Articles | Volume 15, issue 1
https://doi.org/10.5194/essd-15-431-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-431-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Harmonized Soil Database of Ecuador (HESD): data from 2009 to 2015
Daphne Armas
CORRESPONDING AUTHOR
Departamento de Agronomía, Edif. CITEIIB, Universidad de
Almería, Almería, Spain
Centro Andaluz para la Evaluación y Seguimiento del Cambio Global
(CAESCG), Universidad de Almería, Almería, Spain
Mario Guevara
Centro de Geociencias, Universidad Nacional Autónoma de
México, Campus Juriquilla, Querétaro, Mexico
Fernando Bezares
Departamento de Agronomía, Edif. CITEIIB, Universidad de
Almería, Almería, Spain
Fundación Cesefor, Soria, Spain
Rodrigo Vargas
Department of Plant and Soil Science, University of Delaware, Newark,
DE, USA
Pilar Durante
Departamento de Agronomía, Edif. CITEIIB, Universidad de
Almería, Almería, Spain
Centro Andaluz para la Evaluación y Seguimiento del Cambio Global
(CAESCG), Universidad de Almería, Almería, Spain
Agresta Sociedad Cooperativa, 28012 Madrid, Spain
Víctor Osorio
Facultad de
ingeniería Marítima y Ciencias del Mar, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
Wilmer Jiménez
Ministerio de Agricultura y Ganadería, Dirección de
Generación de Geoinformación Agropecuaria, Quito, Ecuador
Cecilio Oyonarte
CORRESPONDING AUTHOR
Departamento de Agronomía, Edif. CITEIIB, Universidad de
Almería, Almería, Spain
Centro Andaluz para la Evaluación y Seguimiento del Cambio Global
(CAESCG), Universidad de Almería, Almería, Spain
Related authors
Sergio Díaz-Guadarrama, Viviana M. Varón-Ramírez, Iván Lizarazo, Mario Guevara, Marcos Angelini, Gustavo A. Araujo-Carrillo, Jainer Argeñal, Daphne Armas, Rafael A. Balta, Adriana Bolivar, Nelson Bustamante, Ricardo O. Dart, Martin Dell Acqua, Arnulfo Encina, Hernán Figueredo, Fernando Fontes, Joan S. Gutiérrez-Díaz, Wilmer Jiménez, Raúl S. Lavado, Jesús F. Mansilla-Baca, Maria de Lourdes Mendonça-Santos, Lucas M. Moretti, Iván D. Muñoz, Carolina Olivera, Guillermo Olmedo, Christian Omuto, Sol Ortiz, Carla Pascale, Marco Pfeiffer, Iván A. Ramos, Danny Ríos, Rafael Rivera, Lady M. Rodriguez, Darío M. Rodríguez, Albán Rosales, Kenset Rosales, Guillermo Schulz, Víctor Sevilla, Leonardo M. Tenti, Ronald Vargas, Gustavo M. Vasques, Yusuf Yigini, and Yolanda Rubiano
Earth Syst. Sci. Data, 16, 1229–1246, https://doi.org/10.5194/essd-16-1229-2024, https://doi.org/10.5194/essd-16-1229-2024, 2024
Short summary
Short summary
In this work, the Latin America and Caribbean Soil Information System (SISLAC) database (https://54.229.242.119/sislac/es) was revised to generate an improved version of the data. Rules for data enhancement were defined. In addition, other datasets available in the region were included. Subsequently, through a principal component analysis (PCA), the main soil characteristics for the region were analyzed. We hope this dataset can help mitigate problems such as food security and global warming.
