Articles | Volume 15, issue 12
https://doi.org/10.5194/essd-15-5491-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-5491-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
WorldCereal: a dynamic open-source system for global-scale, seasonal, and reproducible crop and irrigation mapping
Kristof Van Tricht
CORRESPONDING AUTHOR
VITO, Mol, 2400, Belgium
Jeroen Degerickx
VITO, Mol, 2400, Belgium
Sven Gilliams
VITO, Mol, 2400, Belgium
Daniele Zanaga
VITO, Mol, 2400, Belgium
Marjorie Battude
CS Group France, Toulouse, 31506, France
Alex Grosu
CS Group Romania, Craiova, 200692, Romania
Joost Brombacher
eLEAF B.V., Wageningen, 6703CT, the Netherlands
Myroslava Lesiv
International Institute for Applied Systems Analysis (IIASA), Laxenburg, 2361, Austria
Juan Carlos Laso Bayas
International Institute for Applied Systems Analysis (IIASA), Laxenburg, 2361, Austria
Santosh Karanam
International Institute for Applied Systems Analysis (IIASA), Laxenburg, 2361, Austria
Steffen Fritz
International Institute for Applied Systems Analysis (IIASA), Laxenburg, 2361, Austria
Inbal Becker-Reshef
Department of Geographical Sciences, University of Maryland, College Park, USA
Belén Franch
Global Change Unit, Image Processing Laboratory, Universitat de Valencia, Paterna (Valencia), Spain
Bertran Mollà-Bononad
Global Change Unit, Image Processing Laboratory, Universitat de Valencia, Paterna (Valencia), Spain
Hendrik Boogaard
Wageningen Environmental Research (WENR), Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
Arun Kumar Pratihast
Wageningen Environmental Research (WENR), Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
Benjamin Koetz
European Space Agency, Paris, France
Zoltan Szantoi
European Space Agency, Paris, France
Department of Geography & Environmental Studies, Stellenbosch University, Stellenbosch 7602, South Africa
Related authors
No articles found.
Myroslava Lesiv, Steffen Fritz, Martina Duerauer, Ivelina Georgieva, Marcel Buchhorn, Luc Bertels, Nandika Tsendbazar, Ruben Van De Kerchove, Daniele Zanaga, Dmitry Schepaschenko, Linda See, Martin Herold, Bruno Smets, Michael Cherlet, and Ian Mccallum
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-468, https://doi.org/10.5194/essd-2025-468, 2025
Preprint under review for ESSD
Short summary
Short summary
This paper presents a unique global reference data set for land cover mapping at a 10 m resolution, aligned with Sentinel-2 imagery for the year 2015. It contains more than 16.5 million data records at a 10 m resolution (or 165 K data records at 100 m) and information on 12 different land cover classes. The data set was collected by a group of experts through visual interpretation of very high resolution imagery, along with other sources of information provided in the Geo-Wiki platform.
Clément Bourgoin, Astrid Verhegghen, Silvia Carboni, Iban Ameztoy, Lucas Degreve, Steffen Fritz, Martin Herold, Nandika Tsendbazar, Myroslava Lesiv, Fréderic Achard, and René Colditz
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-351, https://doi.org/10.5194/essd-2025-351, 2025
Preprint under review for ESSD
Short summary
Short summary
In the context of the EU Deforestation Regulation (EUDR), forest maps can support operators in the assessment of the risk of deforestation after year 2020. Here we present the Global Forest Cover map of year 2020, derived from the combination of most recent publicly available land cover and land use datasets. The map is a globally-consistent representation of the presence/absence of forests based on EUDR definitions, but its use is not mandatory, not exclusive and not legally binding.
Adrià Descals, David L. A. Gaveau, Serge Wich, Zoltan Szantoi, and Erik Meijaard
Earth Syst. Sci. Data, 16, 5111–5129, https://doi.org/10.5194/essd-16-5111-2024, https://doi.org/10.5194/essd-16-5111-2024, 2024
Short summary
Short summary
This study provides a 10 m global oil palm extent layer for 2021 and a 30 m oil palm planting-year layer from 1990 to 2021. The oil palm extent layer was produced using a convolutional neural network that identified industrial and smallholder plantations using Sentinel-1 data. The oil palm planting year was developed using a methodology specifically designed to detect the early stages of oil palm development in the Landsat time series.
Adrià Descals, Serge Wich, Zoltan Szantoi, Matthew J. Struebig, Rona Dennis, Zoe Hatton, Thina Ariffin, Nabillah Unus, David L. A. Gaveau, and Erik Meijaard
Earth Syst. Sci. Data, 15, 3991–4010, https://doi.org/10.5194/essd-15-3991-2023, https://doi.org/10.5194/essd-15-3991-2023, 2023
Short summary
Short summary
The spatial extent of coconut palm is understudied despite its increasing demand and associated impacts. We present the first global coconut palm layer at 20 m resolution. The layer was produced using deep learning and remotely sensed data. The global coconut area estimate is 12.31 Mha for dense coconut palm, but the estimate is 3 times larger when sparse coconut palm is considered. This means that coconut production can likely increase on the lands currently allocated to coconut palm.
