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Abstract. Earth system models (ESMs) are progressively advancing towards the kilometer scale (“k-scale”).
However, the surface parameters for land surface models (LSMs) within ESMs running at the k-scale are typ-
ically derived from coarse-resolution and outdated datasets. This study aims to develop a new set of global
land surface parameters with a resolution of 1 km for multiple years from 2001 to 2020, utilizing the latest and
most accurate available datasets. Specifically, the datasets consist of parameters related to land use and land
cover, vegetation, soil, and topography. Differences between the newly developed 1 km land surface parameters
and conventional parameters emphasize their potential for higher accuracy due to the incorporation of the most
advanced and latest data sources. To demonstrate the capability of these new parameters, we conducted 1 km
resolution simulations using the E3SM Land Model version 2 (ELM2) over the contiguous United States. Our
results demonstrate that land surface parameters contribute to significant spatial heterogeneity in ELM2 simu-
lations of soil moisture, latent heat, emitted longwave radiation, and absorbed shortwave radiation. On average,
about 31 % to 54 % of spatial information is lost by upscaling the 1 km ELM2 simulations to a 12 km resolution.
Using eXplainable Machine Learning (XML) methods, the influential factors driving the spatial variability and
spatial information loss of ELM2 simulations were identified, highlighting the substantial impact of the spa-
tial variability and information loss of various land surface parameters, as well as the mean climate conditions.
The comparison against four benchmark datasets indicates that ELM generally performs well in simulating soil
moisture and surface energy fluxes. The new land surface parameters are tailored to meet the emerging needs
of k-scale LSM and ESM modeling with significant implications for advancing our understanding of water,
carbon, and energy cycles under global change. The 1 km land surface parameters are publicly available at
https://doi.org/10.5281/zenodo.10815170 (Li et al., 2024).

1 Introduction

Aided by advancements in computing power, it has become
increasingly feasible to run land surface models (LSMs) and
Earth system models (ESMs) at the kilometer scale (k-scale)
to improve our understanding of Earth system processes. The
emergence of k-scale modeling has the potential to improve
the accuracy of climate simulations significantly and allow
for explicit modeling of physical processes that were previ-
ously poorly represented in climate models (Change, 2022),
such as modeling of mesoscale convective systems in the at-
mosphere (Slingo et al., 2022) and mesoscale eddies in the

ocean (Hewitt et al., 2022). Simultaneously, land modeling
has also witnessed a surge of interest in hyper-resolution
modeling, initially proposed by Wood et al. (2011), which
aims to model land surface processes at a horizontal reso-
lution of 1 km globally and 100 m or finer for continental
or regional domains. The motivation behind hyper-resolution
modeling is to address the requirements of operational fore-
casting, like extreme events, and to enhance our understand-
ing of hydrological and biogeochemical cycling and land–
atmosphere interactions. High-resolution LSMs have been
increasingly applied in various fields, as demonstrated by re-
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cent examples, such as the 30 m soil moisture simulations
over the contiguous United States (CONUS) (Vergopolan et
al., 2020, 2021, 2022), 500 m hyper-resolution modeling of
surface and root zone soil moisture over Oklahoma (Rouf et
al., 2021), 1 km simulations over southwestern USA (Singh
et al., 2015), 3 km simulations over eastern Tibetan Plateau to
understand hydrological changes over mountainous regions
(Yuan et al., 2018; Ji and Yuan, 2018), and 6 km simula-
tions over China to reduce simulation errors of hydrological
variables (Ji et al., 2023). High-resolution modeling can bet-
ter capture the land surface heterogeneity and could improve
simulations of terrestrial water and energy cycles (Giorgi and
Avissar, 1997; Chaney et al., 2018; Xu et al., 2023), biogeo-
chemical cycles (Chaney et al., 2018), and land–atmosphere
coupling (Liu et al., 2017; Zhou et al., 2019; Bou-Zeid et al.,
2020). For example, Singh et al. (2015) demonstrated that
increasingly capturing topography and soil texture hetero-
geneity at finer resolutions (e.g., 1 km) improves land surface
modeling of water and energy variables. Li et al. (2022) have
shown that the spatial heterogeneities of land surface param-
eters (including land use and land cover (LULC) and topog-
raphy) are essential for modeling the spatial variability of
land surface energy and water partitioning. Hao et al. (2022)
found that 1 km simulations with subgrid topographic config-
urations can better capture the topographic effects on surface
fluxes.

The parameters for LSMs within ESMs being run at the k-
scale are typically derived from coarse-resolution datasets or
outdated datasets. Consequently, k-scale modeling may not
accurately represent fine-scale land surface heterogeneity un-
less high-resolution land surface parameters at the kilome-
ter or finer scales are utilized. Publicly available land sur-
face parameters are primarily provided at coarse resolutions
and based on outdated datasets (see details in Table 1). For
example, the Community Land Model version 5 (CLM5;
Lawrence et al., 2019) typically relies on land surface param-
eters with spatial resolutions ranging from 1 km to 0.5° based
on source datasets that were processed more than 10 years
ago (see Table 1 for details). Although LULC-related param-
eters are available at a relatively high resolution of 0.05°,
they are temporally static and were derived from a combi-
nation of data from different years spanning 1993 to 2012
(Table 1). Leaf area index (LAI) was derived from the now
outdated products of Moderate Resolution Imaging Spectro-
radiometer (MODIS) Collection 4 (Myneni et al., 2002). The
canopy height for tree plant functional types (PFTs) is based
on forest canopy height data derived from the Geoscience
Laser Altimeter System (GLAS) aboard ICESat, collected
in 2005 (Simard et al., 2011). Canopy height for short veg-
etation is represented by PFT-specific values that remain in-
variant in space (Bonan et al., 2002a). Soil sand and clay
contents were obtained from the International Geosphere-
Biosphere Programme (IGBP) soil dataset (Global Soil Data
Task 2000), consisting of 4931 soil mapping units (IGBP,
2000). These CLM5 land surface parameters have been

widely utilized in the LSM and ESM communities, despite
being developed over a decade ago. Subsequently, Ke et
al. (2012; hereafter referred to as K2012) developed an up-
dated set of LULC and vegetation-related land surface pa-
rameters for CLM4 at a resolution of 0.05°. These parame-
ters were developed based on MODIS Collection 5 products
or datasets derived from MODIS Collection 5 products, in-
cluding PFTs and non-vegetation land cover, LAI, and stem
area index (SAI). The dataset by K2012 has also been widely
used by LSMs, including CLM (e.g., Leng et al., 2013; Ke et
al., 2013; Singh et al., 2015; Xia et al., 2017) and the Energy
Exascale Earth System Model (E3SM) Land Model (ELM)
(e.g., Caldwell et al., 2019; Leung et al., 2020; Li et al.,
2022). However, the CLM5 and K2012 datasets, with their
relatively coarse resolution and reliance on outdated data
from over a decade ago, may not fully meet the require-
ments for k-scale modeling. Additionally, these datasets in-
clude LULC, LAI, and SAI data that are year invariant. Con-
sequently, they are inappropriate for studies involving LULC
changes, such as urbanization. In addition, some recently de-
veloped land surface processes and their associated parame-
ters are not included in previous datasets. For instance, Hao
et al. (2022) introduced a subgrid topographic parameteriza-
tion of solar radiation with five associated topographic fac-
tors in ELM, which have been found to significantly affect
the surface energy budget.

