siebert, S.: Leverage points for improving global food security and the environment, Science, 345, 325–328, https://doi.org/10.1126/science.1246067, 2014.
Zhang, Q., Chu, Y., Yin, Y., Ying, H., Zhang, F., and Cui, Z.: Comprehensive assessment of the utilization of manure in China's croplands based on national farmer survey data, Sci. Data, 10, 223, https://doi.org/10.1038/s41597-023-02154-7, 2023.
Zhang, G. L., Beusen, A. H. W., Van Apeldoorn, D. F., Mogollón, J. M., Yu, C., and Bouwman, A. F.: Spatiotemporal patterns of paddy rice croplands in China and India from 2000 to 2015, Sci. Total Environ., 579, 82–92, https://doi.org/10.1016/j.scitotenv.2016.10.223, 2017.
Zhang, X., Davidson, E., Mauzerall, D., Searchinger, T., Dumas, P., and Shen, Y.: Managing nitrogen for sustainable development, Nature, 528, 51–59, https://doi.org/10.1038/nature15743, 2015.
Zhang, X., Davidson, E. A., Zou, T., Lassaletta, L., Quan, Z., Li, T., and Zhang, W.: Quantifying Nutrient Budgets for Sustainable Nutrient Management, Glob. Biogeochem. Cycles, 34, e2018GB006060, https://doi.org/10.1029/2018gb006060, 2020.
Zhang, X., Zou, T., Lassaletta, L., Mueller, N. D., Tubiello, F., Lisk, M. D., Lu, C., Conant, R. T., Dorich, C. D., Gerber, J., Tian, H., Bruulsema, T., McClellan-Maaz, T., Nishina, K., Leon, B., Bodirsky, L. B., Popp, A., Bouwman, L., Beusen, A., Chang, J., Havlík, P., Leclère, D., Canadell, J. G., Jackson, R. B., Billen, G., Heffer, P., Wanner, N., Zhang, W., and Davidson, E. A.: Quantification of global and national nitrogen budgets for crop production, Nature Food, 2, 529–540, https://doi.org/10.1038/s43016-021-00318-5, 2021.
Zou, T., Zhang, X., and Davidson, E. A.: Global trends of cropland phosphorus use and sustainability challenges, Nature, 611, 81–87, https://doi.org/10.1038/s41586-022-05220-z, 2022.
Short summary
Nutrient budgets help identify the excess or insufficient use of fertilizers and other nutrient sources in agriculture. They allow the calculation of indicators, such as the nutrient balance (surplus or deficit) and nutrient use efficiency, that help to monitor agricultural productivity and sustainability. This article describes a global cropland nutrient budget that provides data on 205 countries and territories from 1961 to 2020 (data available at https://www.fao.org/faostat/en/#data/ESB).
Nutrient budgets help identify the excess or insufficient use of fertilizers and other nutrient...
Altmetrics
Final-revised paper
Preprint