Tanja Cegnar, Hendrik Boogaard, Klara Finkele, Branislava Lalic, Joanna Raymond, Saskia Lifka, David M. Schultz, and Vieri Tarchiani
Adv. Sci. Res., 20, 9–16, https://doi.org/10.5194/asr-20-9-2023, https://doi.org/10.5194/asr-20-9-2023, 2023
Short summary
Short summary
Agrometeorological services often do not cover the
last mile– not reaching, not being understood, nor being trusted by smallholder farmers living in remote areas. To help bridge this gap across the last mile, the workshop on effective communication of agrometeorological services took place during the EMS2022. This paper presents the outcomes and recommendations on how to bridge the gap between information providers and information users.
G. Mosomtai, J. L. Kasiiti, R. M. Murithi, P. Sandström, T. Landmann, O. W. Lwande, O. A. Hassan, C. Ahlm, R. Sang, M. Evander, Z. Szantoi, and G. Ottavianelli
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-1-2023, 211–216, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-211-2023, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-211-2023, 2023
M. Hosseini, I. Becker-Reshef, R. Sahajpal, P. Lafluf, G. Leale, E. Puricelli, S. Skakun, and H. McNairn
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2022, 405–410, https://doi.org/10.5194/isprs-annals-V-3-2022-405-2022, https://doi.org/10.5194/isprs-annals-V-3-2022-405-2022, 2022
Zoltan Szantoi, Andreas Brink, and Andrea Lupi
Earth Syst. Sci. Data, 13, 3767–3789, https://doi.org/10.5194/essd-13-3767-2021, https://doi.org/10.5194/essd-13-3767-2021, 2021
Short summary
Short summary
The ever-evolving landscapes in the African, Caribbean and Pacific regions should be monitored for land cover changes. The Global Land Monitoring Service of the Copernicus Programme, and in particular the Hot Spot Monitoring activity, developed a satellite-imagery-based workflow to monitor such areas. Here, we present a total of 852 025 km2 of areas mapped with up to 32 land cover classes. Thematic land cover and land cover change maps, as well as validation datasets, are presented.
Adrià Descals, Serge Wich, Erik Meijaard, David L. A. Gaveau, Stephen Peedell, and Zoltan Szantoi
Earth Syst. Sci. Data, 13, 1211–1231, https://doi.org/10.5194/essd-13-1211-2021, https://doi.org/10.5194/essd-13-1211-2021, 2021
Short summary
Short summary
Decision-making for sustainable vegetable oil production requires accurate global oil crop maps. We used high-resolution satellite data to train a deep learning model that accurately classified industrial and smallholder oil palm, the main oil-producing crop. Our results outperformed previous studies and proved the suitability of deep learning for land use mapping. The global oil palm area was 21±0.42 Mha for 2019; however, young and sparse plantations were not included in this estimate.
Qiangyi Yu, Liangzhi You, Ulrike Wood-Sichra, Yating Ru, Alison K. B. Joglekar, Steffen Fritz, Wei Xiong, Miao Lu, Wenbin Wu, and Peng Yang
Earth Syst. Sci. Data, 12, 3545–3572, https://doi.org/10.5194/essd-12-3545-2020, https://doi.org/10.5194/essd-12-3545-2020, 2020
Short summary
Short summary
SPAM makes plausible estimates of crop distribution within disaggregated units. It moves the data from coarser units such as countries and provinces to finer units such as grid cells and creates a global gridscape at the confluence between earth and agricultural-production systems. It improves spatial understanding of crop production systems and allows policymakers to better target agricultural- and rural-development policies for increasing food security with minimal environmental impacts.
Michele Ferri, Uta Wehn, Linda See, Martina Monego, and Steffen Fritz
Hydrol. Earth Syst. Sci., 24, 5781–5798, https://doi.org/10.5194/hess-24-5781-2020, https://doi.org/10.5194/hess-24-5781-2020, 2020
Short summary
Short summary
As part of the flood risk management strategy of the
Brenta-Bacchiglione catchment (Italy), a citizen observatory for flood risk management is currently being implemented. A cost–benefit analysis of the citizen observatory was undertaken to demonstrate the value of this approach in monetary terms. Results show a reduction in avoided damage of 45 % compared to a scenario without implementation of the citizen observatory. The idea is to promote this methodology for future flood risk management.