High-resolution and up-to-date datasets at kilometer or
finer resolutions are now widely available and can be uti-
lized to derive more accurate land surface parameters for
k-scale LSM simulations. For example, the MODIS Land
Cover Type Collection 6 (MCD12Q1, denoted C6) data prod-
uct provides global land cover types yearly from 2001 to the
present (Friedl and Sulla-Menashe, 2019; Sulla-Menashe et
al., 2019) at 500 m resolution. Compared to MODIS Collec-
tion 4 (used in CLM5 land surface parameters) and Collec-
tion 5 products (used in K2012 land surface parameters), the
C6 data represent a significant advancement in algorithm im-
provements and the quality of land cover information. De-
spite the availability of high-resolution MODIS LAI prod-
ucts, such as the 500 m MCD15A2H (Myneni et al., 2021),
they suffer from noise and gaps with spatially and tempo-
rally inconsistent values due to clouds, seasonal snow cover,
instrument issues, and uncertainties in retrieval algorithms
(Yuan et al., 2011). To address these limitations, Yuan et
al. (2011) reprocessed MODIS LAI products and generated
a more accurate and spatiotemporally continuous and consis-
tent LAI dataset that is available continuously to the present
period. Additional high-resolution and up-to-date datasets
are available for preparing land surface parameters, such as
soil texture and soil organic matter at 250 m resolution (Pog-
gio et al., 2021) and vegetation height at 10 m resolution
(Lang et al., 2023).

This study aims to develop a new set of global land sur-
face parameters with a resolution of 1 km for multiple years,
utilizing the latest and most accurate datasets. These param-
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eters will be tailored to meet the needs of k-scale Earth sys-
tem modeling. The newly developed land surface parame-
ters include four categories: (1) LULC-related parameters,
such as the spatial distributions of PFTs, lakes, wetlands,
urban areas, and glaciers; (2) vegetation-related parameters,
including PFTs’ LAI and SAI for multiple years ranging
from 2001 to 2021, and the canopy top and bottom heights;
(3) soil-related parameters, such as soil textures and soil or-
ganic matter; and (4) topography-related parameters, such
as elevation, slope, aspect, and subgrid topographic factors.
We conducted a comparison of the new 1 km parameters
against the K2012 and ELM2/CLM5 default parameters. Uti-
lizing ELM version 2 (ELM2) as a test bed, we demonstrated
the modeling capability enabled by the new high-resolution
parameters through a 5-year simulation at 1 km resolution
over CONUS. We performed a spatial scaling analysis on
four ELM2-simulated variables, which included soil mois-
ture, latent heat, emitted longwave radiation, and absorbed
shortwave radiation, to underscore the significance of high-
resolution land surface parameters on ELM2 simulations. We
employed eXplainable Machine Learning (XML) methods to
evaluate the most important factors of land surface parame-
ters and climate conditions (e.g., mean temperature and pre-
cipitation) in driving the spatial variability and spatial infor-
mation loss of ELM2 simulations.

2 Development of 1 km land surface parameters

In this study, all the land surface parameters were devel-
oped globally at a resolution of approximately 1 km (i.e.,
1/120°; Table 1). The LULC-related parameters (soil prop-
erties, canopy height, and elevation) were processed via
Google Earth Engine (GEE; Gorelick et al., 2017). The LAI
was processed using an area-weighted average from their
original 450 m resolution obtained from Beijing Normal Uni-
versity (Yuan et al., 2011). All data sources utilized in this
study have been rigorously validated in their respective orig-
inal publications. The detailed methods for deriving these pa-
rameters are described below.

2.1 LULC-related parameters

In this study, the MODIS MCD12Q1 version 6 (Friedl
and Sulla-Menashe, 2019) was employed to ascertain the
plant functional types (PFT) as well as other non-vegetative
land categories at a spatial resolution of 1 km spanning
the years 2001 to 2020. The integrity of the MODIS land
cover product has been established through a 10-fold cross-
validation accuracy assessment using the Terrestrial Ecosys-
tem Parameterization database (Sulla-Menashe et al., 2019).
This land cover product offers richer and more flexible land
cover data with higher accuracy and substantially less year-
to-year stochastic variation in classification results (Sulla-
Menashe et al., 2019). Being the sole operational global land

cover product available with annual intervals, it addresses a
significant gap in the realm of global change research.

The original MODIS land cover data were first resampled
to 1 km from its original 500 m resolution using a majority
resampling method in GEE. At such a high 1 km resolution,
we did not consider the proportion of different land cover
types within each grid. Instead, we assigned 100 % of a grid
cell to the major land cover type. Specifically, the MCD12Q1
LC_Type 5 PFT classification layer was used to determine
the distributions of the seven PFTs, as well as lake, urban,
and glacier, following the method outlined in Ke et al. (2012)
and summarized below:

– The seven PFTs include needleleaf evergreen trees,
needleleaf deciduous trees, broadleaf evergreen trees,
broadleaf deciduous trees, shrub, grass, and crop. These
PFTs were further reclassified into 15 categories (Ta-
ble S1 in the Supplement) that are typically used
in LSMs based on the rules presented in Bonan et
al. (2002a) with the assistance of 1 km precipitation and
surface air temperature from WorldClim V1 (Hijmans
et al., 2005).

– Grass was reclassified as C3 and C4 grass using the ap-
proach presented by Still et al. (2003), with the assis-
tance of monthly LAI (processed in Sect. 2.2.1) and me-
teorological variables from WorldClim V1.

– The “non-vegetated land” was classified as the barren
soil class.

– The “permanent snow and ice” was assigned as the
glacier land unit.

– Global lakes were identified based on the classifica-
tion of “water bodies” over the global land, constrained
using the global land mask obtained from Natural
Earth (https://www.naturalearthdata.com/, last access:
6 June 2023).

– The urban land unit was determined based on the
MODIS “urban and built-up” classification. These ur-
ban grids were further classified into three urban
classes, namely, tall building district (TBD), high den-
sity (HD), and medium density (MD), based on Jack-
son et al. (2010; hereinafter referred to as J2010). J2010
generated global urban extent maps for the TBD, HD,
and MD classes at a spatial resolution of 1 km, based
on rules of building height and vegetation coverage
fraction (https://gdex.ucar.edu/dataset/188a_oleson/file.
html, last access: 6 June 2023). However, the J2010
dataset is temporally static and cannot reflect changes
in urban boundaries over time. Therefore, we reclassi-
fied the yearly MODIS urban land class as TBD, HD,
and MD based on the J2010 dataset using the nearest-
neighbor sampling method for each year.

Earth Syst. Sci. Data, 16, 2007–2032, 2024 https://doi.org/10.5194/essd-16-2007-2024
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After determining the distribution of 15 PFTs, bare soil, lake,
glacier, and urban land, any remaining 1 km grids were as-
signed as ocean (Table S1). It should be noted that the wet-
land land unit was not explicitly classified in this study. This
is because, instead of treating wetlands as an individual land
unit, many LSMs (e.g., ELM2 and CLM5) integrate wetland
functioning processes prognostically within other land units
where a surface water storage component is implemented to
represent wetland functioning.

2.2 Vegetation-related parameters

2.2.1 Monthly LAI and SAI

The monthly LAI parameters were obtained from Bei-
jing Normal University (BNU_LAI; Yuan et al., 2011).
BNU_LAI, an enhanced version of the MODIS LAI product,
has been subjected to thorough quality control, incorporat-
ing multiple algorithms for improved accuracy (Yuan et al.,
2011). Its validation involved an extensive array of LAI refer-
ence maps and employed the bottom-up approach advocated
by the CEOS Land Product Validation Subgroup (Morisette
et al., 2006). Compared to the original MODIS LAI, the
BNU_LAI dataset exhibits superior performance, along with
enhanced spatiotemporal continuity and consistency. The 8 d
BNU_LAI product at a resolution of 15 s (∼ 450 m) over
2001–2020 was downloaded from http://globalchange.bnu.
edu.cn/research/laiv061 (last access: 6 June 2023). Subse-
quently, the data were resampled to a resolution of 1 km us-
ing an area-weighted averaging method and averaged tem-
porally for each month. The processed monthly LAI at 1 km
resolution was subsequently assigned to each of the 15 PFTs
described above at each grid. The monthly SAI was then cal-
culated based on the processed monthly LAI using the meth-
ods and PFT parameters described in Zeng et al. (2002).

