the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global 1 km land surface parameters for kilometer-scale Earth system modeling
Dalei Hao
L. Ruby Leung
Related authors
Climate models are crucial for predicting climate change in detail. This paper proposes a balanced approach to improving their accuracy by combining traditional process-based methods with modern artificial intelligence (AI) techniques while maximizing the resolution to allow for ensemble simulations. The authors propose using AI to learn from both observational and simulated data while incorporating existing physical knowledge to reduce data demands and improve climate prediction reliability.
Related subject area
Our study introduces GMIE, a high-resolution global map of irrigated cropland at 100 m resolution, covering 403.17 Mha and utilizing irrigation performance under drought stress. We found that 23.4 % of global cropland is irrigated, with the most extensive areas in India, China, the United States, and Pakistan. We identified the distribution of central pivot systems commonly used in the United States and Saudi Arabia. This new map can better support water management and food security globally.