Viviana Marcela Varón-Ramírez, Douglas Andrés Gómez-Latorre, Carlos Eduardo Arroyo-Cruz, Alberto Gómez-Tagle, Blanca Lucía Prado Pano, Ronald Roger Gutierrez Llantoy, Deyanira Lobo-Luján, and Mario Guevara
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-306, https://doi.org/10.5194/essd-2025-306, 2025
Preprint under review for ESSD
Short summary
Short summary
This research focuses on Mexico's soil water erosion (SWE) using rainfall data to estimate erosivity. A database of daily rainfall series was developed for three climate normals –CNs– (1968–1997, 1978–2007, 1988–2017) with over 5,000 series. We found median erosivity values of 3245, 3070, and 3327 MJ mm ha-1 h-1 yr-1 for the three CNs. The resulting publicly available datasets of rainfall series and erosivity help better understand SWE and rainfall patterns across Mexico.
Viviana Marcela Varón-Ramírez, Douglas Andrés Gómez-Latorre, Carlos Eduardo Arroyo-Cruz, Alberto Gómez-Tagle, Blanca Lucía Prado Pano, Ronald Roger Gutierrez Llantoy, Deyanira Lobo-Luján, and Mario Antonio Guevara
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-530, https://doi.org/10.5194/essd-2024-530, 2025
Manuscript not accepted for further review
Short summary
Short summary
This research focuses on Mexico's soil water erosion (SWE) using rainfall data to estimate erosivity. A database of daily rainfall series was developed for three climate normals –CNs– (1968–1997, 1978–2007, 1988–2017) with over 5,000 series. We found mean erosivity values of 3600, 3296, and 3461 MJ mm ha-1 h-1 yr-1 for the three CNs. The resulting publicly available datasets of rainfall series and erosivity help better understand SWE and rainfall patterns across Mexico.
Pilar Durante, Juan Miguel Requena-Mullor, Rodrigo Vargas, Mario Guevara, Domingo Alcaraz-Segura, and Cecilio Oyonarte
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-431, https://doi.org/10.5194/essd-2024-431, 2024
Manuscript not accepted for further review
Short summary
Short summary
Human activities have disrupted the global carbon cycle, increasing CO2 levels. Soils are the largest carbon stores on land, making it essential to understand how much carbon they hold to fight climate change. Our study improved estimates of soil carbon in peninsular Spain by integrating historical soil data and using machine-learning methods to create detailed maps of carbon content. These maps will help manage soil carbon better and support efforts to track carbon emissions globally.
Sergio Díaz-Guadarrama, Viviana M. Varón-Ramírez, Iván Lizarazo, Mario Guevara, Marcos Angelini, Gustavo A. Araujo-Carrillo, Jainer Argeñal, Daphne Armas, Rafael A. Balta, Adriana Bolivar, Nelson Bustamante, Ricardo O. Dart, Martin Dell Acqua, Arnulfo Encina, Hernán Figueredo, Fernando Fontes, Joan S. Gutiérrez-Díaz, Wilmer Jiménez, Raúl S. Lavado, Jesús F. Mansilla-Baca, Maria de Lourdes Mendonça-Santos, Lucas M. Moretti, Iván D. Muñoz, Carolina Olivera, Guillermo Olmedo, Christian Omuto, Sol Ortiz, Carla Pascale, Marco Pfeiffer, Iván A. Ramos, Danny Ríos, Rafael Rivera, Lady M. Rodriguez, Darío M. Rodríguez, Albán Rosales, Kenset Rosales, Guillermo Schulz, Víctor Sevilla, Leonardo M. Tenti, Ronald Vargas, Gustavo M. Vasques, Yusuf Yigini, and Yolanda Rubiano
Earth Syst. Sci. Data, 16, 1229–1246, https://doi.org/10.5194/essd-16-1229-2024, https://doi.org/10.5194/essd-16-1229-2024, 2024
Short summary
Short summary
In this work, the Latin America and Caribbean Soil Information System (SISLAC) database (https://54.229.242.119/sislac/es) was revised to generate an improved version of the data. Rules for data enhancement were defined. In addition, other datasets available in the region were included. Subsequently, through a principal component analysis (PCA), the main soil characteristics for the region were analyzed. We hope this dataset can help mitigate problems such as food security and global warming.