2.2.2 Vegetation canopy height

We leveraged a global vegetation canopy height dataset
sourced from Lang et al. (2023). This dataset, derived using
a probabilistic deep learning model, fuses Sentinel-2 images
with Global Ecosystem Dynamics Investigation (GEDI) to
retrieve canopy height. It stands out as the inaugural global
canopy height dataset offering consistent, wall-to-wall cov-
erage at a 10 m spatial resolution across all vegetation types.
Assessments using hold-out GEDI reference data and com-
parisons with independent airborne lidar data demonstrate
that the approach outlined by Lang et al. (2023) produces a
meticulously quality-controlled, state-of-the-art global map
product, accompanied by quantitative uncertainty estimates.
The canopy height served as the canopy top height param-
eter. Canopy bottom height was calculated by multiplying
PFT-based ratios derived from the ratio of ELM2’s (same as
CLM5) canopy top and bottom heights for different PFTs
(Table S2).

2.3 Soil-related parameters

We obtained the SoilGrids 2.0 data with an original resolu-
tion of 250 m (Poggio et al., 2021) to prepare soil proper-
ties. SoilGrids 2.0 is generated using machine learning based
on multiple data sources of soil profiles and remote sensing
data (Hengl et al., 2017). The soil product underwent rigor-
ous quantitative evaluation using a cross-validation method,
which ensures alignment with established pedo-landscape
features and provides spatial uncertainty to guide product
users (Poggio et al., 2021). SoilGrids 2.0 provides percent
clay, percent sand, and soil organic matter for six stan-
dard soil layers: 0–5, 5–15, 15–30, 30–60, 60–100, and
100–200 cm. The original SoilGrids 2.0 data obtained from
GEE were processed at 1 km resolution with multiple lay-
ers using an area-weighted averaging method. To facilitate
the demonstration, we restructured the six soil layers verti-
cally into ELM2’s 10 effective soil layers (0–1.8, 1.8–4.5,
4.5–9.1, 9.1–16.6, 16.6–28.9, 28.9–49.3, 49.3–82.9, 82.9–
138.3, 138.3–229.6, and 229.6–380.2 cm) using the nearest-
neighbor method. It should be noted that the lake module
in ELM2 and CLM5 requires soil properties, but the Soil-
Grids 2.0 data may not provide coverage over water surfaces.
To address this, we utilized the nearest-neighbor sampling
method to map the 1 km soil properties onto the terrestrial
water surface.

2.4 Topography-related parameters

We employed the digital elevation from the Multi-Error-
Removed Improved-Terrain DEM (MERIT DEM; Yamazaki
et al., 2019) to obtain topography-related parameters. The
MERIT DEM provides globally consistent elevation data at
90 m resolution, distinguished by its exceptional vertical ac-
curacy. This accuracy was rigorously validated against ICE-
Sat’s lowest elevations in both forested and non-forested re-
gions and was further benchmarked using the UK’s premium
airborne lidar DEM (Yamazaki et al., 2019). We first ac-
quired the 1 km elevation and standard deviation of eleva-
tion using GEE based on the original 90 m elevation. Further,
we calculated the slope, aspect, sky view factor, and terrain
configuration factor from the 1 km elevation using the par-
allel computing tool developed by Dozier (2022). The sky
view factor represents the proportion of visible sky limited
by adjacent terrain, and the terrain configuration factor de-
scribes the proportion of adjacent terrain which is visible
to the ground target. Finally, to drive the parameterization
of subgrid topographical effects on solar radiation (Hao et
al., 2022) in ELM2, we calculated the sin(slope) · sin(aspect)
and sin(slope) · cos(aspect) for calculating the local solar in-
cident angle, as well as two normalized angle-related fac-
tors, the sky view factor, and terrain configuration factor by
cos(slope). It is important to note that the standard deviation
of elevation calculated in this study is specific to the 1 km
resolution simulation. For applications requiring coarser res-
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olutions (e.g., 0.5°), the standard deviation should be recalcu-
lated directly from the 1 km elevation rather than averaging
from the 1 km standard deviation of elevation.

2.5 Comparison between new and existing land surface
parameters

In this study, since the data sources used to develop the 1 km
global land surface parameters have already undergone rig-
orous validation, we do not perform additional evaluations
against reference datasets (e.g., observations). Instead, our
focus is on comparing the newly developed 1 km parame-
ters with those from K2012 and the ELM2/CLM5 default
parameters. The K2012 parameters were obtained through
personal communication (refer to the “Data availability” sec-
tion for details). The ELM2/CLM5 default parameters were
sourced from the Community Earth System Model (CESM)
input data repository (https://svn-ccsm-inputdata.cgd.ucar.
edu/trunk/inputdata/, last access: 6 June 2023). Given the dif-
ferent resolutions of these datasets (our new parameters at
1 km, K2012 at 0.05°, and the ELM2/CLM5 defaults with
varying resolutions), we adapt our comparison at different
resolutions for different variables.

For PFT parameters, we aggregated both the 1 km new pa-
rameters and the 0.05° K2012 data to the 0.5° resolution of
the ELM2/CLM5 default. For non-vegetated land units (i.e.,
urban, glacier, and lake), we upscaled the 1 km new param-
eters to a 0.05° resolution to align with the ELM2/CLM5
default. It is important to note that the urban parameter in
K2012 is only available for the Northern Hemisphere, due to
limitations in data acquisition.

When comparing LAI, we aggregated the 1 km new and
K2012 LAI to 0.5° resolution, matching the ELM2/CLM5
default LAI/SAI resolution. We excluded the comparison of
SAI from our analysis due to the limited availability of the
global K2012 dataset, from which we only acquired coverage
for North America. We have not included a comparison of
vegetation canopy height (top and bottom parameters) in our
study. This is because the K2012 dataset does not contain
these parameters, and the ELM2/CLM5 default parameters in
the CESM input data repository provide only tabular values
for each PFT rather than spatially variable canopy heights for
tree PFTs.

For soil and topography-related parameters, our com-
parison was limited to the 1 km new parameters and the
ELM2/CLM5 default, as K2012 does not include these pa-
rameters. Specifically, for soil comparisons, we aggregated
the new 1 km parameters to 0.083° resolution to match the
ELM2/CLM5 default soil parameters. For topography, given
that the ELM2/CLM5 default parameters is a combination
of 1 km and 10 arcmin data sources, we simplify the com-
parison by aggregating both the new 1 km parameters and
ELM2/CLM5 default to 0.5° resolution, including elevation
and slope.

3 K-scale demonstration simulation over CONUS

3.1 Experiment design

To demonstrate the capability of 1 km datasets, we conducted
ELM2 simulations over CONUS at the resolution of 1 km,
using the newly developed 1 km land surface parameters
for 2010. We used atmospheric forcing from the Global Soil
Wetness Project Phase 3 (GSWP3; Kim, 2017) with a spa-
tial resolution of 0.5° to drive ELM. The spatial homogene-
ity of atmospheric forcings within 0.5° grid cells guaran-
tees that the spatial variability of the ELM-simulated vari-
ables (e.g., latent heat) within 0.5° grid cells is solely at-
tributable to the heterogeneity of the 1 km land surface pa-
rameters. There are approximately 12 million effective grids
over CONUS. We ran ELM for 5 years (2010–2014), and
the last year’s simulation was used for analysis. We specif-
ically analyzed the annual mean of surface layer soil mois-
ture (SM, m3 m−3), latent heat (LH, W m−2), emitted long-
wave radiation (ELR, W m−2), and absorbed shortwave radi-
ation (ASR, W m−2).