Zoltan Szantoi, Andreas Brink, Andrea Lupi, Claudio Mammone, and Gabriel Jaffrain
Earth Syst. Sci. Data, 12, 3001–3019, https://doi.org/10.5194/essd-12-3001-2020, https://doi.org/10.5194/essd-12-3001-2020, 2020
Short summary
Short summary
Larger ecological zones and wildlife corridors in sub-Saharan Africa require monitoring, as social and economic demands put high pressure on them. Copernicus’ Hot-Spot Monitoring service developed a satellite-imagery-based monitoring workflow to map such areas. Here, we present a total of 560 442 km2 from which 153 665 km2 is mapped with eight land cover classes while 406 776 km2 is mapped with up to 32 classes. Besides presenting the thematic products, we also present our validation datasets.
Miao Lu, Wenbin Wu, Liangzhi You, Linda See, Steffen Fritz, Qiangyi Yu, Yanbing Wei, Di Chen, Peng Yang, and Bing Xue
Earth Syst. Sci. Data, 12, 1913–1928, https://doi.org/10.5194/essd-12-1913-2020, https://doi.org/10.5194/essd-12-1913-2020, 2020
Short summary
Short summary
Global cropland distribution is critical for agricultural monitoring and food security. We propose a new Self-adapting Statistics Allocation Model (SASAM) to develop the global map of cropland distribution. SASAM is based on the fusion of multiple existing cropland maps and multilevel statistics of cropland area, which is independent of training samples. The synergy map has higher accuracy than the input datasets and better consistency with the cropland statistics.
Cited articles
Agriculture and Agri-Food Canada Annual Crop Inventory: Science and Technology Branch, Agriculture and Agri-Food Canada, Government of Canada, Canada https://open.canada.ca/data/en/dataset/199e4ab6-832b-4434-ac39-e4887d7cc4e5 (last access: 30 April 2023), 2021.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56, Fao Rome, 300, D05109, 1998.
Becker-Reshef, I., Barker, B., Humber, M., Puricelli, E., Sanchez, A., Sahajpal, R., McGaughey, K., Justice, C., Baruth, B., Wu, B., Prakash, A., Abdolreza, A., and Jarvis, I.: The GEOGLAM crop monitor for AMIS: Assessing crop conditions in the context of global markets, Glob. Food Secur., 23, 173–181, https://doi.org/10.1016/j.gfs.2019.04.010, 2019.
Becker-Reshef, I., Barker, B., Whitcraft, A., Oliva, P., Mobley, K., Justice, C., and Sahajpal, R.: Crop Type Maps for Operational Global Agricultural Monitoring, Sci. Data, 10, 172, https://doi.org/10.1038/s41597-023-02047-9, 2023.
Bégué, A., Arvor, D., Bellon, B., Betbeder, J., De Abelleyra, D., P. D. Ferraz, R., Lebourgeois, V., Lelong, C., Simões, M., and Verón, R. S.: Remote Sensing and Cropping Practices: A Review, Remote Sens., 10, 99, https://doi.org/10.3390/rs10010099, 2018.
Bolton, D. K., Gray, J. M., Melaas, E. K., Moon, M., Eklundh, L., and Friedl, M. A.: Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery, Remote Sens. Environ., 240, 111685, https://doi.org/10.1016/j.rse.2020.111685, 2020.
Boogaard, H., Schubert, J., De Wit, A., Lazebnik, J., Hutjes, R., and Van der Grijn, G.: Agrometeorological indicators from 1979 to present derived from reanalysis, Copernicus Climate Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.6c68c9bb, 2020.
Boogaard, H., Pratihast, A. K., Bayas, J. C. L., Karanam, S., Fritz, S., Tricht, K. V., Degerickx, J., and Gilliams, S.: Building a community-based open harmonised reference data repository for global crop mapping, PLOS ONE, 18, e0287731, https://doi.org/10.1371/journal.pone.0287731, 2023.
Brown, M. E. and Funk, C. C.: Food Security Under Climate Change, Science, 319, 580–581, https://doi.org/10.1126/science.1154102, 2008.
Buchhorn, M., Lesiv, M., Tsendbazar, N.-E., Herold, M., Bertels, L., and Smets, B.: Copernicus Global Land Cover Layers – Collection 2, Remote Sens., 12, 1044, https://doi.org/10.3390/rs12061044, 2020a.
Buchhorn, M., Smets, B., Bertels, L., Roo, B. D., Lesiv, M., Tsendbazar, N.-E., Herold, M., and Fritz, S.: Copernicus Global Land Service: Land Cover 100m: collection 3: epoch 2019: Globe, Zenodo [data set], https://doi.org/10.5281/zenodo.3939050, 2020b.
Burt, C. M., Clemmens, A. J., Bliesner, R., Merriam, J. L., and Hardy, L.: Selection of Irrigation Methods for Agriculture, American Society of Civil Engineers, https://doi.org/10.1061/9780784404621, 2000.