Josué Delgado-Balbuena, Henry W. Loescher, Carlos A. Aguirre-Gutiérrez, Teresa Alfaro-Reyna, Luis F. Pineda-Martínez, Rodrigo Vargas, and Tulio Arredondo
Biogeosciences, 20, 2369–2385, https://doi.org/10.5194/bg-20-2369-2023, https://doi.org/10.5194/bg-20-2369-2023, 2023
Short summary
Short summary
In the semiarid grassland, an increase in soil moisture at shallow depths instantly enhances carbon release through respiration. In contrast, deeper soil water controls plant carbon uptake but with a delay of several days. Previous soil conditions, biological activity, and the size and timing of precipitation are factors that determine the amount of carbon released into the atmosphere. Thus, future changes in precipitation patterns could convert ecosystems from carbon sinks to carbon sources.
Rodrigo Vargas and Van Huong Le
Biogeosciences, 20, 15–26, https://doi.org/10.5194/bg-20-15-2023, https://doi.org/10.5194/bg-20-15-2023, 2023
Short summary
Short summary
Quantifying the role of soils in nature-based solutions requires accurate estimates of soil greenhouse gas (GHG) fluxes. We suggest that multiple GHG fluxes should not be simultaneously measured at a few fixed time intervals, but an optimized sampling approach can reduce bias and uncertainty. Our results have implications for assessing GHG fluxes from soils and a better understanding of the role of soils in nature-based solutions.
Viviana Marcela Varón-Ramírez, Gustavo Alfonso Araujo-Carrillo, and Mario Antonio Guevara Santamaría
Earth Syst. Sci. Data, 14, 4719–4741, https://doi.org/10.5194/essd-14-4719-2022, https://doi.org/10.5194/essd-14-4719-2022, 2022
Short summary
Short summary
These are the first national soil texture maps obtained via digital soil mapping. We built clay, sand, and silt maps using spatial assembling with the best possible predictions at different depths. Also, we identified the better model for each pixel. This work was done to address the lack of soil texture maps in Colombia, and it can provide soil information for water-related applications, ecosystem services, and agricultural and crop modeling.
Margaret Capooci and Rodrigo Vargas
Biogeosciences, 19, 4655–4670, https://doi.org/10.5194/bg-19-4655-2022, https://doi.org/10.5194/bg-19-4655-2022, 2022
Short summary
Short summary
Tidal salt marsh soil emits greenhouse gases, as well as sulfur-based gases, which play roles in global climate but are not well studied as they are difficult to measure. Traditional methods of measuring these gases worked relatively well for carbon dioxide, but less so for methane, nitrous oxide, carbon disulfide, and dimethylsulfide. High variability of trace gases complicates the ability to accurately calculate gas budgets and new approaches are needed for monitoring protocols.
Katherine E. O. Todd-Brown, Rose Z. Abramoff, Jeffrey Beem-Miller, Hava K. Blair, Stevan Earl, Kristen J. Frederick, Daniel R. Fuka, Mario Guevara Santamaria, Jennifer W. Harden, Katherine Heckman, Lillian J. Heran, James R. Holmquist, Alison M. Hoyt, David H. Klinges, David S. LeBauer, Avni Malhotra, Shelby C. McClelland, Lucas E. Nave, Katherine S. Rocci, Sean M. Schaeffer, Shane Stoner, Natasja van Gestel, Sophie F. von Fromm, and Marisa L. Younger
Biogeosciences, 19, 3505–3522, https://doi.org/10.5194/bg-19-3505-2022, https://doi.org/10.5194/bg-19-3505-2022, 2022
Short summary
Short summary
Research data are becoming increasingly available online with tantalizing possibilities for reanalysis. However harmonizing data from different sources remains challenging. Using the soils community as an example, we walked through the various strategies that researchers currently use to integrate datasets for reanalysis. We find that manual data transcription is still extremely common and that there is a critical need for community-supported informatics tools like vocabularies and ontologies.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Mario Guevara, Michela Taufer, and Rodrigo Vargas
Earth Syst. Sci. Data, 13, 1711–1735, https://doi.org/10.5194/essd-13-1711-2021, https://doi.org/10.5194/essd-13-1711-2021, 2021
Short summary
Short summary
Soil moisture is key for understanding soil–plant–atmosphere interactions. We provide a machine learning approach to increase the spatial resolution of satellite-derived soil moisture information. The outcome is a dataset of gap-free global mean annual soil moisture predictions and associated uncertainty for 28 years (1991–2018) across 15 km grids. This dataset has higher agreement with in situ soil moisture and precipitation measurements. Results show a decline of global annual soil moisture.
