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Abstract. The challenge of global food security in the face of population growth, conflict, and climate change
requires a comprehensive understanding of cropped areas, irrigation practices, and the distribution of major
commodity crops like maize and wheat. However, such understanding should preferably be updated at seasonal
intervals for each agricultural system rather than relying on a single annual assessment. Here we present the
European Space Agency-funded WorldCereal system, a global, seasonal, and reproducible crop and irrigation
mapping system that addresses existing limitations in current global-scale crop and irrigation mapping. World-
Cereal generates a range of global products, including temporary crop extent, seasonal maize and cereal maps,
seasonal irrigation maps, seasonal active cropland maps, and model confidence layers providing insights into
expected product quality. The WorldCereal product suite for the year 2021 presented here serves as a global
demonstration of the dynamic open-source WorldCereal system. Validation of the products was done based on
best available reference data per product. A global statistical validation for the temporary crop extent product
resulted in user’s and producer’s accuracies of 88.5 % and 92.1 %, respectively. For crop type, a verification was
performed against a newly collected street view dataset (overall agreement 82.5 %) and a limited number of pub-
licly available in situ datasets (reaching minimum agreement of 80 %). Finally, global irrigated-area estimates
were derived from available maps and statistical datasets, revealing the conservative nature of the WorldCereal
irrigation product. The WorldCereal system provides a vital tool for policymakers, international organizations,
and researchers to better understand global crop and irrigation patterns and to inform decision-making related
to food security and sustainable agriculture. Our findings highlight the need for continued community efforts
such as additional reference data collection to support further development and to push the boundaries for global
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agricultural mapping from space. The global products are available at https://doi.org/10.5281/zenodo.7875104
(Van Tricht et al., 2023).

1 Introduction

Global food security is a major challenge in the face of pop-
ulation growth and climate change (Rosegrant and Cline,
2003; Brown and Funk, 2008; Prosekov and Ivanova, 2018).
A vital step in achieving the “Zero Hunger” sustainable de-
velopment goal is obtaining a global view on cropped areas,
particularly those that produce major commodity crops like
maize and wheat (Fritz et al., 2013; FAO, 2022). In addition,
a global perspective on irrigation practices is equally crucial
to ensure sustainable and efficient use of water resources, es-
pecially as agriculture becomes more intensive and as chang-
ing precipitation patterns affect major crop-producing re-
gions worldwide (Fischer et al., 2007; Elliott et al., 2014).

Such global views on crop extent, crop type, and irrigation
should preferably be generated at seasonal intervals for each
agricultural system rather than as one-off or yearly prod-
ucts, due to the dynamic nature of growing seasons, mete-
orological conditions, agricultural practices, and rotation cy-
cles (You and Sun, 2022; Bégué et al., 2018). Moreover, re-
cent crises such as the COVID-19 pandemic, the most ex-
treme weather events in decades, and the war in Ukraine have
had a profound impact on global food systems and further
stressed the need to capture seasonal changes in cropped ar-
eas and irrigation status for which to date large data gaps re-
main (FAO, 2022). This information can help policymakers
and international organizations to better plan and allocate re-
sources for food production and distribution (Becker-Reshef
et al., 2019).

Crop mapping remains, however, a difficult task due to
the diversity and complexity of agricultural systems (Liu et
al., 2022). Satellite remote sensing has become an essen-
tial data source for land cover/use mapping thanks to an
increased availability of open and free data, cloud comput-
ing infrastructure, and powerful machine learning algorithms
(Szantoi et al., 2020; Karthikeyan et al., 2020; Pandey et
al., 2021). However, most global satellite-based products do
not focus on one specific land cover class such as cropland
and have to balance many land cover classes in one map-
ping approach, such as the European Space Agency (ESA)
WorldCover 2021 global land cover product that maps the
world in 11 distinct classes at 10 m resolution (Zanaga et al.,
2022). Only a few global products are dedicated to cropland.
Pittman et al. (2010) presented a 250 m cropland layer based
on MODIS data where they concluded that moving from
static to dynamic cropland monitoring applications would
be the next step in global cropland mapping. Thenkabail et
al. (2021) published a global cropland extent product at 30 m
(GCEP30) for the year 2015 based on Landsat imagery, and

Potapov et al. (2022) presented the first time series of global
maps of cropland extent and change based on 30 m Landsat
data at 4-year intervals. Such long intervals were required to
capture sufficient clear-sky observations for accurate crop-
land detection.

With regards to crop-specific maps, Han et al. (2021) pro-
duced the first global and annual maps of rapeseed planting
area for 2017–2019 at 10 m resolution based on Sentinel-1
and Sentinel-2 data. Most high-resolution crop type prod-
ucts available to date are restricted in terms of spatial cov-
erage, highlighting the complexity of global crop type map-
ping. The study by d’Andrimont et al. (2021) produced the
first 10 m resolution crop type map for the European Union,
covering 19 different crop types, based on Sentinel-1 data.
Li et al. (2023) developed 10 m resolution maps for maize
and soybean over China for 2019 based on a combination
of PlanetScope and Sentinel-2 data. ESA’s GeoRice project
generated high-resolution rice maps for Southeast Asia for
2018–2020 based on Sentinel-1 data. Several regional crop
type mapping projects in Africa are being set up under the
Digital Earth Africa umbrella (Halabisky et al., 2022), while
efforts such as in Tseng et al. (2021) provide crucial insights
for leveraging sparsely available crop type datasets to cre-
ate crop type maps in challenging regions. Becker-Reshef et
al. (2023) collected and harmonized various regional crop
type products to generate global Best Available Crop Spe-
cific Masks (BACS) for wheat, maize, rice, and soybeans in
the context of global food security monitoring.

The first global irrigation datasets have been typically de-
rived from a combination of statistics and inventories, with
a minimal role for earth observation data (e.g. FAO’s area
equipped for irrigation map; Siebert et al., 2013). This map
was further improved by Meier et al. (2018) through a com-
bination of remote-sensing-based land cover maps (ESA Cli-
mate Change Initiative (CCI)), land suitability maps, and
long time series of the Normalized Difference Vegetation In-
dex (NDVI) in a multi-criteria decision framework. Salmon
et al. (2015) relied on a combination of survey data, remote
sensing time series, and climate data to train a supervised
classification model to distinguish rainfed, irrigated, and
paddy croplands. Detecting irrigation purely from satellite
observations is a challenging effort that can be addressed in
various ways, employing microwave-based soil moisture es-
timates, optical satellite observations, and/or measurements
of crop water stress through thermal satellite data (Massari
et al., 2021). Thenkabail et al. (2009) created a 1 km res-
olution irrigated-area map based on a combination of op-
tical satellite data (SPOT VEGETATION (VGT)), thermal
satellite data (AVHRR), a digital elevation model, and cli-
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mate data. In contrast, Wu et al. (2023) relied exclusively
on long time series of NDVI data in a locally tuned thresh-
olding system to detect irrigation activities in dry periods at
a global scale. Most recently, Teluguntla et al. (2023) com-
bined the Global Cropland-Extent Product at 30-m Resolu-
tion (GCEP30; Thenkabail et al., 2021) with multiple spec-
tral bands and indices of Landsat 8 from 2014–2017 in a
supervised machine learning approach, resulting in a high-
resolution (30 m) global irrigated-area product (LGRIP30).

Despite the clear increase in global agricultural map-
ping products, existing initiatives are not yet fully clos-
ing the global agricultural data gaps because of one or
more of the following limitations (FAO, 2022): (i) their spe-
cific definition of cropland precludes their usage in near
real time because they need access to multiple years of data;
(ii) they do not cover the full thematic detail that is required
for global agricultural monitoring purposes, including crop-
specific maps for the big commodity crops such as maize
and wheat; (iii) they provide a one-time product, while the
dynamic nature of agricultural landscapes requires frequent
and timely updates; (iv) they do not explicitly account for lo-
cal growing seasons which hampers crop-specific mapping
in different seasons; (v) they do not provide information on
agricultural practices at seasonal timescales, such as the oc-
currence of active cropland or the application of irrigation in
specific growing seasons; (vi) they exclusively provide the
end product without publication of an open-source system
that allows for reproducibility, continuity, and improvement
of these products; or (vii) they have limited local applicabil-
ity in areas with less training data.

In the framework of ESA’s WorldCereal project, we aimed
to address these current existing limitations, pushing the
boundaries on global-scale, seasonal, and reproducible crop
and irrigation mapping by building an open-source and
highly scalable system with the potential to generate glob-
ally consistent maps that can be locally fine tuned if users
add their own training data. In this research, we present
the range of WorldCereal products that have been generated
for the year 2021 at global level. This includes (i) an an-
nual temporary crop map, (ii) seasonal maize and cereals
(wheat+ barley+ rye) maps, (iii) seasonal active irrigation
maps, (iv) seasonal active cropland maps, and (v) model con-
fidence layers related to the individual products. The com-
plete 2021 WorldCereal product suite demonstrates the capa-
bilities of the dynamic open-source WorldCereal system on
a global scale, emphasizing the importance of continuing its
development beyond the 2021 showcase. This product suite
can also act as a foundation for an operational worldwide
crop monitoring system, thereby contributing to the achieve-
ment of the “Zero Hunger” sustainable development goal.