3.2 Spatial scaling analysis

We conducted a spatial scaling analysis following the method
described in Vergopolan et al. (2022) on the 1 km ELM sim-
ulation data to better understand how k-scale spatial hetero-
geneity in the four ELM-simulated variables (mentioned in
Sect. 3.1) induced only by spatial heterogeneity of land sur-
face parameters changes across spatial scales. First, we per-
formed upscaling by averaging the 1 km (1/120°) land sur-
face parameters and the four ELM-simulated variables to
coarser spatial scales, i.e., λscale of 1/60, 1/40, 1/30, 1/24,
1/20, and 1/10°, and we calculated the spatial standard de-
viation (σscale) within each 0.5°× 0.5° box at each spatial
scale (Table 2). Second, we quantified the changes in spatial
variability at different spatial scales compared to the origi-
nal 1 km resolution by calculating the ratio of σscale to σ1 km.
Third, we fitted a log

(
σscale
σ1 km

)
∝ β × log

(
λscale
λ1 km

)
relationship,

where β is an indicator to quantify data spatial variability
persistence across scales (Hu et al., 1997). A more negative
β indicates a larger dependency of data spatial variability on
spatial scales, resulting in a higher information loss, denoted
as γscale = (1− σscale/σ1 km)× 100 %. In this study, we fo-
cus on information loss at a 12 km scale, denoted as γ12 km.
For simplicity in the subsequent discussion, γ12 km will be
referred to as γ in the results section. Given the possibil-
ity that β may not demonstrate significant temporal variation
(Mälicke et al., 2020) and considering that our scaling analy-
sis is intended for demonstration purposes, our spatial scaling
analysis is based on the annual mean of ELM2 simulations.

It is crucial to clarify that the upscaled 1 km simulation
results in the spatial scaling analysis are not equivalent to
the results obtained from a coarse-resolution ELM conducted
using upscaled parameters. The spatial scaling analysis is in-
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Table 2. Spatial resolution and pixel number at different spatial scales.

λscale/λ1 km 1 2 3 4 5 6 12

Spatial resolution 1 km (1/120°) 2 km (1/60°) 3 km (1/40°) 4 km (1/30°) 5 km (1/24°) 6 km (1/20°) 12 km (1/10°)
Pixel number within 0.5°× 0.5° box 60× 60 30× 30 20× 20 15× 15 12× 12 10× 10 5× 5

tended to emphasize the value of high-resolution modeling in
capturing fine-scale spatial variabilities and to highlight the
contributions of high-resolution land surface parameters on
the simulated variables.

3.3 Attribution analysis utilizing XML methods

We conducted additional analysis to determine the primary
land surface parameters that influence the spatial scaling
of ELM simulations. We employed XML methods, specif-
ically the eXtreme Gradient Boosting (XGBoost; Chen
and Guestrin, 2016) machine learning (ML) algorithm and
the game theoretic approach SHapley Additive exPlana-
tions (SHAP; Lundberg and Lee, 2017; Lundberg et al.,
2018, 2020). XML methods were utilized to assess the in-
fluence of land surface parameters on the spatial variability
and information loss of ELM2 simulations across CONUS.
Taking spatial variability as an example, we first computed
the standard deviation (σ ) within each 0.5°× 0.5° grid for
both 1 km resolution land surface parameters and simula-
tions. Then, we train a machine learning model to predict
the spatial variability of each simulated variable (i.e., SM,
LH, ELR, ASR). We used the spatial variability (i.e., σ ) and
mean (µ) of the land surface parameters and µ of precipita-
tion and temperature as predictor variables, and we use the
simulated variable’s σ as the target variable. After training
the machine learning model, we used SHAP to quantify the
relative importance and determine which factors were most
important in driving the spatial variability of the simulations.
Similarly, we used this approach to identify the most critical
drivers of information loss.

3.4 Reference datasets for evaluating ELM simulation

We also performed a comparison of all four ELM-simulated
variables against reference datasets. It is important to note
that we used the default model parameters and did not per-
form any calibration (see Discussion section for details).
For reference datasets, soil moisture was obtained from
the Global Land Evaporation Amsterdam Model (GLEAM;
Martens et al., 2017), latent heat flux data were from the
MODIS product (Running et al., 2021), and both ELR and
ASR data were processed from the land component of the
fifth generation of the European ReAnalysis (ERA5_Land;
Muñoz-Sabater et al., 2021). For the soil moisture evaluation,
we compared the surface layer soil moisture from GLEAM
(10 cm depth) with the weighted average of the first four-
layer soil moisture from ELM (about 11 cm depth). To en-

sure comparability, we unified the spatial resolution of both
reference datasets and ELM simulations to a 0.5° resolution
and focused our analysis on the annual mean data for 2014.

4 Results

4.1 Demonstration of the global 1 km land surface
parameters

LAI generally shows high values in humid and warm regions,
such as tropical rainforests, southeastern USA, and southern
Asia, and low values over arid or cold regions, such as cen-
tral Australia, southwestern USA, the Middle East, central
Asia, and northern Canada (Fig. 1a). At high resolution, the
LAI dataset clearly reflects the detailed heterogeneity of veg-
etation distributions. In subregion R1 (Fig. 1b), a relatively
small LAI is distributed over mountain ridges and zero LAI
over water surfaces (e.g., lakes). In subregion R2 (Fig. 1c),
the LAI pattern shows a large proportion of forest fragmen-
tation caused by deforestation. In subregion R3 (Fig. 1d), the
LAI shows the distribution of agricultural land along with the
river, river mouth, and lakes under an arid climate. R4 shows
how urbanization affects vegetation distributions (Fig. 1e).

Figure 2 demonstrates the distribution of plant functional
types and other non-vegetation land units. High-resolution
LULC types over multiple years can benefit studies related to
LULC changes like urbanization and deforestation. Canopy
height generally follows a similar spatial pattern with LAI,
with high values in humid and warm regions and low values
over arid or cold regions (Fig. 3a). The percent clay shows
high values over Southeast Asia, India, central Africa, and
southeast South America and low content over northern Eu-
rope, southern Africa, and Alaska (Fig. 3b). The topography
factors follow the elevation patterns (Fig. 3c and d), where
there are large slopes and standard deviation of elevation over
mountainous regions, such as the Rocky Mountains in North
America, the Himalayas in Asia, and the Andes in South
America.

4.2 Comparison between new and existing land surface
parameters

The global distributions of different PFTs show varying de-
grees of difference when comparing the new parameters with
the K2012 and ELM2/CLM5 default parameters (Figs. 4
and S1–S16 in the Supplement). Predominant types such as
bare soil, BET-Tropical tree, C3 and C4 grasses, and crop
are found consistently across all datasets. Notable differ-
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Figure 1. The spatial pattern of LAI (annual mean in 2010) over (a) global land and (b–e) four subregions R1–R4 within 2° boxes marked
in (a). Subregions R1–R4 represent topography, deforestation, irrigations, and urbanization effects on LAI.

ences include less bare soil in the new parameters and K2012
compared to the ELM2/CLM5 default, especially in high-
latitude North America, western USA, southern Africa, cen-
tral Asia, and central Australia (Fig. S1). While the new
NDT PFT shows larger coverage in Siberia than K2012
and ELM2/CLM5 (Fig. S4), the BET-Tropical PFT is more
prevalent in the new parameters across Central and South
America (Fig. S5). The BET-Temperate PFT has greater area
coverage in southern China in the new parameters (Fig. S6).
For BDT-Tropical, BDT-Temperate, and BDT-Boreal PFTs,
both the new and ELM2/CLM5 default parameters surpass
K2012 data in coverage (Figs. S7–S9). The coverage of the
new BDS-Temperate PFT is smaller than K2012 but larger
than the ELM2/CLM5 default (Fig. S11), and the new BDS-
Boreal PFT is less extensive in the boreal Northern Hemi-
sphere compared to both K2012 and the ELM2/CLM5 de-
faults (Fig. S12). The C3-Arctic PFT shows larger areas in
the new parameters, particularly in northern Canada, with
the new C4 grass PFT being similar to that of K2012 and

larger than ELM2/CLM5 C4 grass. The crop PFT is less ex-
tensive in the new parameters, particularly in southeastern
China, Europe, South America, Africa, and Australia.