Flavio Lopes Ribeiro, Mario Guevara, Alma Vázquez-Lule, Ana Paula Cunha, Marcelo Zeri, and Rodrigo Vargas
Nat. Hazards Earth Syst. Sci., 21, 879–892, https://doi.org/10.5194/nhess-21-879-2021, https://doi.org/10.5194/nhess-21-879-2021, 2021
Short summary
Short summary
The main objective of this paper was to analyze differences in soil moisture responses to drought for each biome of Brazil. For that we used satellite data from the European Space Agency from 2009 to 2015. We found an overall soil moisture decline of −0.5 % yr−1 at the country level and identified the most vulnerable biomes of Brazil. This information is crucial to enhance the national drought early warning system and develop strategies for drought risk reduction and soil moisture conservation.
Jinshi Jian, Rodrigo Vargas, Kristina Anderson-Teixeira, Emma Stell, Valentine Herrmann, Mercedes Horn, Nazar Kholod, Jason Manzon, Rebecca Marchesi, Darlin Paredes, and Ben Bond-Lamberty
Earth Syst. Sci. Data, 13, 255–267, https://doi.org/10.5194/essd-13-255-2021, https://doi.org/10.5194/essd-13-255-2021, 2021
Short summary
Short summary
Field soil-to-atmosphere CO2 flux (soil respiration, Rs) observations were compiled into a global database (SRDB) a decade ago. Here, we restructured and updated the database to the fifth version, SRDB-V5, with data published through 2017 included. SRDB-V5 aims to be a data framework for the scientific community to share seasonal to annual field Rs measurements, and it provides opportunities for the scientific community to better understand the spatial and temporal variability of Rs.
Cited articles
Armas, D. I., Guevara, M., Bezares, F., Vargas, R., Durante, P., Osorio, V. H., Jimenez,
W. A., and Oyonarte, C.: Harmonized Soil Database of Ecuador 2021 ver.
3, Environmental Data Initiative,
https://doi.org/10.6073/pasta/1560e803953c839e7aedef78ff7d3 f6c, 2022.
Arrouays, D., Leenars, J., Richer-De-Forges, A., Adhikari, K., Ballabio, C., Greve, M.,
Grundy, M., Guerrero, E., Hempel, J., Hengl, T., Heuvelink, G., Batjes, N., Carvalho, E.,
Hartemink, A., Hewitt, A., Hong, S., Krasilnikov, P., Lagacherie, P., Lelyk, G.,
Libohova, Z., Lilly, A., Mckenzie, N., Mcbratney, A., Vasquez, G., Mulder, V., Minasny,
B., Montanarella, L., Odeh, I., Padarian, J., Poggio, L., Roudier, P., Saby, N., Savin, I.,
Searle, R., Stolbovoy, V., Thompson, J., Smith, S., Sulaeman, Y., Vintila, R., Viscarra
Rossel, R., Wilson, P., Zhang, G., Swerts, M., Oorts, K., Karklins, A., Feng, L., Ibelles
Navarro, A., Levin, A., Laktionova, T., Dell`acqua, M., Suvannang, N., Ruam, W., Prasad,
J., Patil, N., Husnjak, S., Pásztor, L., Okx, J., Hallett, S., Keay, C., Farewell, T.,
Lilja, H., Juilleret, J., Marx, S., Takata, Y., Kazuyuki, Y., Mansuy, N., Panagos, P., Van
Liedekerke, M., Skalsky, R., Sobocka, J., Kobza, J., Eftekhari, K., Alavipanah, S.,
Moussadek, R., Badraoui, M., Da Silva, M., Paterson, G., Gonçalves, M.,
Theocharopoulos, S., Yemefack, M., Tedou, S., Vrscaj, B., Grob, U., Kozak, J., Boruvka,
L., Dobos, E., Taboada, M., Moretti, L., and Rodriguez, D.: Soil legacy data rescue
via GlobalSoilMap and other international and national initiatives, GEORESJ,
14, 1–19, https://doi.org/10.1016/j.grj.2017.06.001, 2017.