2 Definitions

2.1 Annual temporary crop map

Land cover maps typically contain a cropland class, but
this class is not always consistently defined (Tubiello et al.,
2023). The base product that is generated by the WorldCe-
real system is an annual temporary crop map. This is a binary
map identifying land used for crops with a less-than-1-year
growing cycle which must be newly sown or planted for fur-
ther production after the harvest (FAO, 2023). Sugar cane,
asparagus, and cassava are also considered temporary crops,
even though they remain in the field for more than 1 year. The
WorldCereal temporary crop maps exclude perennial crops
as well as (temporary) pastures. These maps are generated
once a year, with the period being defined in a region by the
end of the last growing season that is considered by the sys-
tem (see Sect. 2.2 and Fig. 6).

2.2 Crop seasonality

Agriculture is dynamic in nature with different crops being
grown in different seasons throughout the year depending
on local growing conditions. A global crop-mapping system
should therefore include a definition of growing seasons that
reflect regional patterns. This is particularly challenging in
equatorial areas that exhibit no clear winter–summer season-
ality and are often characterized by multiple growing sea-
sons in a calendar year that follow the spatial and tempo-
ral variability of precipitation patterns in addition to local
agricultural practices (Jägermeyr and Frieler, 2018; Franch
et al., 2022). As part of the WorldCereal system, Franch et
al. (2022) developed gridded global crop calendars at 0.5◦

resolution for maize and wheat, leveraging the main existing
global crop calendar products: GEOGLAM Crop Monitor,
the United States Department of Agriculture Foreign Agri-
cultural Service (USDA-FAS), the Food and Agriculture Or-
ganization (FAO), and the Joint Research Centre’s Anomaly
Hot-Spots of Agricultural Production (ASAP). Given the
global extent of the WorldCereal products and the gaps that
existing products exhibit at this scale, crop calendars were
simulated in those areas not covered by any of these products
(Franch et al., 2022). The resulting crop calendars were used
to stratify the globe into zones with similar maize and wheat
growing seasons (Sect. 3.3), which form the basis for tasking
the WorldCereal system to generate the products (Sect. 4).
The crop calendars consist of one major cereals’ season and
up to two maize seasons. Spring cereals grown at northern
latitudes generally exhibit the same seasonality as maize in
those regions and are therefore not characterized by a sepa-
rate growing season (see also Fig. 6 for a detailed example).

2.3 Seasonal crop type maps

The WorldCereal crop type products provide binary maps
for the maize and wheat growing seasons as defined by the
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global crop calendars, showing where maize and cereals are
grown. Cereals include wheat, barley, and rye, which belong
to the Triticeae tribe. These crops were grouped together be-
cause their spectral signatures and growing seasons were too
similar to reliably distinguish them at a global scale. The
WorldCereal crop type maps are generated within the respec-
tive annual temporary crop mask (Sect. 2.1).

2.4 Seasonal active irrigation maps

Irrigation can be applied in many ways, some of which are
easier to detect from space than others. Additionally, the rea-
son to irrigate might differ per crop and region (Burt et al.,
2000). For example, in some countries, only the most valu-
able crops are irrigated and saved from dehydration due to
a general water shortage, whilst in other countries irriga-
tion is widely applied to maximize crop yield. The WorldCe-
real irrigation product was primarily trained using irrigation
data from (semi-)arid climate zones. This was done partly by
choice (the impact of irrigation on the environment is larger
in dry regions) but also by necessity since there is limited
irrigation data available for temperate regions. In the World-
Cereal system, therefore, areas are defined as irrigated agri-
culture only if, due to extensive irrigation over a prolonged
period, a significant crop yield can be reached. Other types
of irrigation, such as incidental irrigation during the sowing
period or during short-term droughts, are not the focus of
the irrigated-area mask. This primarily excludes irrigation in
more temperate climates, where irrigation is mostly applied
to enhance crop yield instead of preventing crop failure. A
pixel can only be classified as being irrigated in a specific
season if that pixel has been identified as actively cultivated
in the season of interest (Sect. 2.5). This choice is made to
prevent potential commission of irrigated areas that might be
introduced by features that react to wet conditions in sparsely
vegetated areas.

2.5 Seasonal active cropland maps

Assessing total crop production at a regional scale requires
an indication of not only where temporary crops are grown
(as indicated by the WorldCereal temporary crop map) but
also during which growing season(s) the identified areas
are effectively in use for growing crops. External pressures
such as natural disasters, a global pandemic, and armed con-
flicts may lead to severe damage to crops and/or induce field
abandonment, causing complete cropping seasons to fail and
thereby significantly impacting local-to-global food security.
To gain a better understanding of local food production,
the WorldCereal active cropland product indicates whether
a pixel identified as temporary crops has been actively cul-
tivated during a specific growing season. For a pixel to be
labelled as “active” during a particular growing season, a full
crop growth cycle (sowing, growing, senescence, and har-
vesting) needs to take place within the designated time pe-

riod. Note that this active marker is not crop-type specific and
will capture other crop types aside from cereals and maize as
long as they show a similar seasonality. This also means in
practice that any crop grown (slightly) outside the predefined
growing seasons will not be flagged as active cropland in any
of the seasons covered by the system.

3 Materials and methods

In this section we outline the methodology for the creation of
the WorldCereal products. While the presented products fo-
cus on the year 2021 at the global scale, the general method-
ology can be applied to other years and custom regions as
well. Figure 1 illustrates how product generation is achieved
by the WorldCereal classification system starting from a
user-defined area and year of interest. The number and ex-
act timing of the maize and cereals’ seasons to be processed
are derived from the global crop calendars (Sect. 2.2), which
were stratified into uniform zones to enable fast processing
at large spatial scales (Sect. 3.3). Based on this information,
the appropriate time series of raw Earth Observation (EO)
data are extracted (see also Fig. 6) and pre-processed for
each individual growing season (detailed processing steps
further specified in Sect. 3.2). Next, the prepared inputs are
condensed into product-specific sets of classification features
(Sect. 3.4), which directly feed into the respective classifica-
tion models for temporary crops, maize, cereals, and irriga-
tion detection (Sect. 3.5). Following model inference, several
post-processing steps are applied to enhance individual prod-
uct quality and inter-product consistency (Sect. 3.6). Note
that Fig. 1 does not include the training aspect of the different
classification models applied. Section 3.1 further details the
reference data used for training our global models, whereas
Sect. 3.5 describes the model architecture and training proce-
dure. Finally, Sect. 3.7 specifies how the WorldCereal prod-
ucts were validated.

3.1 Training data

High-quality and representative training data are key to a
well-performing and robust mapping system. Classification
algorithms that need to be transferrable in space and time
require training data that are spatially well spread and ide-
ally cover as many of the agrometeorological conditions
over time as possible. This reduces the risk of overfitting to
specific locations, crop types, years, or growing conditions
(Cracknell and Reading, 2014; Gu et al., 2016; Pelletier et
al., 2017). Within the WorldCereal project, a community-
based, open-access, and harmonized reference data repos-
itory at global extent was developed to address this need
(Boogaard et al., 2023). This repository currently holds
around 75 million harmonized samples from 2017 onward,
originating from different sources such as the Group on
Earth Observations Global Agricultural Monitoring Initia-
tive (GEOGLAM) Joint Experiment for Crop Assessment
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Figure 1. WorldCereal production flowchart detailing the steps required to generate the WorldCereal products for a user-defined area and
year of interest. This schematic does not include training of the classification models.

and Monitoring (JECAM) sites, the Radiant MLHub, the Fu-
ture Harvest (CGIAR) centres, the National Aeronautics and
Space Administration Food Security and Agriculture Pro-
gram (NASA Harvest), and the International Institute for Ap-
plied Systems Analysis (IIASA) citizen science platforms
(LACO-Wiki and Geo-Wiki), as well as from individual
project contributions. Each sample contains information on
either its land cover/use, crop type, irrigation status, or a
combination of these. A timestamp, derived as accurately as
possible, allows us to assign a sample to a specific year and
growing season(s). Finally, a confidence score indicates the
expected quality of a sample and was derived at the origi-
nal reference dataset source level based on the combined ex-
pert assessment of spatial, temporal, and thematic accuracy.
A large number of samples is located in the EU and the USA,
thanks to major contributions of European Land Parcel Iden-
tification System (LPIS) datasets and points sampled from
the USDA Crop Data Layer. These datasets were therefore
subsampled for training to reduce the spatial bias and keep

the number of training input extractions manageable. The
detailed description of this reference data module and the
harmonization process followed can be found in Boogaard
et al. (2023). Irrigation training data were especially sparse,
consisting of only 36 000 rainfed and 26 000 irrigated sam-
ples divided over 19 countries. Since this was too limited to
train a global irrigation mapping system, manually collected
samples were included. The irrigated samples of this dataset
consisted of centre-pivot irrigation sites which were visually
selected using Google satellite and Bing aerial base layers.
A minimum NDVI peak threshold of 0.4 was set to prevent
including centre-pivot irrigation data that were not show-
ing any cropping activity during the training period. Rain-
fed samples were primarily collected from Europe, northern
Africa, India, Australia, and Argentina. The accuracy of this
dataset was verified using the FAO AQUASTAT data on ar-
eas equipped for irrigation (Siebert et al., 2013). This manual
training dataset added another 50 000 irrigated and 30 000
rainfed samples. The resulting label density at ∼ 5◦ reso-
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Figure 2. Available label density at ∼ 5◦ resolution for training the
different WorldCereal models. (a) Land cover labels to be used for
temporary crop mapping show a good global spread. (b) Labels for
training the crop type models exhibit large spatial gaps. (c) Irriga-
tion labels are the most sparsely distributed.

lution for land cover/use, crop type, and irrigation training
samples is shown in Fig. 2. While the land cover samples are
globally well distributed, strong regional differences in label
availability (and even large data gaps) are apparent for crop
type and irrigation training data.