The global distributions of non-vegetated land covers
of lake, glacier, and urban areas vary among the datasets
(Figs. S17–S19). The new dataset shows slightly less
lake coverage than K2012, but both are smaller than the
ELM2/CLM5 default, particularly in high-latitude North
America (Fig. S17). Glacier coverage in the new parameter
is around 0.7 % smaller than K2012, with noticeable differ-
ences in the Arctic North America, while the ELM2/CLM5
default shows more extensive glacier coverage in Antarc-
tica (Fig. S18). Regarding urban areas, K2012 has the small-
est urban coverage in the Northern Hemisphere compared to
both the new dataset and the ELM2/CLM5 default (Fig. S19).
Meanwhile, the ELM2/CLM5 default exhibits more expan-
sive urban areas in India and China than the new dataset and
K2012.
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Figure 2. Global LULC distribution in the year 2010. PFT abbreviations include the following: bare soil (Bare Soil); needleleaf evergreen
trees in temperate (NET-Temperate) and boreal (NET-Boreal) regions; needleleaf deciduous trees in boreal regions (NDT-Boreal); broadleaf
evergreen trees in tropical (BET-Tropical) and temperate (BET-Temperate) regions; broadleaf deciduous trees in tropical (BDT-Tropical),
temperate (BDT-Temperate), and boreal (BDT-Boreal) regions; broadleaf evergreen shrubs in temperate regions (BES-Temperate); decidu-
ous shrubs in temperate (BDS-Temperate) and boreal (BDS-Boreal) regions; C3 grass in arctic (C3G-Arctic) and general (C3G) varieties;
C4 grass (C4G); crops (Crop); lake (Lake); glacier (Glacier); and urban (Urban).

The global annual mean LAI exhibits similar spatial pat-
terns among the new parameter, K2012, and ELM2/CLM5
(Fig. 5). The overall global mean LAI for the new pa-
rameter (1.28 m2 m−2) is slightly higher than that of
K2012 (1.14 m2 m−2) and the ELM2/CLM5 default data
(1.24 m2 m−2). In terms of spatial pattern, the new LAI, rel-
ative to K2012 (Fig. S20a), shows lower values in the NET-
Boreal PFT over the Northern Hemisphere but higher values
in the BET-Tropical PFT over the tropics. Similarly, com-
pared with the ELM2/CLM5 default LAI (Fig. S20b), the
new LAI also presents smaller values in both the NET-Boreal
and NDT PFTs over the Northern Hemisphere but larger val-
ues in the BET-Tropical PFT regions.

Soil parameters exhibit significant differences between the
new and ELM2/CLM5 default datasets (Figs. 6a–c, S21,
and S22). The global mean absolute differences between the
new and ELM2/CLM5 default for percent sand, percent clay,
and organic matter are 14.1 %, 8.1 %, and 30.5 kg m−3, re-
spectively. Generally, the new soil parameters are spatially
distributed more smoothly than those from ELM2/CLM5
with more patchy patterns (Fig. 6a vs. Fig. 6b). Specifically,
the new percent sand is higher in regions like Europe, Siberia,
southern Africa, and southern Australia but lower in areas
such as the lower Mississippi River basin, northern Africa,

and central and southeastern Asia (Fig. 6c). The new per-
cent clay shows larger values in the western USA, north-
ern Africa, central Asia, and Australia but smaller values in
Alaska and eastern Europe (Fig. S21). For organic matter,
the new parameter indicates smaller values in the Northern
Hemisphere but larger values in other global regions com-
pared to the ELM2/CLM5 default (Fig. S22).

Topography-related parameters exhibit broadly similar
spatial patterns but with notable differences between the
new and the ELM2/CLM5 default parameters, as seen in
Figs. 6d–f and S23. The new slope parameter generally
shows a larger slope relative to the ELM2/CLM5 default,
particularly in mountainous regions (Fig. 6f). This could be
attributed to the new 1 km slope being calculated from a finer
90 m resolution elevation. Differences in elevation between
the new and ELM2/CLM5 parameters are more pronounced
in areas such as various mountainous regions, Greenland, the
Amazon Basin, the Tibetan Plateau, and Australia (Fig. S23).

4.3 Demonstration 1 km simulation over CONUS

ELM simulations at a 1 km resolution display significant spa-
tial heterogeneity over CONUS (Fig. 7). The values of SM,
LH, ELR, and ASR across CONUS follow approximately
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Figure 3. Demonstration of global 1 km datasets (a) canopy top height, (b) percent clay, (c) standard deviation of elevation, and (d) slope.

Figure 4. The global average area fractions of PFTs for three land surface parameter datasets. PFT abbreviations used on the x axis are
displayed in Fig. 2.
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Figure 5. Comparison of global annual mean LAI for (a) new, (b) K2012, and (c) ELM2/CLM5 default parameters. The global average is
indicated in the panel title.

normal distributions, with averages of 0.3 m3 m−3, 39.0,
371.7, and 156.7 W m−2, respectively (as shown in the his-
togram plots in Fig. 7). SM shows drier conditions over the
west and southwest and wetter conditions over the US Mid-
west, Corn Belt, Mississippi River basin, and US Northeast
(Fig. 7a). LH shows high values over the central and south-
east and lower values over the west and southwest (Fig. 7b).
The ELR generally shows higher values over regions with
high surface temperature in the south (Fig. 7c). The ASR
shows higher values over the southwestern regions deter-
mined by incoming solar radiation and albedo (Fig. 7d). De-
spite the high-resolution heterogeneity shown at 1 km reso-
lution, we can still see the spatial patterns distinguished at
coarse resolution, i.e., 0.5°× 0.5°. These coarser footprints
are from the GSWP3 atmospheric forcing with 0.5° resolu-
tion. As concluded by Li et al. (2022), atmospheric forcing
is one primary heterogeneity source for land surface model-
ing. Therefore, k-scale atmospheric forcing needs to be de-
veloped to further advance k-scale offline land surface mod-
eling.

4.4 Demonstration of spatial scaling across scales

We next demonstrate the relationships between spatial vari-
abilities and spatial scales for SM and LH. Four locations
(in Fig. 8a and b) are specifically chosen to showcase vary-
ing levels of spatial information loss: L1 and L3 demonstrate

a relatively large loss for SM and LH, respectively, while
L2 and L4 represent a relatively small loss for SM and LH,
respectively.

At location L1 (Fig. 8a), when the 1 km simulation is up-
scaled to coarser resolutions (i.e., larger spatial scale ratios),
the spatial variability of SM decreases, resulting in a nega-
tive slope of β. As shown in Fig. 9a, compared to the orig-
inal 1 km resolution, the information loss γ reaches up to
54.9 % at the 12 km spatial scale. The spatial pattern of SM is
consistent with the spatial pattern of percent clay (Fig. 9a
vs. Fig. 9b and Fig. 9c vs. Fig. 9d), indicating that soil tex-
ture contributes significantly to the spatial variability of SM.
However, SM has a more negative β than the percent clay
(β =−0.28 vs.−0.19 at L1, as shown in Fig. 8a), suggesting
that SM variability is amplified likely by other processes that
are also influenced by soil texture. In contrast to location L1,
location L2 exhibits less negative β values for both SM and
percent clay, suggesting that their spatial variabilities exhibit
less scale dependence (Figs. 8a and 9c, d). Both SM and per-
cent clay at location L2 approximately maintain their spatial
patterns of high values in the west and low values in the east
across spatial scales (Fig. 9c and d).