Arrouays, D., Richer de Forges, A., Mcbratney, A.,
Minasny, B., Savin, I., Grundy, M., Leenaars, J.
G. B., Poggio, L., Roudier, P., Libohova, Z.,
McKenzie, N., van den Bosch, H., Kempen, B., Mulder, V. L., Lacoste, M., Chen, S., Saby, N., Martin, M., and Lagacherie, P.: The globalsoilmap project: past, present, future, and
national examples from France, Dokuchaev Soil Bulletin, 3–23, https://doi.org/10.19047/0136-1694-2018-95-3-23, 2018.
Baritz, R., Eberhardt, E., Van Liedekerke, M. H., and Panagos, P. (Eds.):
Environmental Assessment of Soil for Monitoring: Volume III Database Design
and Selection, EUR 23490 EN/3, Office for the Official Publications of the
European Communities, Luxembourg, 125 pp., https://doi.org/10.2788/93697, 2008.
Batjes, N. H., Ribeiro, E., and van Oostrum, A.: Standardised soil profile data to support global mapping and modelling (WoSIS snapshot 2019), Earth Syst. Sci. Data, 12, 299–320, https://doi.org/10.5194/essd-12-299-2020, 2020.
Beillouin, D., Demenois, J., Cardinael, R., Berre, D., Corbeels, M., Fallot, A., Boyer A., and Feder, F.: A global database of land
management, land-use change and climate change effects on soil organic
carbon, Sci Data, 9, 228, https://doi.org/10.1038/s41597-022-01318-1, 2022.
Clapperton, C. M.: Quaternary Geology and Geomorphology of South America,
Geomorphology, 11, 347–349,
https://doi.org/10.1016/0169-555X(95)90014-K, 795.
CLIRSEN: Gestión de datos edáficos en la cuenca baja del rio
Guayas con la implementación de un sistema de administración de
geoinformación, SAG,
http://www.cepeige.org/wp-content/uploads/2018/05/6Sistema-de-Geoinformacion.pdf (last access: 9 January 2022), 2015.
Díaz-Guadarrama, S., Lizarazo, I., Guevara, M., Angelini, M., Araujo-Carrillo, G. A., Argeñal, J., Armas, D., Balta, R. A., Bolivar, A., Bustamante, N., Dart, R. O., Dell Aqua, M., Encina, A., Figueredo, H., Fontes, F., Gutiérrez-Diaz, J. S., Jiménez, W., Lavado, R. S., Mansilla-Baca, J. F., Mendonça-Santos, M. D. L., Moretti, L. M., Muñoz, I. D., Olivera, C., Olmedo, G., Omuto, C., Ortiz, S., Pascale, C., Pfeiffer, M., Ramos, I. A., Ríos, D., Rivera, R., Rodríguez, L. M., Rodríguez, D. M., Rosales, A., Rosales, K., Schulz, G., Sevilla, V., Tenti, L. M., Vargas, R., Varón-Ramírez, V. M., Vasques, G. M., Yigini, Y., and Rubiano, Y.: Improving Latin American Soil Information Database for Digital Soil Mapping enhances its usability and scalability, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2022-291, in review, 2022.
FAO, Food and Agriculture Organization: Status of the World's Soil Resources
(SWSR) – Main Report, Food and Agriculture Organization of the United Nations
and Intergovernmental Technical Panel on Soils, Rome, Italy, 648 pp., 2015.