3.2 Inputs and pre-processing

The satellite-based inputs used to create the WorldCereal
products are optical Sentinel-2, radar Sentinel-1, and ther-
mal Landsat 8 time series. Sentinel-2 optical bands were first
subjected to cloud and shadow masking by applying a di-
lated version of the binarized SEN2COR scene classification
mask (Main-Knorn et al., 2017). For crop type mapping, a
crop-specific growing degree days (denoted GDD) normal-
ization step was performed on the original time series using
mean daily temperature data from the global AgERA5 re-
analysis dataset (Boogaard et al., 2020). The aim of this step
is to better align the time series of identical crops that are
growing under different temperature regimes. The procedure
is outlined in detail in Cintas et al. (2023). Next, depending
on the product, either the original or GDD-normalized acqui-
sitions were composited to 10 d regular timestamps using a
median operator. The remaining missing values due to pro-
longed cloudy periods were linearly interpolated.

Sentinel-1 pre-processing consists first of an orbit direc-
tion selection in case both ascending and descending orbits

are acquired over a region. This prevents mixing of backscat-
ter signals under entirely different viewing conditions but
also increases the generalizability of the system given that
in most regions of the world only one orbit direction is ac-
quired. The orbit direction selection is done by retrieving the
times between subsequent acquisitions and selecting the orbit
direction with the smallest maximum temporal gap. Speckle
was reduced by applying a Gamma-MAP filter with a kernel
size of 7 and an equivalent number of looks of 3, preserv-
ing the original spatial resolution while significantly reduc-
ing speckle noise in the signal. Next, crop-specific GDD nor-
malization was done in the case of crop type mapping (Cintas
et al., 2023). Finally, a 12 d compositing was performed us-
ing a mean operator, and any missing values (due to, for ex-
ample, temporary unavailability of the satellite) were linearly
interpolated.

The Landsat 8 Collection 2 Level 2 surface temperature
band ST_B10 was first masked using an eroded and dilated
version of the mask originally delivered with the product,
in turn based on the CFMask (Foga et al., 2017) algorithm.
The data were then composited into 16 d time series using a
median filter. The remaining missing values in particularly
cloudy periods were linearly interpolated.

Next to the main satellite inputs, the workflow also makes
use of ancillary data sources. We used the Copernicus DEM -
Global and European Digital Elevation Model (COP-DEM)
at approximately 30 m spatial resolution (“GLO-30”). The
original 30 m data were resampled to 20 m spatial resolution
to align with the Sentinel-2 tile grid and to be compatible
with the classification workflow. Another auxiliary layer is
based on biome membership. Based on the 846 ecoregions of
the Ecoregions2017 map (Dinerstein et al., 2017), the world
was stratified into 13 biomes. Biome membership allows for
a classification model for implicit grouping of training and
inference data based on shared characteristics as described by
their biome. These biomes were originally obtained as dis-
crete vector polygons. Using these in the classification can
cause the appearance of hard border artefacts in the prod-
ucts. To avoid these artefacts and reflect the natural and grad-
ual transitions between biomes, we derived a set of continu-
ous biome raster datasets. The original biome polygons were
first simplified with a tolerance of 0.01◦, buffered at 0.05◦,
and rasterized with a resolution of 0.01◦. The obtained raster
datasets were then filtered with a Gaussian kernel of radius
0.5◦, with maximum amplitude of 1 at the centre and 0 at
the borders. The resulting filtered biomes gradually transi-
tion from 0 to 1 in a range of 1◦ around the original discrete
biome borders. This means that points close to the biome
boundaries will have a certain degree of membership also
with other nearby biomes, representing the gradual transition
between different biomes.
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3.3 Stratification

The WorldCereal classification system aims for product gen-
eration within 1 month after the end of a particular grow-
ing season. Due to the dynamic nature of these growing sea-
sons across the globe, we created a stratification based on the
global crop calendars discussed in Sect. 2.2. Regions shar-
ing similar crop calendars were grouped into 203 homoge-
nous agro-ecological zones (AEZs; Fig. 3) that are used as
a mapping trigger for the system (Fig. 6 in Sect. 4). In ad-
dition, Buchhorn et al. (2020a) reported that classification
algorithms for global mapping purposes are better adapted to
sub-continental and continental patterns if they are trained
and applied at sub-global scale. Therefore, we also strati-
fied the global terrestrial regions into large biogeographical
realms (Fig. 4) following the Ecoregions2017 dataset (Din-
erstein et al., 2017). This allows for model training at realm
level instead of global level, provided that sufficient training
data are available (Sect. 3.5).

3.4 Feature extraction

Classification features were derived from the five data
sources discussed in Sect. 3.2, i.e. optical, radar, thermal in-
frared, DEM, and fuzzy biomes. Aside from the DEM and
biomes, feature extraction always starts from pre-processed
time series, either directly derived from the data source
(e.g. Sentinel-2 reflectance bands) or a derived time series
using a combination of multiple input variables (e.g. a spec-
tral index). Exact timing and length of the time series was de-
termined by the pixel-based crop calendars for the respective
products (Sect. 2.2). Whereas different features were origi-
nally computed at the native spatial resolution of the input
data source for computational purposes, in the end all fea-
tures were resampled to 10 m resolution before being used
as input in the classification models. In the remainder of
this section, we describe in more detail the specific features
that were computed for generating the different WorldCereal
products.

3.4.1 Temporary crop mapping features

Mapping temporary crops using satellite data remains chal-
lenging in many regions, due to the variability in agricul-
tural landscapes, spectral similarity with other land cover
classes, fallow practices, and cloud obstruction during the
growing season (Vancutsem et al., 2013). Defining a robust
and characteristic set of features that separates temporary
crops from all other land cover classes is therefore key. From
the Sentinel-2 optical pre-processed inputs, we computed the
following vegetation indices which have a proven record for
mapping cropland (Valero et al., 2016; Nakalembe et al.,
2021; Thenkabail et al., 2021; Potapov et al., 2022): nor-
malized difference vegetation index (NDVI), normalized dif-
ference water index (NDWI), normalized difference green-
ness index (NDGI), angle on near-infrared (ANIR), normal-

ized difference moisture index (NDMI), and two normalized
difference red edge indices (NDRE85 and NDRE75). The
reader is referred to Table S1 for more information on these
indices. Together with the short-wave-infrared bands B11
and B12, we summarized these time series using the 10th
(p10), 50th (p50), and 90th (p90) percentiles as well as the
interquartile range (IQR). For NDVI in particular, the tempo-
ral profile was captured in more detail by sampling the time
series at six positions spread evenly throughout its length (re-
sulting in six additional features, ts0–ts5) and by computing
12 of the temporal features based on the work by Valero et
al. (2016). As for Sentinel-1 SAR (synthetic aperture radar)
features, three time series were used as the basis for feature
computation, i.e. VV, VH backscatter, and the radar vegeta-
tion index (RVI), all of which have proven their use in crop
mapping studies (Kenduiywo et al., 2018; Van Tricht et al.,
2018; Mandal et al., 2020). These time series were summa-
rized using the p10, p50, and p90 percentiles as well as the
IQR. DEM altitude and slope and fuzzy biome membership
features were included, as well. Finally, positional features
latitude and longitude were also added, which we call local-
ization features. Localization features allow classification al-
gorithms to become “spatially aware” and hence gain knowl-
edge on where training or inference data are originating from.
To avoid overfitting on exact combinations of latitude and
longitude and at the same time to reduce the risk of inferior
product quality in data-sparse regions, random perturbations
of up to 2.5 and 10◦ (ranges determined empirically) were
added during training to latitude and longitude, respectively.
The complete list of features used for temporary crop map-
ping is provided in Table 1.