CIA: “Irrigated land”, The World Factbook, Central Intelligence Agency, Washington, DC, 2012.
Cintas, J., Franch, B., Van-Tricht, K., Boogaard, H., Degerickx, J., Becker-Reshef, I., Moletto-Lobos, I., Mollà-Bononad, B., Sobrino, J. A., Gilliams, S., and Szantoi, Z.: TRANCO: Thermo radiometric normalization of crop observations, Int. J. Appl. Earth Obs., 118, 103283, https://doi.org/10.1016/j.jag.2023.103283, 2023.
Cracknell, M. J. and Reading, A. M.: Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information, Comput. Geosci., 63, 22–33, https://doi.org/10.1016/j.cageo.2013.10.008, 2014.
d'Andrimont, R., Verhegghen, A., Lemoine, G., Kempeneers, P., Meroni, M., and van der Velde, M.: From parcel to continental scale – A first European crop type map based on Sentinel-1 and LUCAS Copernicus in-situ observations, Remote Sens. Environ., 266, 112708, https://doi.org/10.1016/j.rse.2021.112708, 2021.
Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N. D., Wikramanayake, E., Hahn, N., Palminteri, S., Hedao, P., Noss, R., Hansen, M., Locke, H., Ellis, E. C., Jones, B., Barber, C. V., Hayes, R., Kormos, C., Martin, V., Crist, E., Sechrest, W., Price, L., Baillie, J. E. M., Weeden, D., Suckling, K., Davis, C., Sizer, N., Moore, R., Thau, D., Birch, T., Potapov, P., Turubanova, S., Tyukavina, A., de Souza, N., Pintea, L., Brito, J. C., Llewellyn, O. A., Miller, A. G., Patzelt, A., Ghazanfar, S. A., Timberlake, J., Klöser, H., Shennan-Farpón, Y., Kindt, R., Lillesø, J.-P. B., van Breugel, P., Graudal, L., Voge, M., Al-Shammari, K. F., and Saleem, M.: An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm, BioScience, 67, 534–545, https://doi.org/10.1093/biosci/bix014, 2017.
Elliott, J., Deryng, D., Müller, C., Frieler, K., Konzmann, M., Gerten, D., Glotter, M., Flörke, M., Wada, Y., Best, N., Eisner, S., Fekete, B. M., Folberth, C., Foster, I., Gosling, S. N., Haddeland, I., Khabarov, N., Ludwig, F., Masaki, Y., Olin, S., Rosenzweig, C., Ruane, A. C., Satoh, Y., Schmid, E., Stacke, T., Tang, Q., and Wisser, D.: Constraints and potentials of future irrigation water availability on agricultural production under climate change, P. Natl. Acad. Sci. USA, 111, 3239–3244, https://doi.org/10.1073/pnas.1222474110, 2014.
ESA WorldCereal Consortium: ESA WorldCereal 10 m v100, ESA WorldCereal Consortium [data set], https://developers.google.com/earth-engine/datasets/catalog/ESA_WorldCereal_2021_MODELS_v100 (last access: 31 October 2023), 2021a.
ESA WorldCereal Consortium: ESA WorldCereal Active Cropland 10 m v100, ESA WorldCereal Consortium [data set], https://developers.google.com/earth-engine/datasets/catalog/ESA_WorldCereal_2021_MARKERS_v100 (last access: 31 October 2023), 2021b.
ESA WorldCereal Consortium: ESA WorldCereal AEZ v100, ESA WorldCereal Consortium [data set], https://developers.google.com/earth-engine/datasets/catalog/ESA_WorldCereal_AEZ_v100 (last access: 31 October 2023), 2021c.
FAO: Tracking progress on food and agriculture-related SDG indicators, FAO, https://doi.org/10.4060/cc1403en, 2022.
FAO: Land Use, Irrigation and Agricultural Practices Questionnaire, FAO, https://www.fao.org/fileadmin/user_upload/faoweb/statistics/questionnaires/FAO_LAND_QUEST_EN.xlsx (last access: 27 November 2023), 2023.
Fischer, G., Tubiello, F. N., van Velthuizen, H., and Wiberg, D. A.: Climate change impacts on irrigation water requirements: Effects of mitigation, 1990–2080, Technol. Forecast. Soc. Change, 74, 1083–1107, https://doi.org/10.1016/j.techfore.2006.05.021, 2007.
Foga, S., Scaramuzza, P. L., Guo, S., Zhu, Z., Dilley, R. D., Beckmann, T., Schmidt, G. L., Dwyer, J. L., Joseph Hughes, M., and Laue, B.: Cloud detection algorithm comparison and validation for operational Landsat data products, Remote Sens. Environ., 194, 379–390, https://doi.org/10.1016/j.rse.2017.03.026, 2017.