FAO, Food and Agriculture Organization: Soil Organic Carbon Mapping Cookbook
2nd edn., Rome, Italy, edited by: Yigini, Y., Olmedo, G. F., Reiter, S., Baritz, R., Viatkin, K., and Vargas, R. R., https://www.fao.org/3/bs901e/bs901e.pdf (last access: 9 January 2022), 2018.
FAO, Food and Agriculture Organization of the United Nations: Guidelines for soil description, 4th edn., Rome, 67–71, 2006.
FAO and ITPS: Status of the World's Soil Resources (SWSR) – Main Report,
Food and Agriculture Organization of the United Nations and
Intergovernmental Technical Panel on Soils, Rome, Italy, edited by: Montanarella, L., Chude, V., Yagi, K., Krasilnikov, P., Kazem Alavi Panah, S., Mendonça-Santos, M. L., Pennock, D., and McKenzie N., https://www.fao.org/documents/card/en/c/c6814873-efc3-41db-b7d3-2081a10ede50/ (last access: 9 January 2022), 2015.
FAO/IIASA/ISRIC/ISS-CAS/JRC: Harmonized World Soil Database (version 1.1),
FAO, Rome, Italy and IIASA, Laxenburg, Austria, 2009.
Gray, J. M., Bishop, T. F. A., and Yang, X.: Pragmatic models for prediction and
digital mapping of soil properties in eastern Australia, Soil Res.,
53, 24–42, https://doi.org/10.1071/SR13306, 2015.
Guerrero, E., Pérez, A., Arroyo, C., Equihua, J., and Guevara, M.: Building
a national framework for pedometric mapping: soil depth as an example for
Mexico, edited by: Arrouays, D., McKenzie, N. J., Hempel, J. W., Richer de Forges, A. C., and McBratney, A. B., GlobalSoilMap: basis of the global soil information system, Taylor
& Francis, CRC press, Oxon, 103–108, https://doi.org/10.1016/j.grj.2017.06.001, 2014.
Hengl, T., de Jesus, J. M., MacMillan, R. A., Batjes, N. H., Heuvelink, G.
B., Ribeiro, E., Samuel-Rosa, A., Kempen, B., Leenaars, J. G., Walsh, M. G.,
and Ruiperez Gonzalez, M.: SoilGrids1km – global soil information based on
automated mapping, PloS one, 9, e105992,
https://doi.org/10.1371/journal.pone.0105992, 2014.
Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M., Kilibarda, M., and
Blagotić, A.: SoilGrids250m: Global gridded soil information based on
machine learning, PLoS ONE, 12, e0169748,
https://doi.org/10.1371/journal.pone.0169748, 2017.
Hofstede, R.: El Páramo como espacio para la fijación de carbono
atmosférico, in: El Páramo como espacio de mitigación de carbono
atmosférico, Serie Páramo 1: Quito, edited by: Medina, G., Mena, P., and Josse, C., GTP/Abya Yala, 7–10, https://www.colombiareservadevida.org/articulos/PMITIGACION.pdf (last access: 9 January 2022), 1999.
Jeroen, O.: Package “pdftools”. Text Extraction, Rendering and Converting of
PDF Documents,
https://cran.r-project.org/web/packages/pdftools/pdftools.pdf (last access: 9 January 2022), 2022.
Loayza, V., Sevilla, V., Olivera, C., Guevara, M., Olmedo, G., Vargas, R.,
Oyonarte, C., and Jiménez, W.: Digital mapping of organic carbon in Ecuador
soils, Ecosistemas, 29, 1852, https://doi.org/10.7818/ECOS.1852, 2020.
Luo, Y., Ahlström, A., Allison, S. D., Batjes, N. H., Brovkin, V.,
Carvalhais, N., Chappell, A., Ciais, P., Davidson, E. A., Finzi, A.,
Georgiou, K., Guenet, B., Hararuk, O., Harden, J. W., He, Y., Hopkins, F.,
Jiang, L., Koven, C., Jackson, R. B., Jones, C. D., Lara, M. J., Liang, J.,
McGuire, A. D., Parton, W., Peng, C., Randerson, J. T., Salazar, A., Sierra,
C. A., Smith, M. J., Tian, H., Todd-Brown, K. E. O., Torn, M., van
Groenigen, K. J., Wang, Y. P., West, T. O., Wei, Y., Wieder, W. R., Xia, J.,
Xu, X., Xu, X., and Zhou, T.: Toward more realistic projections of soil
carbon dynamics by Earth system models, Global Biogeochem. Cy., 30, 40–56,
2016.