3.4.2 Crop type mapping features

Specific crop type identification within the temporary crop
mask started from a similar collection of features as for tem-
porary crop mapping. To further enrich the feature set for
distinguishing between different crop types, the standard de-
viation (SD) temporal statistic was added, in addition to the
Sentinel-2 RGB bands (B02, B03, B04). We also computed
the enhanced vegetation index (EVI), which was used to au-
tomatically detect the growing seasons in a time series, based
on the method described by Bolton et al. (2020). Outputs
of the season detection algorithm include the number of de-
tected growing seasons and for each season the dates of its
start, peak, and end. Based on these outputs, minimum, me-
dian, and maximum of both the length and EVI amplitude for
all detected seasons were derived and added as classification
features. Biome and localization features, in turn, were not
included because of insufficient global coverage of training
data to cover all possible biome and localization combina-
tions. The full feature set is described in Table 2. The sea-
sonality detection is also used in the WorldCereal system to
generate a seasonal active cropland layer (see Sect. 2.5).
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Figure 3. Global stratification based on crop calendar similarity. Each resulting agro-ecological zone (AEZ) serves as a WorldCereal map
trigger to generate products based on local seasonality, which is further demonstrated in Fig. 6. Letters (a) and (b) identify the specific AEZs
used as input to generate Fig. 6.

Figure 4. Biogeographical realms used to train localized temporary crop extent models (Dinerstein et al., 2017).

3.4.3 Irrigation mapping features

The feature collection of the WorldCereal irrigation model
focuses on optical and thermal satellite observations from
Sentinel-2 and Landsat 8, respectively, in combination with
meteorological data from AgERA5. The basic features of
the algorithm are pure Sentinel-2-based indices, such as
NDVI, NDWI, modified normalized difference water in-
dex (MNDWI), EVI, and global vegetation moisture index

(GVMI) (see Table S1). These features can explain the health
of a crop or if a crop is experiencing any form of stress.
To prevent overfitting of the model, only the p90 and SD
were calculated for these indices and added as features to the
model. The p90 explains if a crop was able to flourish, poten-
tially because of irrigation, or if a crop showed clear signs of
stress. The SD is used to understand how dynamic the grow-
ing season of a crop was. A more advanced feature based
on multiple Sentinel-2 bands is the spectral (cosine) median

Earth Syst. Sci. Data, 15, 5491–5515, 2023 https://doi.org/10.5194/essd-15-5491-2023



K. Van Tricht et al.: WorldCereal 5499

Table 1. Selected features for temporary crop mapping.

Data source Time series Features

Optical NDVI p10, p50, p90, IQR, ts0, ts1, ts2, ts3,
ts4, ts5, maxdif, mindif, difminmax,
peak, lengthpeak, areapeak, ascarea, as-
clength, ascratio, descarea, desclength,
descratio,

NDWI, NDGI, ANIR, NDMI,
NDRE85, NDRE75,
B11, B12

p10, p50, p90, IQR

SAR VV, VH, RVI p10, p50, p90, IQR

DEM Altitude, slope

Biomes 13 biome fuzzy membership features

Localization latitude/longitude Centre latitude/longitude for a pixel

Table 2. Selected features for crop type mapping.

Data source Time series Features

Optical NDVI p10, p50, p90, SD, ts0, ts1, ts2, ts3,
ts4, ts5, maxdif, mindif, difminmax,
peak, lengthpeak, areapeak, ascarea, as-
clength, ascratio, descarea, desclength,
descratio,

NDWI, NDGI, ANIR, p10, p50, p90, SD
NDRE1, NDRE5, p10, p50, p90, SD
B2, B3, B4, B12 p10, p50, p90, SD
EVI lSeasMax, lSeasMed, lSeasMin,

aSeasMax, aSeasMed, aSeasMin

SAR VV, VH, RVI p10, p50, p90, IQR

DEM Altitude, slope

absolute deviation (SMAD). This feature highlights the tem-
poral variation of multiple optical bands and has a positive
impact on the detection of irrigation (Wellington and Ren-
zullo, 2021). Finally, also the geomedian (GM) calculated for
the near-infrared and short-wave-infrared bands of Sentinel-2
were added to the model to emphasize the absorption patterns
of chlorophyll and water.

Second, the relation between the air temperature (Tair) and
land surface temperature (LST) is used to further understand
the stress conditions of a crop. Under well-watered condi-
tions, the difference between Tair and LST is minimal, be-
cause the crop is cooling itself through transpiration pro-
cesses. An increasing difference between Tair and LST in-
dicates that the crop is unable to transpire to its maximum
potential and that stomata are being closed; additional water
is necessary for the crop to continue growing.

The third feature set focuses on the impact of irrigation on
evapotranspiration (ET). Similar to the proposed Sentinel-
2-based indices, ET indicates if a crop can thrive or not.

Modelling the actual ET (ETact) using remote sensing data
is complex and requires many inputs. To increase the com-
putational efficiency of the model, a simple relation between
the reference evapotranspiration (ET0) and the NDVI is used
to calculate the actual ETact. This relation is based on the
work of Kamble et al. (2013). The ET0 is calculated using
AgERA5 data and relies on the Penman–Monteith equations
(Allen et al., 1998). Since ET only explains if a crop is thriv-
ing and cannot help making a distinction between a rainfed
crop in a humid climate or an irrigated crop in a more arid
climate, precipitation data were added. The resulting precip-
itation deficit (Pdef) explains the difference between evap-
otranspiration and precipitation, where a large Pdef can be
the result of extensive irrigation. From the Pdef time series,
multiple features were calculated. The basic features are p10,
p50, and p90, followed by the SD of the ET data. Addi-
tionally, the cumulative Pdef was calculated to understand
the trend, longevity, and severity of the precipitation deficit.
From this cumulative Pdef, the maximum and minimum were
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calculated, together with the maximum duration of a positive
Pdef and the maximum slope of the cumulative Pdef curve.
To conclude, also the sum divided by the length of the grow-
ing season of the ET0, ETact, and P were added as features
to the algorithm. The duration of a positive cumulative Pdef,
the maximum cumulative Pdef, and the minimum cumulative
Pdef were also divided by the length of the season. These
divisions were made to ensure that there is no bias towards
regions with longer growing seasons.

Finally, to also include the relation between soil mois-
ture and irrigation, the optical trapezoid model (OPTRAM;
Sadeghi et al., 2017) was used. This model focuses on the re-
lationship between short-wave infrared reflectance and the
NDVI. In this model, the short-wave infrared reflectance
is converted into surface-transformed reflectance (STR). A
trapezoidal model relies on a predefined wet and dry edge.
These edges explain at which NDVI and STR value the soil
is saturated or at its wilting point. In contrast to the origi-
nal OPTRAM model, the edges are defined by grouping the
STR data of one growing season by discrete NDVI steps. The
dry edge of each step is represented by the minimum STR
value within that specific step. The wet edge is calculated by
adding the median STR with the standard deviation of the
STR to prevent the model from becoming too sensitive to
oversaturated conditions, which is a known issue (Sadeghi et
al., 2017). The final wet and dry edges are calculated by ap-
plying a linear regression through all the individual wet and
dry edge values. For this soil moisture data, p50, p90, and
SD were calculated and used as features. The final feature
set was based on the correlation between the precipitation
and the OPTRAM-based soil moisture content. A high cor-
relation indicates that an increase in soil moisture is primarily
driven by precipitation. A low correlation, on the other hand,
might indicate that other factors, like irrigation, could have
caused the increase in soil moisture content. For this dataset,
also p50, p90, and SD were calculated. Table 3 shows an
overview of all the features used in the irrigation classifica-
tion algorithm.

3.5 Classification

The classification algorithms are based on a CatBoost model,
which is a high-performance model architecture for gradient
boosting on decision trees (Prokhorenkova et al., 2018). In-
put to the respective algorithms were the features listed in
Tables 1–3. The output of each model is a binary classifica-
tion of the inputs into the class of interest vs. all other classes.
For the temporary crop map, this means a binary classifica-
tion of temporary crops vs. all other land cover types. For
seasonal crop type maps, this means maize or cereals vs.
all other crops. For irrigation maps, actively irrigated crops
are mapped against rainfed crops. As discussed in Sect. 3.3,
separate temporary crop mapping models were trained for
each realm. Crop type and irrigation models were trained at
the global level because of a lack of sufficient training sam-

ples in each individual realm. The models were trained on
their respective seasonal training features: we trained tem-
porary crop models based on annual features; a winter ce-
reals model was trained based on the main wheat season
features; a spring cereals model was trained using the fea-
tures from the maize season in selected northern zones that
are known to grow spring cereals; and a maize model was
trained on the combined features of up to two maize seasons.
For each model, the training data were randomly divided
into 70 % calibration, 20 % validation, and 10 % test sam-
ples. During training, only calibration and validation sam-
ples were used, while test samples were retained for perfor-
mance assessment. Each model was trained with a maximum
of 4000 iterations, a depth of 8, a learning rate of 0.05, and
early stopping activation after 40 rounds without improve-
ment. The distribution of the binarized training samples is
imbalanced, the degree by which depends on the availabil-
ity of different sources of reference datasets. To cope with
this imbalance, we computed the class weights that balance
the distribution, which we then used for loss weighting to
eliminate the imbalance problem. In addition to these class
weights, sample-specific weights were also adjusted based
on the confidence score of the respective reference dataset
they were originating from (see Sect. 3.1). It is important to
note that the models were trained on the combined training
data from the available years (2017–2021) without providing
year-specific information to the model. The aim was to train
generalized models across multiple years that do not specifi-
cally require new training data in unseen years.