For LH, there is a more negative β value at location L3
than at location L4 (β =−0.27 at L3 vs. −0.08 at L4, as
shown in Fig. 8b), which indicates a larger decrease of spa-
tial variability across spatial scales and lower variability per-
sistence at location L3 than location L4 (Fig. 10). The spatial
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Figure 6. Comparisons of percent sand and slope. (a) New and (b) ELM2/CLM5 default percent sand, along with (c) their difference (new
– ELM2/CLM5 default) for percent sand; (d) new, (e) ELM2/CLM5 default, and (f) their difference for slope. The global average is shown
in the panel titles, with the global average of the absolute difference provided for (c) and (f).

pattern of LH is consistent with the spatial pattern of LAI
(Fig. 10a vs. Fig. 10b and Fig. 10c vs. Fig. 10d) at different
spatial scales, suggesting that vegetation plays a significant
role in the spatial variability of LH. Similar to comparison
between SM and soil texture, LH has a more negative β than
LAI (Fig. 8b).

4.5 The spatial variability of water and energy
simulations and their drivers

We quantified the spatial variability simulated at 1 km reso-
lution using σ within each 0.5°× 0.5° box across CONUS.
Four ML models were built to explore the spatial relation-

ships between σ and its potential drivers, including σ of
the land surface parameters and the temperature and precip-
itation averaged over the grid box. Overall, the ML mod-
els performed well in predicting the σ of the simulated
variables, with small root mean square error (RMSE) and
large R2 (see Fig. S24). SM shows larger spatial variability
in the US Southern Coastal Plain, lower Mississippi River,
US Northeast, US Southeast, and regions around the Great
Lakes (Fig. 11a), which is roughly consistent with the spa-
tial heterogeneity of the high-resolution SM simulation in
Vergopolan et al. (2022). Based on the SHAP method, the
spatial variability of SM across CONUS is driven by various
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Figure 7. The annual mean of 1 km simulations of (a) SM, (b) LH, (c) ELR, and (d) ASR over CONUS. The 0.5°×0.5° boxes marked as L1,
L2, L3, and L4 in (a) and (b) are selected to demonstrate the spatial scaling analysis. The inserted histogram plot illustrates the distribution
of ELM2 simulations.

Figure 8. The scaling of spatial variabilities for (a) SM and percent clay and (b) LH and LAI. Both the x axis and y axis are in logarithmic
scale. The slope of the linear regression line, β, quantifies the strength of the negative relationship between spatial scale and spatial variability.
A more negative β value indicates a higher spatial-scale dependency and increased information loss at coarser spatial scales. Four 0.5°×0.5°
boxes (displayed in Fig. 7), namely, L1 to L4, are chosen to contrast larger and smaller negative β values for SM and percent clay (L1 and L2)
and for LH and LAI (L3 and L4).

factors, mainly including the spatial variabilities of percent
sand and percent clay, mean precipitation, the σ and µ of
soil organic matter, the σ of canopy height, and mean tem-
perature (Fig. 11b). Mean precipitation and temperature re-
flect climate conditions (Fig. S26), which are related to the
water supply and water demand of soil water content. The

spatial heterogeneity of soil properties, such as texture and
organic matter content, affects soil hydraulic properties and
generate more spatially variable soil water content. Vegeta-
tion characteristics, such as canopy height and LAI, could in-
fluence SM spatial variability through their effect on rough-
ness length and rooting depth.
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Figure 9. Comparison of SM and percent clay across spatial scales at locations L1 and L2 highlighted in Fig. 7. Each panel displays the
spatial patterns of SM or percent clay within a 0.5°× 0.5° box, with the σ and γ presented in the legend.

The spatial variability of LH is large in the southeast-
ern, central, and western mountainous regions of the USA
(Fig. 11c). Vegetation properties and climate conditions
mainly drive the variability of LH (Fig. 11d). The µ and
σ of LAI can affect transpiration and soil evaporation, while
canopy height can influence surface roughness length and, in
turn, evapotranspiration. Mean precipitation and temperature
reflect the overall climate conditions related to the water and
energy available for latent heat.

ELR and ASR exhibit large spatial variability mainly over
the western USA, with ASR additionally showing signifi-
cant spatial variability across northern USA (Fig. 11e and g).
This variability is primarily driven by climate conditions
such as mean precipitation and temperature, topographic
features such as standard deviation of elevation and slope,

and vegetation properties including LAI and canopy height
(Fig. 11f and h). These factors are related to the radiation
input and surface properties, such as albedo and roughness
length, which impact the energy cycles and availability of
ELR and ASR.

4.6 The information loss of water and energy
simulations and their drivers

We also evaluated the information loss in simulations when
upscaling from 1 to 12 km resolution and analyzed the drivers
of their spatial patterns over CONUS. Four ML models were
built to explore the relationships between the γ of the sim-
ulations and its drivers, including the γ of the land surface
parameters and the mean temperature and precipitation aver-
aged over the 0.5°× 0.5° box. These ML models performed
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Figure 10. Similar to Fig. 9, but for LH and LAI at locations L3 and L4.

well in predicting the simulations’ γ , with small RMSE and
large R2 (Fig. S25).

Significant information loss ranging from 31 % to 54 %
with maximum values exceeding 90 % is observed for SM,
LH, ELR, and ASR simulations (Fig. 12). Their spatial pat-
terns and drivers show distinct variations; γSM is primarily
driven by the information loss of percent clay and sand, mean
soil organic matter, and mean temperature, which affects the
soil hydraulic properties and soil water balance (Fig. 12a
and b). γLH displays high values in the eastern USA and low
values in the western USA (Fig. 12c). It is primarily con-
tributed by the information loss of vegetation properties such
as LAI and canopy height, as well as mean LAI, which influ-
ences the partitioning of LH and sensible heat, and the parti-
tioning of transpiration and evaporation (Fig. 12d). γELR ex-
hibits high values in the central and eastern USA, particularly

in the northeastern USA, while γASR has high values almost
all over the USA, especially in the eastern regions (Fig. 12e
and g). γELR and γASR are largely driven by vegetation prop-
erties such as LAI and canopy height, which are associated
with energy processes such as albedo (Fig. 12f and h). Ad-
ditionally, topography factors of standard deviation of eleva-
tion and slope also slightly contribute to γASR.

4.7 Comparison of ELM simulation against reference
data

The average spatial biases between ELM and reference
datasets across CONUS are relatively small, with SM bias
at −0.01 m3 m−3, LH bias at 1.8 W m−2, ELR bias at
−3.8 W m−2, and ASR bias at 1.1 W m−2 (Figs. 13 and S27).
The correlation coefficient (R2) between ELM and reference
datasets was relatively high at 0.60 (for SM), 0.70 (for LH),
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Figure 11. The spatial variability over each 0.5°×0.5° grid cell (a, c, e, g) and the top eight most important drivers (b, d, f, h) of the spatial
variability for SM, LH, ELR, and ASR. The inserted histogram plot illustrates the probability distribution of the spatial variability across
CONUS. The relative importance of each variable in determining the spatial variability is calculated as the ratio of the mean |SHAP value|
of the variable to the sum of the mean |SHAP value| of all variables. Therefore, the sum of the relative importance of all variables is 100 %.
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Figure 12. Same to Fig. 11 but for information loss.
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Figure 13. Annual mean bias between ELM-simulated variables and reference datasets over CONUS: (a) SM, (b) LH, (c) ELR, and (d) ASR.
The negative values indicate lower ELM values compared to the reference data. The inserted histogram plot illustrates the distribution of grid
values. For spatial patterns of the reference datasets, refer to Fig. S27. The correlation coefficient (R2) between the ELM simulation and the
reference dataset is calculated and displayed in the title of each panel.