McBratney, A., Field, D. J., and Koch, A.: The dimensions of soil security, Geoderma,
213, 203–213, 2014.
McKinney, W.: Pandas: a Foundational Python Library for Data Analysis and
Statistics, https://www.researchgate.net/publication/265194455 (last access: 16 January 2023), 2011.
Ministerio de Ambiente del Ecuador: Sistema de Clasificación de los
Ecosistemas del Ecuador Continental. Subsecretaría de Patrimonio
Natural, Quito, http://ide.ambiente.gob.ec/mapainteractivo/ (last access: 9 January 2022), 2011.
Montanarella, L., Pennock, D. J., McKenzie, N., Badraoui, M., Chude, V., Baptista, I., Mamo, T., Yemefack, M., Singh Aulakh, M., Yagi, K., Young Hong, S., Vijarnsorn, P., Zhang, G.-L., Arrouays, D., Black, H., Krasilnikov, P., Sobocká, J., Alegre, J., Henriquez, C. R., de Lourdes Mendonça-Santos, M., Taboada, M., Espinosa-Victoria, D., AlShankiti, A., AlaviPanah, S. K., Elsheikh, E. A. E. M., Hempel, J., Camps Arbestain, M., Nachtergaele, F., and Vargas, R.: World's soils are under threat, SOIL, 2, 79–82, https://doi.org/10.5194/soil-2-79-2016, 2016.
Nur Syabeera, B.
N. A., Firuza, B. M., Safiah, Y. M. Y.,
Didams, G.: A systematic review of soil erosion control practices on the
agricultural land in Asia, Int. Soil Water Conserv.
Res., 8, 103–115,
https://doi.org/10.1016/j.iswcr.2020.04.001, 2020.
Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A., and Fernández-Ugalde, O.:
LUCAS Soil, the largest expandable soil dataset for Europe: a review,
Eur. J. Soil Sci., 69, 140–153, https://doi.org/10.1111/ejss.12499, 2018.
Pfeiffer, M., Padarian, J., Osorio, R., Bustamante, N., Olmedo, G. F., Guevara, M., Aburto, F., Albornoz, F., Antilén, M., Araya, E., Arellano, E., Barret, M., Barrera, J., Boeckx, P., Briceño, M., Bunning, S., Cabrol, L., Casanova, M., Cornejo, P., Corradini, F., Curaqueo, G., Doetterl, S., Duran, P., Escudey, M., Espinoza, A., Francke, S., Fuentes, J. P., Fuentes, M., Gajardo, G., García, R., Gallaud, A., Galleguillos, M., Gomez, A., Hidalgo, M., Ivelic-Sáez, J., Mashalaba, L., Matus, F., Meza, F., Mora, M. D. L. L., Mora, J., Muñoz, C., Norambuena, P., Olivera, C., Ovalle, C., Panichini, M., Pauchard, A., Pérez-Quezada, J. F., Radic, S., Ramirez, J., Riveras, N., Ruiz, G., Salazar, O., Salgado, I., Seguel, O., Sepúlveda, M., Sierra, C., Tapia, Y., Tapia, F., Toledo, B., Torrico, J. M., Valle, S., Vargas, R., Wolff, M., and Zagal, E.: CHLSOC: the Chilean Soil Organic Carbon database, a multi-institutional collaborative effort, Earth Syst. Sci. Data, 12, 457–468, https://doi.org/10.5194/essd-12-457-2020, 2020.
Phillips, S., Dudik, M., and Schapire, R.: Maxent software for modeling
species niches and distributions (Version 3.4.1),
https://biodiversityinformatics.amnh.org/open_source/maxent/ (last access: 9 January 2022),
2020.