As a complementary product of the binary prediction, the
models also provide binary class probabilities which we used
to assess the pixel-based model’s confidence in its prediction.
Unconfident model predictions are characterized by binary
probabilities close to 0.5, while confident model predictions
are close to 0 or 1. Therefore, we defined model confidence
as a value between 0 and 100, computed using Eq. (1).

confidence=
(

probability− 0.5
0.5

)
× 100, (1)

where “probability” is the class probability of the winning
class (≥ 0.5). Note that this model confidence score simply
reflects how certain the model is of its prediction, based on
what it has learnt from the training data, and does not reflect
actual accuracy based on independent validation data.

3.6 Post-processing

Since classification was done on a per-pixel basis, no con-
textual information was taken into account in the workflow.
This can lead to the so-called salt-and-pepper effect in the
output product (Hirayama et al., 2019). We therefore applied
the majority filter technique (Stuckens et al., 2000) to reduce
this effect and used a kernel size of 5 pixels for the tempo-
rary crops product and 7 pixels for the crop type and irriga-
tion products. To retain high-confidence model predictions,

Earth Syst. Sci. Data, 15, 5491–5515, 2023 https://doi.org/10.5194/essd-15-5491-2023



K. Van Tricht et al.: WorldCereal 5501

Table 3. Selected features for active irrigation mapping.

Data source Time series Features

Optical NDVI, EVI, MNDWI,
NDWIveg, GVMI
B08, B11
B02 + B03 + B04 + B08 + B11 +
B12

p90, SD
p90, SD
GM
SMAD

TIR LST – Tair p50, p90, SD

Meteo. Precipitation, ETact, ET0
Precipitation deficit
SSM, SSM_adj

Sum
p10, p50, p90, SD, cum_max,
cum_min, cum_maxdur,
cum_maxslope
p50, p90, SD

we switched off majority filtering for those pixels that had a
model confidence of ≥ 0.85 for temporary crops and ≥ 0.75
for crop type and irrigation.

Consistency between the different products was ensured
during post-processing in three ways. First, a positive crop
detection by one of the crop type models in a season auto-
matically identifies a pixel as active cropland for that partic-
ular season. Second, a pixel marked as inactive in a season
automatically sets that pixel to rainfed in the irrigation prod-
uct. Third, any overlap between different crop type products
within the same growing season was resolved by retaining
the crop type with the highest model confidence. Different
seasons, even when partly overlapping, were not subject to
conflict resolving as they were processed independently and
at different times.

3.7 Validation

The validation approach differs from product to product, de-
pending on quality and availability of reference datasets that
were not used during model training and hence available for
independent validation.

3.7.1 Annual temporary crop maps

We followed the guidelines for rigorous accuracy assess-
ment provided in Stehman and Foody (2019) and Szantoi
et al. (2021). To validate the annual temporary crop prod-
ucts, a new validation dataset (Lesiv et al., 2023b) was cre-
ated which is completely independent from all other exist-
ing maps or reference datasets and which is in line with
the cropland definition and mapping period of the World-
Cereal products as outlined in Sect. 2. The sampling design
of the validation dataset is probabilistic with a random dis-
tribution of sample sites. The validation sample sites were
generated before the WorldCereal products were produced.
Therefore, to avoid issues with inclusion probabilities, we
selected a random sample design in equal area projection

(Goode Homolosine). Considering that arable land covers
approximately up to 10 % of all land, the sample size con-
sisted of 50 000 unique sample sites, with possibly up to 5000
sample sites labelled as temporary crops. Response design
has been implemented in the Geo-Wiki application (Fritz et
al., 2012), where each validation sample site has been visu-
ally interpreted by several experts. To decide if a sample is
covered by temporary crops in a given period of time, the
experts looked at very high-resolution Google historical im-
agery and Google Street View images, Microsoft Bing im-
ages, ESRI imagery, Planet historical data, Sentinel-2 time
series, and MODIS NDVI time series. The validation sample
sites where the experts disagreed on temporary crop presence
were revisited and revised.

By using the new validation dataset, we calculated confu-
sion matrices with accuracy metrics such as overall, user’s
and producer’s accuracies. To calculate 95 % confidence in-
tervals for each metric, we applied bootstrapping with re-
placement (Schreuder et al., 2004; Szantoi et al., 2021). Un-
like the original method proposed by Stehman and Foody
(2019), this bootstrapping approach does not require the as-
sumption of a normal distribution and takes full advantage of
today’s computational power for estimating confidence in-
tervals. All the calculations were done at global level and by
continents.

3.7.2 Seasonal crop type maps

The coverage and availability of crop type information for the
year 2021 is limited. Therefore, to get a global overview of
the quality of the crop type products, we decided to invest in
a new crop type validation dataset (Lesiv et al., 2023a). This
dataset was created by using a new IIASA tool, called “Street
Imagery validation” (https://svweb.cloud.geo-wiki.org/, last
access: 10 May 2023), where users could check street level
images (e.g. Google Street View images, Mapillary, etc.) and
identify the crop type where it is possible. The advantage
of this tool is that there are plenty of georeferenced images
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with dates, going back in time. The disadvantage is that users
need to check plenty of images where only few will clearly
show cropland fields that are mature enough to be identified.
To make the data collection more efficient, we provided our
experts with preliminary maps of points in agricultural ar-
eas where street level images are available for the year 2021.
Then, the experts checked those locations in an opportunistic
way. In total, we collected around 3500 unique locations, dis-
tributed around the globe (Fig. 5) and matching the WorldCe-
real 2021 mapped seasons (Table 4). After discarding peren-
nial crops and locations outside the WorldCereal temporary
crop mask, 2617 samples remained for crop type validation.
This dataset is completely independent from all the existing
maps and reference datasets. Since it is not a subset from the
training dataset, there are no potential issues related to spa-
tial autocorrelation between training and validation datasets.
Though, it has a limitation – the sample design is not proba-
bilistic. By using the new validation dataset on crop type, we
calculated a confusion matrix with metrics, which we called
overall agreement and agreement by classes. We did not use
the term “accuracy” since the sample design is not proba-
bilistic. In addition to this global effort, comparisons were
performed with publicly available regional in situ reference
datasets (Sect. 3.1) and randomly sampled locations from ex-
isting crop type maps (USDA National Agricultural Statistics
Service Cropland Data Layer, 2021) to further demonstrate
crop type product quality.

3.7.3 Seasonal active irrigation maps

The amount of total land that is being irrigated differs from
year to year, heavily depending on weather conditions. As
mentioned in the description of training data, there is very
limited information available about actual irrigation of crop-
land fields, giving us little means to run a quantitative val-
idation of irrigation products as such, especially by season.
For irrigation we hence focus on a qualitative assessment, by
spatially comparing the WorldCereal irrigation products with
two open-access datasets: (i) Global map of areas equipped
for irrigation expressed as percentages, produced by FAO
(Siebert et al., 2013); and (ii) the Landsat-Derived Global
Rainfed and Irrigated-Cropland Product at 30 m (LGRIP30)
(Teluguntla et al., 2023). To this end, the WorldCereal sea-
sonal irrigation products were combined into an annual prod-
uct and subsequently (together with the LGRIP30 map) ag-
gregated to match the resolution of the FAO map (0.083◦).
This combined irrigated-area map describes if in any of the
three seasons within the same year a pixel is being classi-
fied as irrigated. Finally, we have compared the WorldCe-
real irrigation products with country statistics on irrigated
land from the International Commission on Irrigation and
Drainage (ICID) (ICID, 2022).

3.7.4 Seasonal active cropland maps

Provided the strict definition of the seasonal active cropland
maps, no ground truth data are available for validating this
specific product. This marker is therefore to be used for in-
formative purposes and only as an indication whether or not a
full growing season was detected by the WorldCereal system.
Note that the quality of this product is expected to be lower in
regions with few valid (non-cloudy) optical observations, as
this is the only input used for delineating the growing season
and determining active crop growth (see Sect. 2.5).