Franch, B., Cintas, J., Becker-Reshef, I., Sanchez-Torres, M. J., Roger, J., Skakun, S., Sobrino, J. A., Van Tricht, K., Degerickx, J., Gilliams, S., Koetz, B., Szantoi, Z., and Whitcraft, A.: Global crop calendars of maize and wheat in the framework of the WorldCereal project, GIScience Remote Sens., 59, 885–913, https://doi.org/10.1080/15481603.2022.2079273, 2022.
Fritz, S., McCallum, I., Schill, C., Perger, C., See, L., Schepaschenko, D., van der Velde, M., Kraxner, F., and Obersteiner, M.: Geo-Wiki: An online platform for improving global land cover, Environ. Model. Softw., 31, 110–123, https://doi.org/10.1016/j.envsoft.2011.11.015, 2012.
Fritz, S., See, L., You, L., Justice, C., Becker-Reshef, I., Bydekerke, L., Cumani, R., Defourny, P., Erb, K., Foley, J., Gilliams, S., Gong, P., Hansen, M., Hertel, T., Herold, M., Herrero, M., Kayitakire, F., Latham, J., Leo, O., McCallum, I., Obersteiner, M., Ramankutty, N., Rocha, J., Tang, H., Thornton, P., Vancutsem, C., van der Velde, M., Wood, S., and Woodcock, C.: The Need for Improved Maps of Global Cropland, Eos Trans. Am. Geophys. Union, 94, 31–32, https://doi.org/10.1002/2013EO030006, 2013.
Gu, Y., Wylie, B. K., Boyte, S. P., Picotte, J., Howard, D. M., Smith, K., and Nelson, K. J.: An Optimal Sample Data Usage Strategy to Minimize Overfitting and Underfitting Effects in Regression Tree Models Based on Remotely-Sensed Data, Remote Sens., 8, 943, https://doi.org/10.3390/rs8110943, 2016.
Halabisky, M., Liu, L., Fisk, C., Adams, C., Muir, J., Delaney, P., de Simone, L., Yuan, F., Hall, L., Lewis, A., and Gennari, P.: National Land Cover and Crop Mapping using the Digital Earth Africa Platform and High-resolution Satellite Imagery, 2022, GC25C-07, AGU Fall Meeting Abstracts, https://ui.adsabs.harvard.edu/abs/2022AGUFMGC25C..07H, EID: GC25C-07, 2022.
Han, J., Zhang, Z., Luo, Y., Cao, J., Zhang, L., Zhang, J., and Li, Z.: The RapeseedMap10 database: annual maps of rapeseed at a spatial resolution of 10 m based on multi-source data, Earth Syst. Sci. Data, 13, 2857–2874, https://doi.org/10.5194/essd-13-2857-2021, 2021.
Hirayama, H., Sharma, R. C., Tomita, M., and Hara, K.: Evaluating multiple classifier system for the reduction of salt-and-pepper noise in the classification of very-high-resolution satellite images, Int. J. Remote Sens., 40, 2542–2557, https://doi.org/10.1080/01431161.2018.1528400, 2019.
ICID: Annual report 2021–2022, International Commission on Irrigation and Drainage, International Commission on Irrigation & Drainage (ICID), https://icid-ciid.org/icid_data_web/ar_2020.pdf (last access: 27 November 2023), 2022.
Jägermeyr, J. and Frieler, K.: Spatial variations in crop growing seasons pivotal to reproduce global fluctuations in maize and wheat yields, Sci. Adv., 4, eaat4517, https://doi.org/10.1126/sciadv.aat4517, 2018.
Kamble, B., Kilic, A., and Hubbard, K.: Estimating Crop Coefficients Using Remote Sensing-Based Vegetation Index, Remote Sens., 5, 1588–1602, https://doi.org/10.3390/rs5041588, 2013.
Karthikeyan, L., Chawla, I., and Mishra, A. K.: A review of remote sensing applications in agriculture for food security: Crop growth and yield, irrigation, and crop losses, J. Hydrol., 586, 124905, https://doi.org/10.1016/j.jhydrol.2020.124905, 2020.
Kenduiywo, B. K., Bargiel, D., and Soergel, U.: Crop-type mapping from a sequence of Sentinel 1 images, Int. J. Remote Sens., 39, 6383–6404, https://doi.org/10.1080/01431161.2018.1460503, 2018.
Lesiv, M., Bilous, A., Bayas, J. C. L., Karanam, S., and Fritz, S.: Global Crop Type Validation Data Set for ESA WorldCereal System, Zenodo [data set], https://doi.org/10.5281/zenodo.7825628, 2023a.
Lesiv, M., Duerauer, M., Georgieva, I., Bilous, A., Bayas, J. C. L., and Fritz, S.: Global reference data set for validating ESA WorldCereal temporary cropland extent (1), Zenodo [data set], https://doi.org/10.5281/zenodo.7837480, 2023b.