Python Software Foundation: Python library openpyxl 3.0.9,
https://pypi.org/project/openpyxl (last access: 9 January 2022), 2010.
Rossiter, D. G.: Soil Resources Inventories: Status and Prospects in 2015, in: Digital Soil Mapping across Paradigms, Scales
and Boundaries, edited by:
Zhang, G. L., Brus, D., Liu, F., Song, X.-D., and Lagacherie, P., Springer, 275–281, https://doi.org/10.1007/978-981-10-0415-5, 2016.
Smith, E., Vargas, R., Guevara, M., Tarin, T., and Pouyat,
R.: Spatial variability and uncertainty of soil nitrogen acroos
conterminous United States at different depths, Ecosphere, 13, https://doi.org/10.1002/ecs2.4170, 2022.
Soil Survey Staff: Soil Taxonomy. A Basic System of Soil Classification for Making and Interpreting Soil Surveys, U.S.D.A. Agricultural Handbook, 436, 1975.
Soil Survey Staff: Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys, 2nd edn., Natural Resources Conservation Service, U.S. Department of Agriculture Handbook, 436, 1999.
Tracasa-Nipsa: Metodología del estudio Geopedológico, Proyecto de
levantamiento de cartografía temática a escala 1:25 000, lotes 1 y
2, http://metadatos.sigtierras.gob.ec/pdf/Metodologia_Geopedologia_16122015.pdf (last access: 9 January 2022), 2015.
Tracker Software Products: PDF-Tools para-Windows, V 9.2.359,
https://pdf-tools.softonic.com/ (last access: 9 January 2022), 2011.
USDA (United States Department of Agriculture), Soil Health,
https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/ (last access: 9 January 2022), 2022.
Vargas, R., Alcaraz-Segura, D., Birdsey, R., Brunsell, N.,
Cruz-Gaistardo de Jong Carlos, B., Etchevers, J., Guevara, M.,
Hayes, D., Johnson, K., Loescher, H., Paz, F., Ryu,
Y., Sanchez-Mejia, Z., and Toledo-Gutierrez, K.: Enhancing
interoperability to facilitate implementation of REDD+: case study of
Mexico, Carbon Management, 8, 57–65, https://doi.org/10.1080/17583004.2017.1285177, 2017.
Villarreal, S., Guevara, M., Alcaraz-Segura, D., Brunsell, N. A., Hayes, D., Loescher, H.
W., and Vargas, R.: Ecosystem functional diversity and the
representativeness of environmental networks across the conterminous United
States, Agric. Forest Meteorol., 262, 423–433, 2018.
Villarreal, S., Guevara, M., Alcaraz-Segura, D., and Vargas, R.: Optimizing an
Environmental Observatory Network Design Using Publicly Available Data,
J. Geophys. Res.-Biogeo., 124, 1812–1826, 2019.
Yackulic, C., Chandler, R., Zipkin, E., Royle, J., Nichols, J., Campbel, E.,
and Veran, S.: Presence-only modelling using MAXENT: when can we trust the
inferences?, British Ecological Society, 4, 236–243,
https://doi.org/10.1111/2041-210x.12004, 2012.
Yigini, Y., Olmedo, G. F., Reiter, S., Baritz, R., Viatkin, K., and Vargas,
R. R. (Eds.): Soil Organic Carbon Mapping Cookbook, FAO, Rome, Italy, 2nd
edn., http://www.fao.org/documents/card/en/c/I8895EN (last access: 9 January 2022), 2018.
Short summary
The global need for updated soil datasets has increased. Our main objective was to synthesize and harmonize soil profile information collected by two different projects in Ecuador between 2009 and 2015.The main result was the development of the Harmonized Soil Database of Ecuador (HESD) that includes information from 13 542 soil profiles with over 51 713 measured soil horizons, including 92 different edaphic variables, and follows international standards for archiving and sharing soil data.
The global need for updated soil datasets has increased. Our main objective was to synthesize...
Altmetrics
Final-revised paper
Preprint