4 WorldCereal products

The WorldCereal system was demonstrated at scale by glob-
ally following the crop calendars described in Sect. 2.2 for
the year 2021 and generating all WorldCereal products as-
sociated with each of these seasons. The resulting seasonal
products are listed in Table 4, whereas Fig. 6 illustrates how
the temporal validity of these products is defined in func-
tion of the AEZ. A temporary crop map was generated based
on 1 year of input data, described by the “tc-annual” sea-
son. Within the resulting temporary crop mask, winter cere-
als, spring cereals, and maize maps were generated within
their respective seasons. Active cropland and active irriga-
tion maps were generated for each of these seasons next
to the crop type maps. The WorldCereal system works at
Sentinel-2 tile level, with each tile being subdivided into
10× 10 km blocks to ensure memory-efficient processing.
Prior to global processing, a global agricultural mask was
developed to determine which tiles could be excluded be-
cause of their distance to the closest agricultural area. This
agricultural mask was largely based on the 2019 Coperni-
cus Global Land Cover product v3 (Buchhorn et al., 2020b):
each 10×10 km processing block showing a fraction of agri-
cultural land lower than 1 % was initially excluded from the
processing list. The area to be processed was cleaned and ex-
panded by subsequently applying an erosion and dilation op-
eration using a 20 and 40 km radius, respectively. After addi-
tional cleaning through visual analysis, the mask was resam-
pled to Sentinel-2 tile level using a conservative approach:
only if all of the tiles were flagged as containing no cropland,
the tile was excluded from further analysis. This resulted in a
total of 11 867 out of 18 537 Sentinel-2 tiles to be processed
by the WorldCereal system (see Fig. S1). All other Sentinel-
2 tiles were considered to contain no temporary crops in the
WorldCereal product layers. Of the original 203 WorldCereal
AEZ across the globe (Fig. 3), 106 zones intersect with tiles
that were processed, and products were therefore generated
for those zones (see Sect. 6).

4.1 Temporary crop extent map

The global temporary crop extent map for 2021 shows the
occurrence of at least one temporary crop over the course
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Figure 5. Locations with identified crop type across the globe, using the Street Imagery validation tool. Base map source: http://GADM.org
(last access: 1 May 2023).

Table 4. WorldCereal seasonal products. The name of the season is provided with the associated product layers. Abbreviations for each
product are defined here for use in Fig. 6.

Season Product Abbreviation Remarks

tc-annual Temporary crops map tcr Defined based on the last season within the target year

tc-wintercereals Winter cereals map wce Main cereals season
Active cropland map acr
Active irrigation map irr

tc-maize-main Maize map mai
tc-springcereals Spring cereals map sce Only mapped in parts of the Northern Hemisphere

Active cropland map
Active irrigation map

tc-maize-second Maize map Occurring only in tropical regions
Active cropland map
Active irrigation map

of 1 year at 10 m resolution. The result is shown in Fig. 7,
where the original product was downsampled to ∼ 0.004◦

resolution. Although this figure seemingly shows one global
layer, it was in fact generated at different times during the
calendar year for the individual zones described in Sect. 3.3,
respecting their regional seasonality.

4.2 Seasonal crop type maps

The seasonal crop type maps were generated separately for
each growing season defined in the individual zones (Fig. 3).
By mosaicking the individual zones, global seasonal cereals
and maize maps at 10 m resolution were generated, which in
turn were resampled to ∼ 0.004◦ resolution (Fig. 8). Maize
and spring cereals were generated during the same growing
season (tc-maize-main). Overlap between these two products

was resolved during post-processing (Sect. 3.6). No conflict
resolving was done between different seasons, as these were
processed independently.

4.3 Seasonal active irrigation maps

Similar to the seasonal crop type maps, the irrigation maps
were generated separately for each growing season and then
combined to an annual 10 m product. The downsampled
(∼ 0.004◦) results of these irrigation maps showing the frac-
tion of irrigated land are visualized in Fig. 9. Areas without
active irrigation are shown transparent. As with the annual
temporary crop and seasonal crop type products, the global
overview shown in Fig. 9 in reality consists of the different
AEZ-based products generated at different times in the year.
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Figure 6. Demonstration of WorldCereal 2021 product generation and timing for two distinctive agro-ecological zones (AEZs). (a) AEZ
located in central USA, where only one maize season occurs and spring cereals are mapped jointly with maize, and (b) AEZ located in
Somalia, where two maize seasons occur and no spring cereals are mapped. The coloured bars indicate the timing of the considered growing
seasons and hence the extent of required satellite time series. Product abbreviations are explained in Table 4, whereas locations of AEZs are
highlighted in Fig. 3.

Figure 7. WorldCereal 2021 temporary crop extent map. The original 10 m product was resampled to ∼ 0.004◦ resolution, showing the
fraction of the original 10 m pixels that were labelled as temporary crops. This global overview consists of a mosaic of the individual zones
for which the product was generated.

4.4 Seasonal active cropland maps

Active cropland layers were generated for all seasonal layers
described in Table 4. These layers show whether or not a full
crop growth cycle (consisting of sowing, growing, harvest-
ing) has been detected in the areas identified by the tempo-
rary crop mask (Sect. 4.1) within the specific season under
consideration. An example is shown in Fig. 10 for a region
near Grainfield, Kansas, USA, where a mixture of winter ce-
reals and maize were detected by the WorldCereal system
in their respective seasons. Fields being labelled as active
cropland in Fig. 10 but not as one of the target crop types
of the WorldCereal system indicate the presence of another

crop type that follows the same seasonality as the crop for
which the season was originally defined.

4.5 Model confidence maps

Temporary crop extent, crop type, and irrigation maps
all have related model confidence layers as described in
Sect. 3.5. As an example, Fig. 11 shows the global model
confidence layer associated with the temporary crop extent
product (Fig. 7). Regions of low model confidence indicate
that the model struggles to provide a reliable prediction, in
turn meaning that in those locations the feature values used
as predictors do not clearly relate to one of the two binary
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Figure 8. WorldCereal 2021 seasonal crop type products. The
original 10 m products were resampled to ∼ 0.004◦ resolution,
showing the fraction of land covered by each crop type. These
global overviews consist of a mosaic of the individual AEZs for
which the product was generated. (a) Winter cereals fraction in
the tc-wintercereals season. (b) Spring cereals fraction in the tc-
springcereals season. (c) Maize fraction in the tc-maize-main sea-
son. (d) Maize fraction in the tc-maize-second season.

classes being mapped. Several reasons can be identified that
may cause unreliable predictions. The most straightforward
explanation is a training data gap in a specific region where
the feature values do not resemble any of the combinations
seen during model training in which case extrapolation by
the model fails. Mixed pixels can also explain lower model
confidence, e.g. on the border of agricultural fields where a
pixel could include both temporary crops and another land
cover class. A third explanation relates to specific agrome-
teorological conditions that are too different from what the
model has learnt. In this case, although a region could be cov-
ered by training data from a different year, the features from

Figure 9. WorldCereal 2021 seasonal active irrigation products.
The original 10 m products were resampled to ∼ 0.004◦ resolu-
tion, showing the fraction of irrigated land. These global overviews
consist of a mosaic of the individual AEZs for which the product
was generated. (a) Fraction of irrigated land in the tc-wintercereals
season. (b) Fraction of irrigated land in the tc-maize-main/tc-
springcereals season. (c) Fraction of irrigated land in the tc-maize-
second season.

the mapping year are too different, resulting in model con-
fusion. A fourth explanation is the degree of cloud obstruc-
tion in the optical observations during the growing season.
While this is partly tackled by the inclusion of radar inputs
into the classification, the lack of a clear crop growth cycle
in the optical inputs can significantly deteriorate crop detec-
tion performance. A last possible explanation is related to
noise in the training data, because of either inconsistent class
definitions or temporal, thematic, and/or geolocation inaccu-
racies. This confuses the model in such a way that conditions
similar to the noisy training data lead to low model confi-
dence and potentially wrong predictions. Apart from mixed
pixels which are linked to the input data resolution, the most
straightforward solution to improve model confidence is to
gather additional training data that fills the knowledge gap.
Low confidence regions could therefore point the community
to targeted training data collection efforts where it is mostly
needed to help boost model confidence and accuracy.
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Figure 10. Example of seasonal active cropland maps near Grainfield, Kansas, USA. Active cropland for (a) tc-wintercereals and (b) tc-
main-maize seasons show different crop seasonality at parcel level. The (c) winter cereals and (d) maize maps overlap with active cropland
for their respective season. Parcels showing up as active cropland but outside winter cereals and maize masks indicate other crops that follow
the seasonality for which the respective crop type map was created.

Figure 11. WorldCereal 2021 temporary crop extent model confidence. The original 10 m product was resampled to ∼ 0.004◦ resolution,
showing the mean model confidence of the original 10 m pixels.