0.96 (for ELR), and 0.90 (for ASR). However, the spatial dis-
tribution of these biases exhibits variability, with some areas
showing more pronounced biases than others. Specifically,
in comparison with GLEAM SM, ELM tends to underes-
timate SM in the southeastern Texas and across the east-
ern and southeastern CONUS, while it overestimates SM
in the western, central, and southwestern CONUS, includ-
ing the central-eastern USA, which are primarily agricul-
tural areas. For LH, ELM simulates higher values than the
MODIS LH dataset in the western and central USA and
Florida but lower values in regions such as the eastern and
northeastern CONUS, the western US coastal areas, and the
US Pacific Northwest. Regarding radiation variables, ELM
generally underestimates ELR across nearly all of CONUS
and tends to overestimate ASR, particularly in the southwest-
ern, southern, eastern, northeastern, and northern regions of
CONUS.

5 Discussion

The development of new 1 km land surface parameter
datasets in this study marks a substantial improvement over
commonly used land surface parameters such as CLM5 and
K2012, leveraging the latest high-resolution data sources
with rigorous validation, including MODIS PFTs, enhanced
LAI and canopy height, soil properties, and topography fac-
tors. When compared with K2012 and ELM2/CLM5 default

datasets, the new 1 km parameters exhibit notable differ-
ences, suggesting potential improvement due to the use of
more advanced data sources. Distinct features of the new
parameters include a reduction in bare soil compared to
ELM2/CLM5, especially in regions like North America and
Central Asia, and diverse coverage of specific PFTs such
as NDT and BET-Tropical in areas like Siberia and South
America. The LAI of the new parameters diverges from
K2012 and ELM2/CLM5, showing lower values in NET-
Boreal PFT of the Northern Hemisphere but higher BET-
Tropical PFT in the tropics. The soil parameters, particu-
larly in regions like Europe, Central Asia, and the west-
ern USA, show significant differences between the new and
the ELM2/CLM5 defaults. Moreover, the new parameters in-
dicate larger slopes in mountainous regions and more distinct
elevation differences in areas such as Greenland and the Ti-
betan Plateau compared to ELM2/CLM5. These differences
potentially highlight enhanced accuracy and sophistication
of the new 1 km parameters. Their enhanced resolution and
rigorous validation suggest a substantial capacity to improve
ESM modeling. Additionally, the richness of multi-year data
for LULC, LAI, and SAI in these datasets is especially valu-
able for examining land use and land cover changes, urban-
ization trends, deforestation impacts, and agricultural trans-
formations.

The new 1 km land surface parameters can improve k-scale
offline LSM modeling by better capturing spatial surface het-
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erogeneity. As evidenced by the 1 km ELM simulation over
CONUS, soil properties, vegetation properties, and topo-
graphic factors contribute a lot to the spatial heterogeneities
of ELM water and energy simulations. Upscaling 1 km to
a coarser 12 km resolution, we observe significant spatial
information loss, with SM experiencing an average loss of
31 %, and LH, ELR, and ASR experiencing around 50 % in-
formation loss on average (Fig. 12). This conclusion is in
line with the results of Vergopolan et al. (2022), who showed
a substantial loss of spatial information in soil moisture when
upscaling from 30 m to 1 km resolution, with an average loss
of approximately 48 % and up to 80 % over the CONUS re-
gion. The XML analysis reveals that the spatial variability
and information loss of ELM2 simulations are influenced by
the spatial variability and information loss of the different
variables of land surface parameters, as well as the mean
precipitation and temperature (Figs. 11 and 12). Our find-
ings highlight the critical role of land surface parameters in
contributing to the spatial variability of water and energy in
land surface simulations, showcasing the value of the devel-
oped high-resolution datasets. Another implementation ex-
ample where our 1 km land surface parameters can be bene-
ficial is in hillslope-scale simulations, which are fundamental
for organizing water, energy, and biogeochemical processes
(Fan et al., 2019). Krakauer et al. (2014) have highlighted
the significance of between-cell groundwater flow, which be-
comes comparable in magnitude to recharge at grid spacings
smaller than 10 km. Advancements have been made in ESMs
to address hillslope-scale processes, including the represen-
tation of intra-hillslope lateral subsurface flow within grid
cells in CLM5 (Swenson et al., 2019), the development of
explicit lateral flow processes between grid cells (Qiu et al.,
2024), and the incorporation of topographic radiation effects
within and between grid cells (Hao et al., 2022). Another
notable example is the integrated hydrology-land surface
model ParFlow-CLM, which incorporates three-dimensional
groundwater flow, two-dimensional overland flow, and land
surface exchange processes (Maxwell, 2013). ParFlow-CLM
has demonstrated remarkable reliability in reproducing hy-
drologic processes, such as its simulations at 3 km resolu-
tion for pan-European and 1 km resolution for CONUS (Naz
et al., 2023; O’Neill et al., 2021). More recently, Fang et
al. (2022) coupled ParFlow with ELM and the Functionally
Assembled Terrestrial Ecosystem Simulator (FATES) to sim-
ulate carbon–hydrology interactions at hillslope scale. By in-
corporating our 1 km datasets and leveraging these advance-
ments, we can improve simulations of hillslope-scale pro-
cesses and enhance our understanding of water and energy
dynamics within ESMs.

Additionally, the new land surface parameters are also
a timely resource for supporting the emerging need for k-
scale Earth system modeling, particularly in improving land-
atmosphere interaction processes. Representing the impact
of spatial heterogeneity on land-atmosphere interaction pro-
cesses is a major challenge in Earth system modeling. Taking

E3SM as an example, researchers have proposed three key
approaches to enhance spatial heterogeneity representation
to address this challenge. In line with these approaches, our
newly developed 1 km land surface parameters offer promis-
ing opportunities for improving land-atmosphere coupling
within ESMs. The first approach to enhance the represen-
tation of spatial heterogeneity is to directly conduct simu-
lations at high resolution. For instance, the Simple Cloud-
Resolving E3SM Atmosphere Model (SCREAM) has been
used to perform global simulations at 3.25 km (Caldwell et
al., 2021), although the land surface parameters were based
on coarser-resolution datasets. By utilizing the new 1 km
land surface parameters, we can enhance the representa-
tion of land surface heterogeneity within the ELM compo-
nent of SCREAM, potentially improving modeling of land–
atmosphere coupling. The second and third approaches fo-
cus on improving the representation of land surface hetero-
geneity within ESMs run at a coarse resolution while ac-
counting for subgrid heterogeneity in two different ways.
In the second approach, Cloud Layers Unified By Binor-
mals (CLUBB) has been implemented in E3SM Atmosphere
Model (EAM) version 1 (Rasch et al., 2019; Bogenschutz et
al., 2013) to better account for subgrid atmospheric hetero-
geneity of turbulent mixing, shallow convection, and cloud
macrophysics. Recently, Huang et al. (2022) developed a
novel land-atmosphere coupling scheme in EAM that en-
ables the communication of subgrid land surface hetero-
geneity information to the atmosphere model with CLUBB,
significantly impacting boundary layer dynamics. The new
1 km datasets can provide more accurate land surface rep-
resentations of the variability of individual patches and the
inter-patch variability that were used in Huang et al. (2022).
The third approach is the Multiple Atmosphere Multiple
Land (MAML) approach used in the multiscale modeling
framework (MMF) in which a cloud-resolving model (CRM)
is embedded within each grid cell of the atmosphere (Baker
et al., 2019; Lin et al., 2023; Lee et al., 2023). In the MAML
approach, each CRM column within the atmosphere grid is
coupled directly with its own independent land surface. This
enables a more explicit representation of the impact of spatial
heterogeneity on land-atmosphere interactions within each
grid and has shown notable impacts on water and energy sim-
ulations (Baker et al., 2019; Lin et al., 2023). Lee et al. (2023)
highlighted the limitation of the current MAML approach,
which utilizes the same land surface characteristics for each
land surface model interacting with the CRM column within
the same grid, which could lead to a weak representation
of land–atmosphere interactions. To address this limitation,
incorporating the new 1 m land surface parameters within
the MAML approach can provide more detailed information
about land surface heterogeneity, enabling a more accurate
capture of land–atmosphere interactions.