Li, H., Song, X.-P., Hansen, M. C., Becker-Reshef, I., Adusei, B., Pickering, J., Wang, L., Wang, L., Lin, Z., Zalles, V., Potapov, P., Stehman, S. V., and Justice, C.: Development of a 10-m resolution maize and soybean map over China: Matching satellite-based crop classification with sample-based area estimation, Remote Sens. Environ., 294, 113623, https://doi.org/10.1016/j.rse.2023.113623, 2023.
Liu, Y., Yu, Q., Zhou, Q., Wang, C., Bellingrath-Kimura, S. D., and Wu, W.: Mapping the Complex Crop Rotation Systems in Southern China Considering Cropping Intensity, Crop Diversity, and Their Seasonal Dynamics, IEEE J. Sel. Top. Appl. Earth Obs., 15, 9584–9598, https://doi.org/10.1109/JSTARS.2022.3218881, 2022.
Main-Knorn, M., Pflug, B., Louis, J., Debaecker, V., Müller-Wilm, U., and Gascon, F.: Sen2Cor for Sentinel-2, in: Image and Signal Processing for Remote Sensing XXIII, SPIE Digital Library, 3, https://doi.org/10.1117/12.2278218, 2017.
Mandal, D., Kumar, V., Ratha, D., Dey, S., Bhattacharya, A., Lopez-Sanchez, J. M., McNairn, H., and Rao, Y. S.: Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 SAR data, Remote Sens. Environ., 247, 111954, https://doi.org/10.1016/J.RSE.2020.111954, 2020.
Massari, C., Modanesi, S., Dari, J., Gruber, A., De Lannoy, G. J. M., Girotto, M., Quintana-Seguí, P., Le Page, M., Jarlan, L., Zribi, M., Ouaadi, N., Vreugdenhil, M., Zappa, L., Dorigo, W., Wagner, W., Brombacher, J., Pelgrum, H., Jaquot, P., Freeman, V., Volden, E., Fernandez Prieto, D., Tarpanelli, A., Barbetta, S., and Brocca, L.: A Review of Irrigation Information Retrievals from Space and Their Utility for Users, Remote Sens., 13, 4112, https://doi.org/10.3390/rs13204112, 2021.
Meier, J., Zabel, F., and Mauser, W.: A global approach to estimate irrigated areas – a comparison between different data and statistics, Hydrol. Earth Syst. Sci., 22, 1119–1133, https://doi.org/10.5194/hess-22-1119-2018, 2018.
Nakalembe, C., Becker-Reshef, I., Bonifacio, R., Hu, G., Humber, M. L., Justice, C. J., Keniston, J., Mwangi, K., Rembold, F., Shukla, S., Urbano, F., Whitcraft, A. K., Li, Y., Zappacosta, M., Jarvis, I., and Sanchez, A.: A review of satellite-based global agricultural monitoring systems available for Africa, Glob. Food Secur., 29, 100543, https://doi.org/10.1016/j.gfs.2021.100543, 2021.
NOAA: Monthly Global Climate Report for Annual 2021, NOAA National Centers for Environmental Information, NOAA National Centers for Environmental Information, https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202113 (last access: 27 November 2023), 2022.
Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., and Wulder, M. A.: Good practices for estimating area and assessing accuracy of land change, Remote Sens. Environ., 148, 42–57, https://doi.org/10.1016/j.rse.2014.02.015, 2014.
Pandey, P. C., Koutsias, N., Petropoulos, G. P., Srivastava, P. K., and Ben Dor, E.: Land use/land cover in view of earth observation: data sources, input dimensions, and classifiers – a review of the state of the art, Geocarto Int., 36, 957–988, https://doi.org/10.1080/10106049.2019.1629647, 2021.
Pelletier, C., Valero, S., Inglada, J., Champion, N., Marais Sicre, C., and Dedieu, G.: Effect of Training Class Label Noise on Classification Performances for Land Cover Mapping with Satellite Image Time Series, Remote Sens., 9, 173, https://doi.org/10.3390/rs9020173, 2017.
Pittman, K., Hansen, M. C., Becker-Reshef, I., Potapov, P. V., and Justice, C. O.: Estimating Global Cropland Extent with Multi-year MODIS Data, Remote Sens., 2, 1844–1863, https://doi.org/10.3390/rs2071844, 2010.
Potapov, P., Turubanova, S., Hansen, M. C., Tyukavina, A., Zalles, V., Khan, A., Song, X.-P., Pickens, A., Shen, Q., and Cortez, J.: Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century, Nat. Food, 3, 19–28, https://doi.org/10.1038/s43016-021-00429-z, 2022.
Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., and Gulin, A.: CatBoost: Unbiased boosting with categorical features, Advances in Neural Information Processing Systems, 31, https://proceedings.neurips.cc/paper/2018/hash/14491b756b3a51daac41c24863285549-Abstract.html (last access: ), 2018.
