Articles | Volume 15, issue 9
https://doi.org/10.5194/essd-15-3869-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-3869-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Unlocking archival maps of the Hornsund fjord area for monitoring glaciers of the Sørkapp Land peninsula, Svalbard
Institute of Geography and Spatial Organization Polish Academy of Sciences (IGSO PAS), Warsaw, Poland
Michał Pętlicki
Faculty of Geography and Geology, Jagiellonian University, Kraków, Poland
Department of Geography, Universidad de Concepción, Concepción, Chile
Related authors
No articles found.
Małgorzata Błaszczyk, Bartłomiej Luks, Michał Pętlicki, Dariusz Puczko, Dariusz Ignatiuk, Michał Laska, Jacek Jania, and Piotr Głowacki
Earth Syst. Sci. Data, 16, 1847–1860, https://doi.org/10.5194/essd-16-1847-2024, https://doi.org/10.5194/essd-16-1847-2024, 2024
Short summary
Short summary
Understanding the glacier response to accelerated climate warming in the Arctic requires data obtained in the field. Here, we present a dataset of velocity measurements of Hansbreen, a tidewater glacier in Svalbard. The glacier's velocity was measured with GPS at 16 stakes mounted on the glacier's surface. The measurements were conducted from about 1 week to about 1 month. The dataset offers unique material for validating numerical models of glacier dynamics and satellite-derived products.
Felicity A. Holmes, Eef van Dongen, Riko Noormets, Michał Pętlicki, and Nina Kirchner
The Cryosphere, 17, 1853–1872, https://doi.org/10.5194/tc-17-1853-2023, https://doi.org/10.5194/tc-17-1853-2023, 2023
Short summary
Short summary
Glaciers which end in bodies of water can lose mass through melting below the waterline, as well as by the breaking off of icebergs. We use a numerical model to simulate the breaking off of icebergs at Kronebreen, a glacier in Svalbard, and find that both melting below the waterline and tides are important for iceberg production. In addition, we compare the modelled glacier front to observations and show that melting below the waterline can lead to undercuts of up to around 25 m.
Michał Pętlicki, Andrés Rivera, Jonathan Oberreuter, José Uribe, Johannes Reinthaler, and Francisca Bown
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-10, https://doi.org/10.5194/tc-2023-10, 2023
Manuscript not accepted for further review
Short summary
Short summary
The terminus of San Quintín glacier, the largest of the Northern Patagonia Icefield in southern Chile, is rapidly disintegrating with large tabular icebergs into a proglacial lake left behind by this retreating glacier. We show that the ongoing retreat is caused by recent detachment of a floating terminus from the glacier bed. This process may lead to the disappearance of the last existing piedmont lobe in Patagonia, and one of the few remaining glaciers of this type in the world.
Andreas Köhler, Michał Pętlicki, Pierre-Marie Lefeuvre, Giuseppa Buscaino, Christopher Nuth, and Christian Weidle
The Cryosphere, 13, 3117–3137, https://doi.org/10.5194/tc-13-3117-2019, https://doi.org/10.5194/tc-13-3117-2019, 2019
Short summary
Short summary
Ice loss at the front of glaciers can be observed with high temporal resolution using seismometers. We combine seismic and underwater sound measurements of iceberg calving at Kronebreen, a glacier in Svalbard, with laser scanning of the glacier front. We develop a method to determine calving ice loss directly from seismic and underwater calving signals. This allowed us to quantify the contribution of calving to the total ice loss at the glacier front, which also includes underwater melting.
Lindsey I. Nicholson, Michał Pętlicki, Ben Partan, and Shelley MacDonell
The Cryosphere, 10, 1897–1913, https://doi.org/10.5194/tc-10-1897-2016, https://doi.org/10.5194/tc-10-1897-2016, 2016
Short summary
Short summary
An Xbox Kinect sensor was used as a close-range surface scanner to produce the first accurate 3D surface models of spikes of snow and ice (known as penitentes) that develop in cold, dry, sunny conditions. The data collected show how penitentes develop over time and how they affect the surface roughness of a glacier. These surface models are useful inputs to modelling studies of how penitentes alter energy exchanges between the atmosphere and the surface and how this affects meltwater production.