Earth Syst. Sci. Data, 15, 5491–5515, 2023 https://doi.org/10.5194/essd-15-5491-2023



K. Van Tricht et al.: WorldCereal 5507

5 Product validation

5.1 Annual temporary crop map

Table 5 summarizes the results of the annual temporary crop
extent validation at global level and by continent. It includes
overall accuracy, user’s accuracy, and producer’s accuracy,
and 95 % confidence intervals calculated by applying boot-
strapping with replacement. The most informative are user’s
and producer’s accuracies, which are 88.5 % and 92.1 %, re-
spectively for the globe. Overall, high-accuracy numbers are
observed for most continents, while somewhat lower accura-
cies are observed in Asia and Africa. As expected based on
agricultural landscape complexity in combination with large
training data gaps, Africa has the lowest accuracy numbers.

It has been shown that global cropland maps reach higher
accuracies when being the result of a binary classification
procedure (only focusing on cropland) compared to a multi-
class land cover mapping approach. For example, the crop-
land class of WorldCover has a user’s accuracy of 80.6
(±1.5) and a producer’s accuracy of 79.3 (±1.5) compared to
88.5 % (±0.5) and 92.1 % (±0.4), respectively, for WorldCe-
real. The single layer map from the University of Maryland
(UMD croplands; Potapov et al., 2022) has comparable accu-
racy numbers as the WorldCereal map with an overall accu-
racy of 97.2 (±0.3) and a user’s and producer’s accuracy of
88.5 % and 86.4 % (±1.9). In contrast, the older single layer
GCEP30 product has substantially lower accuracies: 91.7 %
overall, 78.3 % user’s accuracy, and 83.4 % producer’s ac-
curacy. We can therefore conclude that from a global per-
spective the most recent global cropland maps (WorldCereal
and UMD croplands) are high-quality products. Selection of
the most appropriate product to use for a given application
will depend on both the nature of the application (different
products adopt slightly different definitions of cropland; sea-
sonal versus multi-year products) and the region (one prod-
uct might have had more/better quality training data for a
particular region compared to others). The use of the World-
Cereal temporary crops product would be more appropriate
for applications interested in active croplands for the specific
growing seasons ending in 2021 that would benefit from the
increased spatial resolution (10 versus 30 m), whereas UMD
croplands might be better suited for applications which need
to also include the fallow class and consider a longer period
of time (stable cropland area).

5.2 Seasonal crop type maps

Table 6 shows the results of the independent crop type val-
idation at global level. For calculating the confusion ma-
trix, maize in the tc-maize-main and tc-maize-second seasons
was combined into one class “maize”, while spring cereals
and winter cereals were also combined into one class “cere-
als”. Overall, omission errors (complementary metric to pro-
ducer’s accuracy) are larger than commission errors (com-

plementary metric to user’s accuracy) for both crop types.
This could be explained by a lack of training data. Impor-
tant to note is that the presented results are biased towards
the areas covered by the validation dataset (Fig. 5). In addi-
tion to this global effort, a regional comparison with USDA
National Agricultural Statistics Service Cropland Data Layer
(2021) resulted in an overall agreement of 82.9 %, with class-
specific agreements of 80.2 % and 93.8 % for maize and
84.9 % and 66.5 % for cereals, respectively. For Canada, we
found an agreement of 96 % and 80 % for maize and cereals,
respectively, and noted major confusion between winter and
spring cereals (Agriculture and Agri-Food Canada Annual
Crop Inventory, 2021).

In order to demonstrate the temporal robustness of the
WorldCereal models, an additional validation effort was done
for Ukraine based on an independent dataset obtained from
the National Technical University of Ukraine, Kyiv Poly-
technic Institute. Country-wide crop type maps were gener-
ated for the period 2018–2021 using the WorldCereal sys-
tem. Overall, user’s and producer’s accuracies were found
to remain stable across the years (overall accuracy (OA) of
92.5 %, 92.7 %, 85 % and 93.9 %, respectively), despite only
limited training data (2018–2019) being available for this
particular country.

5.3 Seasonal active irrigation maps

Figure 12 shows the results of the comparison of the World-
Cereal irrigation products with (a) the FAO global map
of areas equipped for irrigation in 2005 (Siebert et al.,
2013), (b) the Landsat-Derived Global Rainfed and Irrigated-
Cropland Product at 30 m (LGRIP30) (Teluguntla et al.,
2023), and (c) country statistics on irrigated land from the
ICID (ICID, 2022). The figures must be interpreted with cau-
tion since we do not know what the ground truth is. It is im-
portant to consider the following aspects:

– Wherever the WorldCereal irrigation products show less
irrigation (areas highlighted in red), it could be that not
all the areas equipped for irrigation were actually irri-
gated in 2021. This is a common practice in many coun-
tries. Also, both the FAO and LGRIP30 maps include
perennial cropland in their definitions, while the World-
Cereal products do not. Therefore, it is logical that those
two maps show more irrigation areas in some places. Fi-
nally, as mentioned in the definition of the WorldCereal
irrigation product, we do not consider incidentally irri-
gated cropland, e.g. cropland that is only irrigated dur-
ing the sowing period, which could also be a cause of
the general underestimation of irrigated land compared
to other datasets.

– Wherever the WorldCereal irrigation products show
more irrigation (areas highlighted in blue), those pix-
els could be either areas recently equipped for irri-
gation, WorldCereal commission errors, or FAO and
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Table 5. Summary of accuracy estimates for the WorldCereal temporary crop product by regions.

World regions Overall 95 % confidence intervals User’s 95 % confidence intervals Producer’s 95 % confidence intervals
accuracy for overall accuracy accuracy for user’s accuracy accuracy for producer’s accuracy

Lower bound Upper bound for cropland Lower bound Upper bound for cropland Lower bound Upper bound

Global 97.8 % 97.8 % 97.9 % 88.5 % 88.0 % 89.0 % 92.1 % 91.7 % 92.5 %
Africa 97.2 % 97.0 % 97.4 % 76.7 % 75.0 % 78.3 % 85.9 % 84.5 % 87.5 %
Asia 97.3 % 97.2 % 97.5 % 85.3 % 84.4 % 86.1 % 93.9 % 93.3 % 94.5 %
Australia and Oceania 99.0 % 98.8 % 99.2 % 91.1 % 89.0 % 93.6 % 96.1 % 94.8 % 98.0 %
Europe 97.8 % 97.6 % 98.1 % 96.6 % 96.0 % 97.2 % 92.9 % 92.0 % 93.9 %
North America 98.7 % 98.5 % 98.8 % 95.6 % 94.7 % 96.5 % 93.3 % 92.3 % 94.3 %
South America 98.9 % 98.8 % 99.1 % 95.7 % 94.8 % 96.8 % 90.4 % 89.1 % 91.8 %

Table 6. Global crop type validation results.

WorldCereal products/validation dataset Other crops Maize Cereals Agreement by classes (user’s accuracy)

Other crops 1010 167 161 75.5 %
Maize 78 544 12 85.8 %
Cereals 31 10 604 93.6 %
Agreement by classes (producer’s accuracy) 90.3 % 75.5 % 77.7 %

Overall agreement 82.5 %

LGRIP30 omission errors. However, we assume that the
blue hotspots in Sudan, the USA, Russia, and Brazil are
most likely WorldCereal commission errors since they
become apparent when comparing our data with either
of the other three reference datasets. Other blue areas,
like the hotspots in Canada, do not necessarily have to
be commission errors due to the recent increase in irri-
gation which occurred later than the production of the
three reference maps (Statistics Canada, 2021).

Figure 12b shows that there is a large difference between
the WorldCereal irrigated-area product and the LGRIP30
map. Mainly in Europe and Asia the LGRIP30 classifies sig-
nificantly more land as being irrigated. To understand how
these maps relate to global statistics, Fig. 13 shows a com-
parison between multiple global irrigation maps from liter-
ature and statistical datasets from the Central Intelligence
Agency (CIA, 2012) and ICID (ICID, 2022). While the latter
exhibit significant variation in quality and update frequency
across different countries, these datasets are still regarded
as the most accurate benchmarks available at country level.
We calculated the total irrigated area for the LGRIP30 and
WorldCereal irrigated-area maps by downscaling both maps
to the resolution (5 arcmin) of the FAO AQUASTAT area
equipped for irrigation dataset (Siebert et al., 2013). To com-
pare the three WorldCereal seasonal products with the other
(annual) datasets, the seasonal datasets were merged into a
single irrigated-area map for 2021 where irrigated pixels in-
dicate that in at least one of the three seasons irrigation was
detected. During the downscaling process, the number of ir-
rigated pixels within an AQUASTAT pixel was counted and
used to calculate an irrigation fraction. These fractions were

then combined with each pixel’s surface area to compute the
total irrigated area. The total irrigated-area statistics of the
other products shown in Fig. 13 were calculated by their re-
spective authors.