Prosekov, A. Y. and Ivanova, S. A.: Food security: The challenge of the present, Geoforum, 91, 73–77, https://doi.org/10.1016/j.geoforum.2018.02.030, 2018.
Rosegrant, M. W. and Cline, S. A.: Global Food Security: Challenges and Policies, Science, 302, 1917–1919, https://doi.org/10.1126/science.1092958, 2003.
Sadeghi, M., Babaeian, E., Tuller, M., and Jones, S. B.: The optical trapezoid model: A novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations, Remote Sens. Environ., 198, 52–68, https://doi.org/10.1016/j.rse.2017.05.041, 2017.
Salmon, J. M., Friedl, M. A., Frolking, S., Wisser, D., and Douglas, E. M.: Global rain-fed, irrigated, and paddy croplands: A new high resolution map derived from remote sensing, crop inventories and climate data, Int. J. Appl. Earth Obs., 38, 321–334, https://doi.org/10.1016/j.jag.2015.01.014, 2015.
Schreuder, H. T., Ernst, R., and Ramirez-Maldonado, H.: Statistical techniques for sampling and monitoring natural resources, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Ft. Collins, CO, https://doi.org/10.2737/RMRS-GTR-126, 2004.
See, L., Gilliams, S., Conchedda, G., Degerickx, J., Van Tricht, K., Fritz, S., Lesiv, M., Laso Bayas, J. C., Rosero, J., Tubiello, F. N., and Szantoi, Z.: Dynamic global-scale crop and irrigation monitoring, Nat. Food, 4, 736–737, https://doi.org/10.1038/s43016-023-00841-7, 2023.
Siebert, S., Henrich, V., Frenken, K., and Burke, J.: Global Map of Irrigation Areas version 5 (5), FAO, https://doi.org/10.13140/2.1.2660.6728, 2013.
Statistics Canada: Agricultural irrigation patterns in Canada from 2012 to 2018, https://www150.statcan.gc.ca/n1/pub/16-508-x/16-508-x2021001-eng.htm (last access: 29 June 2023), 2021.
Stehman, S. V. and Foody, G. M.: Key issues in rigorous accuracy assessment of land cover products, Remote Sens. Environ., 231, 111199, https://doi.org/10.1016/j.rse.2019.05.018, 2019.
Stuckens, J., Coppin, P. R., and Bauer, M. E.: Integrating Contextual Information with per-Pixel Classification for Improved Land Cover Classification, Remote Sens. Environ., 71, 282–296, https://doi.org/10.1016/S0034-4257(99)00083-8, 2000.
Szantoi, Z., Geller, G. N., Tsendbazar, N.-E., See, L., Griffiths, P., Fritz, S., Gong, P., Herold, M., Mora, B., and Obregón, A.: Addressing the need for improved land cover map products for policy support, Environ. Sci. Policy, 112, 28–35, https://doi.org/10.1016/j.envsci.2020.04.005, 2020.
Szantoi, Z., Jaffrain, G., Gallaun, H., Bielski, C., Ruf, K., Lupi, A., Miletich, P., Giroux, A.-C., Carlan, I., Croi, W., Augu, H., Kowalewski, C., and Brink, A.: Quality assurance and assessment framework for land cover maps validation in the Copernicus Hot Spot Monitoring activity, Eur. J. Remote Sens., 54, 538–557, https://doi.org/10.1080/22797254.2021.1978001, 2021.
Teluguntla, P., Thenkabail, P., Oliphant, A., Gumma, M., Aneece, I., Foley, D., and McCormick, R.: Landsat-Derived Global Rainfed and Irrigated-Cropland Product 30 m V001 (V001), NASA EOSDIS Land Processes DAAC IP148728, https://doi.org/10.5067/Community/LGRIP/LGRIP30.001, 2023.
Thenkabail, P. S., Biradar, C. M., Noojipady, P., Dheeravath, V., Li, Y., Velpuri, M., Gumma, M., Gangalakunta, O. R. P., Turral, H., Cai, X., Vithanage, J., Schull, M. A., and Dutta, R.: Global irrigated area map (GIAM), derived from remote sensing, for the end of the last millennium, Int. J. Remote Sens., 30, 3679–3733, https://doi.org/10.1080/01431160802698919, 2009.
Thenkabail, P. S., Teluguntla, P. G., Xiong, J., Oliphant, A., Congalton, R. G., Ozdogan, M., Gumma, M. K., Tilton, J. C., Giri, C., Milesi, C., Phalke, A., Massey, R., Yadav, K., Sankey, T., Zhong, Y., Aneece, I., and Foley, D.: Global cropland-extent product at 30-m resolution (GCEP30) derived from Landsat satellite time-series data for the year 2015 using multiple machine-learning algorithms on Google Earth Engine cloud, Global cropland-extent product at 30-m resolution (GCEP30) derived from Landsat satellite time-series data for the year 2015 using multiple machine-learning algorithms on Google Earth Engine cloud, U.S. Geological Survey, Reston, VA, https://doi.org/10.3133/pp1868, 2021.