Related subject area
Domain: ESSD – Ice | Subject: Glaciology
A newly digitized ice-penetrating radar data set acquired over the Greenland ice sheet in 1971–1979
Multitemporal characterization of a proglacial system: a multidisciplinary approach
Spatial and temporal stable water isotope data from the upper snowpack at the EastGRIP camp site, NE Greenland, sampled in summer 2018
High temporal resolution records of the velocity of Hansbreen, a tidewater glacier in Svalbard
Glaciological and meteorological monitoring at LTER sites Mullwitzkees and Venedigerkees, Austria, 2006–2022
A high-resolution calving front data product for marine-terminating glaciers in Svalbard
Spatial and temporal variability of environmental proxies from the top 120 m of two ice cores in Dronning Maud Land (East Antarctica)
Climate and ablation observations from automatic ablation and weather stations at A. P. Olsen Ice Cap transect, NE Greenland, May 2008 through May 2022
Inventory of glaciers and perennial snowfields of the conterminous USA
A comprehensive and version-controlled database of glacial lake outburst floods in High Mountain Asia
Antarctic Ice Sheet paleo-constraint database
Ice-core data used for the construction of the Greenland Ice-Core Chronology 2005 and 2021 (GICC05 and GICC21)
Antarctic Bedmap data: Findable, Accessible, Interoperable, and Reusable (FAIR) sharing of 60 years of ice bed, surface, and thickness data
A new inventory of High Mountain Asia surging glaciers derived from multiple elevation datasets since the 1970s
Ice core chemistry database: an Antarctic compilation of sodium and sulfate records spanning the past 2000 years
Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020
Interdecadal glacier inventories in the Karakoram since the 1990s
Landsat- and Sentinel-derived glacial lake dataset in the China–Pakistan Economic Corridor from 1990 to 2020
Processing methodology for the ITS_LIVE Sentinel-1 ice velocity products
Calving fronts and where to find them: a benchmark dataset and methodology for automatic glacier calving front extraction from synthetic aperture radar imagery
Multitemporal glacier inventory revealing four decades of glacier changes in the Ladakh region
A new global dataset of mountain glacier centerlines and lengths
2000 years of annual ice core data from Law Dome, East Antarctica
A 41-year (1979–2019) passive-microwave-derived lake ice phenology data record of the Northern Hemisphere
Rescue and homogenization of 140 years of glacier mass balance data in Switzerland
Nanna B. Karlsson, Dustin M. Schroeder, Louise Sandberg Sørensen, Winnie Chu, Jørgen Dall, Natalia H. Andersen, Reese Dobson, Emma J. Mackie, Simon J. Köhn, Jillian E. Steinmetz, Angelo S. Tarzona, Thomas O. Teisberg, and Niels Skou
Earth Syst. Sci. Data, 16, 3333–3344, https://doi.org/10.5194/essd-16-3333-2024, https://doi.org/10.5194/essd-16-3333-2024, 2024
Short summary
Short summary
In the 1970s, more than 177 000 km of observations were acquired from airborne radar over the Greenland ice sheet. The radar data contain information on not only the thickness of the ice, but also the properties of the ice itself. This information was recorded on film rolls and subsequently stored. In this study, we document the digitization of these film rolls that shed new and unprecedented detailed light on the Greenland ice sheet 50 years ago.
Elisabetta Corte, Andrea Ajmar, Carlo Camporeale, Alberto Cina, Velio Coviello, Fabio Giulio Tonolo, Alberto Godio, Myrta Maria Macelloni, Stefania Tamea, and Andrea Vergnano
Earth Syst. Sci. Data, 16, 3283–3306, https://doi.org/10.5194/essd-16-3283-2024, https://doi.org/10.5194/essd-16-3283-2024, 2024
Short summary
Short summary
The study presents a set of multitemporal geospatial surveys and the continuous monitoring of water flows in a large proglacial area (4 km2) of the northwestern Alps. Activities were developed using a multidisciplinary approach and merge geomatic, hydraulic, and geophysical methods. The goal is to allow researchers to characterize, monitor, and model a number of physical processes and interconnected phenomena, with a broader perspective and deeper understanding than a single-discipline approach.
Alexandra M. Zuhr, Sonja Wahl, Hans Christian Steen-Larsen, Maria Hörhold, Hanno Meyer, Vasileios Gkinis, and Thomas Laepple
Earth Syst. Sci. Data, 16, 1861–1874, https://doi.org/10.5194/essd-16-1861-2024, https://doi.org/10.5194/essd-16-1861-2024, 2024
Short summary
Short summary
We present stable water isotope data from the accumulation zone of the Greenland ice sheet. A spatial sampling scheme covering 39 m and three depth layers was carried out between 14 May and 3 August 2018. The data suggest spatial and temporal variability related to meteorological conditions, such as wind-driven snow redistribution and vapour–snow exchange processes. The data can be used to study the formation of the stable water isotopes signal, which is seen as a climate proxy.
Małgorzata Błaszczyk, Bartłomiej Luks, Michał Pętlicki, Dariusz Puczko, Dariusz Ignatiuk, Michał Laska, Jacek Jania, and Piotr Głowacki
Earth Syst. Sci. Data, 16, 1847–1860, https://doi.org/10.5194/essd-16-1847-2024, https://doi.org/10.5194/essd-16-1847-2024, 2024
Short summary
Short summary
Understanding the glacier response to accelerated climate warming in the Arctic requires data obtained in the field. Here, we present a dataset of velocity measurements of Hansbreen, a tidewater glacier in Svalbard. The glacier's velocity was measured with GPS at 16 stakes mounted on the glacier's surface. The measurements were conducted from about 1 week to about 1 month. The dataset offers unique material for validating numerical models of glacier dynamics and satellite-derived products.