The two statistical datasets used for this analysis show
relatively similar global irrigated-area values of roughly
3×106 km2. The map from Siebert et al. (2013) is used to
produce the area equipped for irrigation map of the FAO and
describes the irrigated land around the year 2005. The stud-
ies from Meier et al. (2018) and Wu et al. (2023) mainly
focus on long time series of NDVI data to determine irri-
gated areas, whereas the LGRIP30 map is valid for the pe-
riod 2014–2017 (Teluguntla et al., 2023). From the different
irrigation maps, the map from Siebert et al. (2013) agrees
best with the statistical datasets. Both the maps from Meier
et al. (2018) and Wu et al. (2023) result in a slightly larger
estimate of global irrigated areas (up to 30 % higher), while
the LGRIP30 product shows an increase of more than 100 %.
Finally, the WorldCereal irrigation product provides a signif-
icantly lower figure for global irrigated area (roughly 35 %
less than statistical datasets), which is partly due to omis-
sion errors but also caused by the fact that the WorldCereal
product only focuses on temporary crops. The year 2021 is
deemed to be a relatively wet year for Europe, South Amer-
ica, Australia, and parts of Southern Asia (NOAA, 2022), so
potentially many farms that are equipped for irrigation did
not require irrigation. Producing more irrigated-area maps
for different years with the WorldCereal system should give
more insight into this hypothesis. Combining irrigated-area
maps from different years could also add information to the
irrigation frequency of each pixel.
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Figure 12. Differences in percentages whilst comparing the WorldCereal combined irrigation product and the following: (a) the FAO global
area equipped for irrigation in 2005 map, (b) the LGRIP30 irrigated-area map for 2015, and (c) the ICID world irrigated-area dataset. The
WorldCereal products show more irrigation in blue areas and less in red areas, compared to the other datasets.

6 Data usage and future prospects

The WorldCereal project has generated a suite of binary clas-
sification maps at 10 m resolution and global scale for the
year 2021, which can act as an important starting point to-
wards a dynamic (seasonal) global-scale crop and irrigation
monitoring framework (See et al., 2023). The maps can in
the first place be used at their native resolution to identify
hotspots of temporary crop/cereal/maize production and ir-
rigation practices at regional scale, in turn allowing better
planning of agricultural field data collection campaigns and
improving our understanding of local cultivation practices.
Additionally, the data can be spatially aggregated and as

such prove useful to enhance and complement subnational-
to-national agricultural/water use statistics (e.g. FAOSTAT
and AQUASTAT, both produced by FAO). Important to note
here is that our low-resolution fraction maps (Figs. 7, 8, and
9) have been generated purely for visualization purposes and
do not represent proper area statistics. We refer to Olofs-
son et al. (2014) for detailed guidelines on deriving regional
statistics from pixel-based classification maps. The World-
Cereal products are being evaluated for integration into var-
ious platforms dealing with food security and agricultural
water management, including GEOGLAM’s CropMonitor
(Becker-Reshef et al., 2023), FAO GIEWS, and FAO Wa-
POR databases, where the products will contribute towards
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Figure 13. Comparison between global statistical datasets from the CIA and ICID on irrigated area compared to five global irrigated-area
maps that are based on remote sensing data.

improved crop condition reporting, crop production/failure
early warning and long-term forecasting, crop-specific as-
sessment of impacts of extreme weather events and agricul-
tural policy changes, and season-specific irrigation monitor-
ing.

Although WorldCereal specifically focused on maize and
cereals, the crop type identification system presented here
represents a generic framework for crop type mapping and
can be extended towards other crop types. To do so, one
would require (1) high-quality reference data for the crop of
interest covering all regions of interest and (2) knowledge
about the timing of the growing season(s) in which the crop
is cultivated (see crop calendars and agro-ecological zones
as presented in Sects. 2.2 and 3.3, respectively). Our harmo-
nized in situ reference database (Sect. 3.1; Boogaard et al.,
2023) already contains data on many other crop types and
can serve as a starting point here, which can be further com-
plemented by user-provided reference data. The WorldCereal
system will be integrated in the OpenEO Platform process-
ing environment, allowing any user to easily interact with the
system and launch customized model training and process-
ing tasks for specific years, growing seasons, locations, and
crop types based on public and user-provided reference data.
Users will have the opportunity to use the existing trained
models or train dedicated models for their application. We
advise to add application-specific training data to the system
in order to ensure high-quality outputs, especially when envi-
ronmental conditions in the area and period of interest highly
differ from the conditions currently captured by the available
reference data. Fully opening up the system to the broader
user community in this way will (1) allow for a continuous
expansion of harmonized land cover, crop type, and irrigation
reference data; (2) improvement of the products based on lo-
cal user knowledge and provided training data; (3) ensure the
system can meet the (changing) needs of the community; and
(4) allow for new applications of the generated global prod-

ucts (e.g. serving as a baseline for change detection analysis
at regional to global scales).

7 Data availability

7.1 WorldCereal products

The WorldCereal 2021 products are available at
https://doi.org/10.5281/zenodo.7875105 (Van Tricht et
al., 2023). Each WorldCereal product has its own archive in
the repository and contains cloud-optimized geotiff (COG)
files per AEZ which were reprojected from the original
Sentinel-2 tile grid to the lat/long WGS84 projection.
Model confidence layers are available separately and were
downsampled to 0.0004◦ resolution. Additionally, all 2021
products are available through Google Earth Engine, spread
over three separate collections:

– ESA WorldCereal 10 m v100 (https://developers.
google.com/earth-engine/datasets/catalog/ESA_
WorldCereal_2021_MODELS_v100, ESA WorldCe-
real Consortium, 2021a) (containing temporary crops,
crop type, and irrigation products),

– ESA WorldCereal Active Cropland 10 m v100
(https://developers.google.com/earth-engine/datasets/
catalog/ESA_WorldCereal_2021_MARKERS_v100,
ESA WorldCereal Consortium, 2021b) (active cropland
marker), and

– ESA WorldCereal AEZ v100 (https://developers.
google.com/earth-engine/datasets/catalog/ESA_
WorldCereal_AEZ_v100, ESA WorldCereal Consor-
tium, 2021c) (agro-ecological zones).
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7.2 Reference data

The harmonized reference data used in the WorldCereal sys-
tem can be accessed in two ways. The first way to find the
data is using the Geo-Wiki-hosted reference data module
available at https://worldcereal-rdm.geo-wiki.org (last ac-
cess: 20 September 2023), where users can browse through
the different datasets, visible on a global map. All data
and metadata can also be downloaded from the website. A
second way to access the data is by entering the World-
Cereal community in the Zenodo data repository, available
at https://zenodo.org/communities/worldcereal-rdm/ (last ac-
cess: 20 September 2023). The repository shows the harmo-
nized data in three parts, each one having its own licence,
based on the licence of the original datasets. Furthermore,
the protocol to harmonize the reference data is also available
there.

The new reference datasets developed for validation of the
WorldCereal products are available on

– https://doi.org/10.5281/zenodo.7825628 (Lesiv et al.,
2023a) for the global crop type collected using the
Street Imagery validation tool and

– https://doi.org/10.5281/zenodo.7837480 (Lesiv et al.,
2023b) for the global validation dataset on temporary
crop 2021 collected using Geo-Wiki.

8 Code availability

The entire classification module code used to generate the
WorldCereal 2021 products described here is publicly avail-
able on https://doi.org/10.5281/zenodo.7863779 (Van Tricht
and Degerickx, 2023).

9 Conclusions

The European Space Agency (ESA) WorldCereal system has
successfully produced the first global, seasonal, and repro-
ducible temporary crop extent, crop type, and irrigation maps
at 10 m resolution. Its product suite for the year 2021 pre-
sented here provides a range of seasonal maps that are vali-
dated based on best available reference data. Global user’s
and producer’s accuracies for the annual temporary crop
product reached 88.5 % and 92.1 %, respectively. Validation
numbers of the other product layers exhibit a spatial bias due
to the limited availability of independent validation samples
or could not be quantitatively determined due to a lack of suf-
ficient validation samples. Despite the known challenges and
complexities associated with the mapping of dynamic agri-
cultural landscapes at large spatial scales, our efforts have
demonstrated the capabilities of the dynamic open-source
WorldCereal system to generate high-quality products at a
global scale and with high spatial detail, thereby maximiz-
ing their applicability and relevance for local agricultural
monitoring purposes. As such, we strongly believe that the

WorldCereal system provides a vital tool for policymakers,
international organizations, and researchers to better under-
stand global-to-regional crop and irrigation patterns and in-
form decision-making related to food security and sustain-
able agriculture. The complete 2021 WorldCereal product
suite can also act as a foundation for a worldwide crop mon-
itoring system, providing a significant step forward in ad-
dressing the challenge of global food security. Due to these
significant potential contributions, we want to strongly em-
phasize the importance of continuing the development of the
system beyond this 2021 showcase. Moving forward, we rec-
ommend focusing on enhancing the quality of the products
in areas where model confidence is lowest by forging lo-
cal/regional collaborations in improved collection of ground
truth data which will further enhance the local applicability
of these products. Such continued community efforts are cru-
cial to support further improvements to the system and push
the boundaries for global agricultural mapping from space.
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