Evaluation of k-scale simulations, while essential, faces
significant challenges as merely updating the land surface
input data to the new 1 km parameters for k-scale simula-
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tions does not guarantee improved model performance. This
is clearly evidenced in our ELM demonstration simulations,
where, despite relatively low CONUS averaged biases for
water and energy simulations, the spatial variation in these
biases cannot be overlooked, with some regions exhibiting
notably larger biases. It is important to emphasize that en-
hancing model performance requires not just updated input
data but also appropriate calibration of model parameters and
faithful model structures to represent various processes. First,
LSMs and ESMs that have been adapted for simulations
at coarser resolutions commensurate with the resolutions of
previous land surface data require recalibration for effective
high-resolution modeling. This necessity for recalibration is
echoed by Ruiz-Vásquez et al. (2023), who noted that up-
dating the ECMWF system with new land surface data did
not inherently improve performance, but improvements were
seen after recalibrating key soil and vegetation-related pa-
rameters. Second, high-resolution modeling requires the in-
corporation of new physical processes crucial at finer scales.
For example, hillslope-scale processes like lateral flow and
topography-radiation interactions are key to water and en-
ergy fluxes at high resolution (Qiu et al., 2024; Hao et al.,
2022). With increased heterogeneity at higher resolutions,
larger differences in land surface properties such as vege-
tation water use strategies requires more attention to plant
hydraulics besides the traditional focus on soil hydraulics
for a more accurate depiction of plant water use, as high-
lighted by Li et al. (2021). Third, the lack of high-resolution
benchmarks for large-scale applications, like k-scale atmo-
spheric forcing data, remains a challenge, despite the avail-
ability of relatively coarse-resolution global datasets such as
ERA5_Land (Muñoz-Sabater et al., 2021) and MSWX (Beck
et al., 2022). Additionally, using soil moisture as an exam-
ple, multiple high-resolution datasets exhibit significantly
different performance when compared to in situ measure-
ments (Beck et al., 2022). Lastly, when evaluating simula-
tions against benchmarks, it is crucial not only to assess abso-
lute differences using metrics like bias and root mean square
error but also to examine other metrics, such as the relation-
ships between physical variables (e.g., rainfall vs. runoff; soil
moisture vs. evapotranspiration), information loss, and the
tail quantiles of the probability distribution functions for sim-
ulations (e.g., extreme events; Li et al., 2020).

There are certain opportunities for future development of
1 km parameters. The urban extension may vary based on
data sources, urban definitions, and the algorithms employed,
such as those derived from harmonized nighttime lights
(Zhao et al., 2022), global artificial impervious area (GAIA;
Li et al., 2020b; Gong et al., 2020), and urban expansion (Liu
et al., 2020; Kuang et al., 2021), necessitating careful consid-
eration in specific modeling applications. Additionally, urban
classification in J2010, based on global building height data,
is limited by the lack of a consistent and publicly accessi-
ble global dataset, despite available regional data for Europe
(Frantz et al., 2021), the USA (Li et al., 2020a), and China

(Cao and Huang, 2021; Yang and Zhao, 2022), thus posing
challenges to future urban classification enhancements. In-
corporating local climate zones offers a promising approach
for urban classification and modeling (Huang et al., 2023).
Moreover, the multiple-year high-resolution PFT maps like
the ones developed by the European Space Agency’s Climate
Change Initiative could be used to further extend this dataset
for a longer period (Harper et al., 2023). Soil color, crucial
for soil albedo and surface energy balance, lacks extensive
global datasets for ESM modeling, but the global soil color
map derived by Rizzo et al. (2023) offers potential for further
kilometer-scale ESM and LSM modeling.

The strategic aggregation of high-resolution parameters to
coarser resolutions is crucial to maintain accuracy and effec-
tiveness in modeling applications. For instance, in soil prop-
erties, the basic parameters (e.g., percent sand) are often uti-
lized to derive secondary parameters (e.g., saturated water
content). This aggregation procedure, whether performed be-
fore or after deriving secondary parameters – known as “ag-
gregating first” and “aggregating after” – is influenced by the
nonlinear relationships between basic and derived parame-
ters, with the latter method generally preferred (Shangguan et
al., 2014; Dai et al., 2019). Our study’s initial approach in up-
scaling soil- and topography-related parameters follows the
aggregate first approach, aligning with the structure of mod-
els like ELM2 and CLM5. Conversely, models such as Com-
mon Land Model (CoLM; Dai et al., 2003) and community
Noah with multi-parameterization options (Noah-MP; He et
al., 2023; Niu et al., 2011; Yang et al., 2011) integrate sec-
ondary derived soil related parameters directly as inputs, ef-
fectively demonstrating the advantages of the aggregating af-
ter approach. By leveraging secondary derived parameters
from comprehensive databases such as SoilGrids (Hengl et
al., 2017) and GSDE (Shangguan et al., 2014), these mod-
els provide a valuable framework for future development of
models like ELM2 and CLM5 by directly integrating sec-
ondary derived parameters.

6 Data availability

The 1 km land surface parameters are publicly available at
Zenodo: https://doi.org/10.5281/zenodo.10815170 (Li et al.,
2024).

7 Conclusions

We developed 1 km global land surface parameters using the
latest available datasets covering multiple years from 2001
to 2020. These parameters comprise four categories: LULC
of PFTs and non-vegetative land cover, vegetation proper-
ties, soil properties, and topographic factors. The new 1 km
parameters, when compared to the K2012 and ELM2/CLM5
default datasets, display significant differences, indicating
their potential superiority stemming from the utilization of
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the latest and more advanced data sources. The 1 km resolu-
tion ELM simulations conducted over CONUS demonstrate
the valuable capabilities of the new datasets in enabling k-
scale land surface modeling. Through scaling analysis of the
1 km resolution simulations within 0.5°× 0.5° boxes where
spatial heterogeneity of the simulations is induced only by
spatial heterogeneity of the land surface parameters, we re-
vealed the significant impact of land surface parameters on
the spatial variability of water and energy simulations. The
spatial information loss of these simulations over CONUS
is significant when upscaling from 1 km to a coarser 12 km
resolution, with an average ranging from 31 % to 54 % and
up to more than 90 %. The XML analysis reveals that the
spatial variability and spatial information loss of ELM2 sim-
ulations are primarily impacted by the spatial variability and
information loss of soil properties, vegetation properties, and
topography factors, as well as the mean climate conditions of
precipitation and temperature. Furthermore, the spatial vari-
ability of water and energy in the 1 km simulations is not
dominated by the spatial heterogeneity of any land surface
parameters, suggesting the usefulness of the multi-parameter
high-resolution land surface parameter dataset. Furthermore,
the comparison against four benchmark datasets indicates
that ELM generally performs well in simulating soil mois-
ture and surface energy fluxes. The availability of 1 km land
surface parameters is a valuable resource that addresses the
emerging needs of k-scale LSM and ESM modeling. By pro-
viding accurate and precise information, these 1 km land sur-
face parameters will significantly enhance our understanding
of the water, carbon, and energy cycles under global change.
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