Lea Hartl, Bernd Seiser, Martin Stocker-Waldhuber, Anna Baldo, Marcela Violeta Lauria, and Andrea Fischer
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-523, https://doi.org/10.5194/essd-2023-523, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Glaciers in the Alps are receding at unprecedented rates. To understand how this affects the hydrology and ecosystems of the affected regions, it is important to measure glacier mass balance and ensure that records of field surveys are kept in standardized formats and well documented. We describe glaciological measurements of ice ablation and snow accumulation gathered at Mullwitzkees and Venedigerkees, two glaciers in the Austrian Alps, since 2007 and 2012, respectively.
Tian Li, Konrad Heidler, Lichao Mou, Ádám Ignéczi, Xiao Xiang Zhu, and Jonathan L. Bamber
Earth Syst. Sci. Data, 16, 919–939, https://doi.org/10.5194/essd-16-919-2024, https://doi.org/10.5194/essd-16-919-2024, 2024
Short summary
Short summary
Our study uses deep learning to produce a new high-resolution calving front dataset for 149 marine-terminating glaciers in Svalbard from 1985 to 2023, containing 124 919 terminus traces. This dataset offers insights into understanding calving mechanisms and can help improve glacier frontal ablation estimates as a component of the integrated mass balance assessment.
Sarah Wauthy, Jean-Louis Tison, Mana Inoue, Saïda El Amri, Sainan Sun, François Fripiat, Philippe Claeys, and Frank Pattyn
Earth Syst. Sci. Data, 16, 35–58, https://doi.org/10.5194/essd-16-35-2024, https://doi.org/10.5194/essd-16-35-2024, 2024
Short summary
Short summary
The datasets presented are the density, water isotopes, ions, and conductivity measurements, as well as age models and surface mass balance (SMB) from the top 120 m of two ice cores drilled on adjacent ice rises in Dronning Maud Land, dating from the late 18th century. They offer many development possibilities for the interpretation of paleo-profiles and for addressing the mechanisms behind the spatial and temporal variability of SMB and proxies observed at the regional scale in East Antarctica.
Signe Hillerup Larsen, Daniel Binder, Anja Rutishauser, Bernhard Hynek, Robert Schjøtt Fausto, and Michele Citterio
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-444, https://doi.org/10.5194/essd-2023-444, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
The Greenland Ecosystem Monitoring programme has been condicting ecosystem monitoring in Greenland since 1995. In 2008 the Glaciological monitoring subprogram GlacioBasis was initiated at the Zackenberg site in NE Greenland with a transect of three weather stations on the A. P. Olsen Ice Cap. In 2022 the weather stations were replaced with a more standardized set up and the data from 2008 to 2022 is reprocessed and quality checked to provide the first 15 years of the continued monitoring.
Andrew G. Fountain, Bryce Glenn, and Christopher Mcneil
Earth Syst. Sci. Data, 15, 4077–4104, https://doi.org/10.5194/essd-15-4077-2023, https://doi.org/10.5194/essd-15-4077-2023, 2023
Short summary
Short summary
Glaciers are rapidly shrinking globally. To identify past change and provide a baseline for future change, we inventoried the extent of glaciers and perennial snowfields across the western USA excluding Alaska. Using mostly aerial imagery, we digitized the outlines of all glaciers and perennial snowfields equal to or larger than 0.01 km2 using a geographical information system. We identified 1331 (366.52 km2) glaciers and 1176 (31.00 km2) snowfields.
Finu Shrestha, Jakob F. Steiner, Reeju Shrestha, Yathartha Dhungel, Sharad P. Joshi, Sam Inglis, Arshad Ashraf, Sher Wali, Khwaja M. Walizada, and Taigang Zhang
Earth Syst. Sci. Data, 15, 3941–3961, https://doi.org/10.5194/essd-15-3941-2023, https://doi.org/10.5194/essd-15-3941-2023, 2023
Short summary
Short summary
A new inventory of glacial lake outburst floods (GLOFs) in High Mountain Asia found 697 events, causing 906 deaths, 3 times more than previously reported. This study provides insights into the contributing factors behind GLOFs on a regional scale and highlights the need for interdisciplinary approaches, including scientific communities and local knowledge, to understand GLOF risks in Asia. This study allows integration with other datasets, enabling future local and regional risk assessments.