Tseng, G., Kerner, H., Nakalembe, C., and Becker-Reshef, I.: Learning to predict crop type from heterogeneous sparse labels using meta-learning, in: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Nashville, TN, USA, 1111–1120, https://doi.org/10.1109/CVPRW53098.2021.00122, 2021.
Tubiello, F. N., Conchedda, G., Casse, L., Pengyu, H., Zhongxin, C., De Santis, G., Fritz, S., and Muchoney, D.: Measuring the world's cropland area, Nat. Food, 4, 30–32, https://doi.org/10.1038/s43016-022-00667-9, 2023.
USDA National Agricultural Statistics Service Cropland Data Layer: Published crop-specific data layer, USDA-NASS, Washington, DC, http://nassgeodata.gmu.edu/CropScape/ (last access: 30 April 2023), 2021.
Valero, S., Morin, D., Inglada, J., Sepulcre, G., Arias, M., Hagolle, O., Dedieu, G., Bontemps, S., Defourny, P., and Koetz, B.: Production of a Dynamic Cropland Mask by Processing Remote Sensing Image Series at High Temporal and Spatial Resolutions, Remote Sens., 8, 55, https://doi.org/10.3390/rs8010055, 2016.
Vancutsem, C., Marinho, E., Kayitakire, F., See, L., and Fritz, S.: Harmonizing and Combining Existing Land Cover/Land Use Datasets for Cropland Area Monitoring at the African Continental Scale, Remote Sens., 5, 19–41, https://doi.org/10.3390/rs5010019, 2013.
Van Tricht, K. and Degerickx, J.: WorldCereal/worldcereal-classification: WorldCereal classification module v1.1.1, Zenodo [code], https://doi.org/10.5281/zenodo.7863779, 2023.
Van Tricht, K., Gobin, A., Gilliams, S., and Piccard, I.: Synergistic use of radar sentinel-1 and optical sentinel-2 imagery for crop mapping: A case study for Belgium, Remote Sens., 10, 1642, https://doi.org/10.3390/rs10101642, 2018.
Van Tricht, K., Degerickx, J., Gilliams, S., Zanaga, D., Savinaud, M., Battude, M., Buguet de Chargère, R., Dubreule, G., Grosu, A., Brombacher, J., Pelgrum, H., Lesiv, M., Bayas, J. C. L., Karanam, S., Fritz, S., Becker-Reshef, I., Franch, B., Bononad, B. M., Cintas, J., Boogaard, H., Pratihast, A. K., Kucera, L., and Szantoi, Z.: ESA WorldCereal 10 m 2021 v100 (v100), Zenodo [data set], https://doi.org/10.5281/zenodo.7875104, 2023.
Wellington, M. J. and Renzullo, L. J.: High-Dimensional Satellite Image Compositing and Statistics for Enhanced Irrigated Crop Mapping, Remote Sens., 13, 1300, https://doi.org/10.3390/rs13071300, 2021.
Wu, B., Tian, F., Nabil, M., Bofana, J., Lu, Y., Elnashar, A., Beyene, A. N., Zhang, M., Zeng, H., and Zhu, W.: Mapping global maximum irrigation extent at 30m resolution using the irrigation performances under drought stress, Glob. Environ. Change, 79, 102652, https://doi.org/10.1016/j.gloenvcha.2023.102652, 2023.
You, L. and Sun, Z.: Mapping global cropping system: Challenges, opportunities, and future perspectives, Crop Environ., 1, 68–73, https://doi.org/10.1016/j.crope.2022.03.006, 2022.
Zanaga, D., Van De Kerchove, R., Daems, D., De Keersmaecker, W., Brockmann, C., Kirches, G., Wevers, J., Cartus, O., Santoro, M., Fritz, S., Lesiv, M., Herold, M., Tsendbazar, N.-E., Xu, P., Ramoino, F., and Arino, O.: ESA WorldCover 10 m 2021 v200, Zenodo [data set], https://doi.org/10.5281/zenodo.7254221, 2022.
Short summary
WorldCereal is a global mapping system that addresses food security challenges. It provides seasonal updates on crop areas and irrigation practices, enabling informed decision-making for sustainable agriculture. Our global products offer insights into temporary crop extent, seasonal crop type maps, and seasonal irrigation patterns. WorldCereal is an open-source tool that utilizes space-based technologies, revolutionizing global agricultural mapping.
WorldCereal is a global mapping system that addresses food security challenges. It provides...
Altmetrics
Final-revised paper
Preprint