Benoit S. Lecavalier, Lev Tarasov, Greg Balco, Perry Spector, Claus-Dieter Hillenbrand, Christo Buizert, Catherine Ritz, Marion Leduc-Leballeur, Robert Mulvaney, Pippa L. Whitehouse, Michael J. Bentley, and Jonathan Bamber
Earth Syst. Sci. Data, 15, 3573–3596, https://doi.org/10.5194/essd-15-3573-2023, https://doi.org/10.5194/essd-15-3573-2023, 2023
Short summary
Short summary
The Antarctic Ice Sheet Evolution constraint database version 2 (AntICE2) consists of a large variety of observations that constrain the evolution of the Antarctic Ice Sheet over the last glacial cycle. This includes observations of past ice sheet extent, past ice thickness, past relative sea level, borehole temperature profiles, and present-day bedrock displacement rates. The database is intended to improve our understanding of past Antarctic changes and for ice sheet model calibrations.
Sune Olander Rasmussen, Dorthe Dahl-Jensen, Hubertus Fischer, Katrin Fuhrer, Steffen Bo Hansen, Margareta Hansson, Christine S. Hvidberg, Ulf Jonsell, Sepp Kipfstuhl, Urs Ruth, Jakob Schwander, Marie-Louise Siggaard-Andersen, Giulia Sinnl, Jørgen Peder Steffensen, Anders M. Svensson, and Bo M. Vinther
Earth Syst. Sci. Data, 15, 3351–3364, https://doi.org/10.5194/essd-15-3351-2023, https://doi.org/10.5194/essd-15-3351-2023, 2023
Short summary
Short summary
Timescales are essential for interpreting palaeoclimate data. The data series presented here were used for annual-layer identification when constructing the timescales named the Greenland Ice-Core Chronology 2005 (GICC05) and the revised version GICC21. Hopefully, these high-resolution data sets will be useful also for other purposes.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Lei Guo, Jia Li, Amaury Dehecq, Zhiwei Li, Xin Li, and Jianjun Zhu
Earth Syst. Sci. Data, 15, 2841–2861, https://doi.org/10.5194/essd-15-2841-2023, https://doi.org/10.5194/essd-15-2841-2023, 2023
Short summary
Short summary
We established a new inventory of surging glaciers across High Mountain Asia based on glacier elevation changes and morphological changes during 1970s–2020. A total of 890 surging and 336 probably or possibly surging glaciers were identified. Compared to the most recent inventory, this one incorporates 253 previously unidentified surging glaciers. Our results demonstrate a more widespread surge behavior in HMA and find that surging glaciers are prone to have steeper slopes than non-surging ones.
Elizabeth R. Thomas, Diana O. Vladimirova, Dieter R. Tetzner, B. Daniel Emanuelsson, Nathan Chellman, Daniel A. Dixon, Hugues Goosse, Mackenzie M. Grieman, Amy C. F. King, Michael Sigl, Danielle G. Udy, Tessa R. Vance, Dominic A. Winski, V. Holly L. Winton, Nancy A. N. Bertler, Akira Hori, Chavarukonam M. Laluraj, Joseph R. McConnell, Yuko Motizuki, Kazuya Takahashi, Hideaki Motoyama, Yoichi Nakai, Franciéle Schwanck, Jefferson Cardia Simões, Filipe Gaudie Ley Lindau, Mirko Severi, Rita Traversi, Sarah Wauthy, Cunde Xiao, Jiao Yang, Ellen Mosely-Thompson, Tamara V. Khodzher, Ludmila P. Golobokova, and Alexey A. Ekaykin
Earth Syst. Sci. Data, 15, 2517–2532, https://doi.org/10.5194/essd-15-2517-2023, https://doi.org/10.5194/essd-15-2517-2023, 2023
Short summary
Short summary
The concentration of sodium and sulfate measured in Antarctic ice cores is related to changes in both sea ice and winds. Here we have compiled a database of sodium and sulfate records from 105 ice core sites in Antarctica. The records span all, or part, of the past 2000 years. The records will improve our understanding of how winds and sea ice have changed in the past and how they have influenced the climate of Antarctica over the past 2000 years.
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
Fuming Xie, Shiyin Liu, Yongpeng Gao, Yu Zhu, Tobias Bolch, Andreas Kääb, Shimei Duan, Wenfei Miao, Jianfang Kang, Yaonan Zhang, Xiran Pan, Caixia Qin, Kunpeng Wu, Miaomiao Qi, Xianhe Zhang, Ying Yi, Fengze Han, Xiaojun Yao, Qiao Liu, Xin Wang, Zongli Jiang, Donghui Shangguan, Yong Zhang, Richard Grünwald, Muhammad Adnan, Jyoti Karki, and Muhammad Saifullah
Earth Syst. Sci. Data, 15, 847–867, https://doi.org/10.5194/essd-15-847-2023, https://doi.org/10.5194/essd-15-847-2023, 2023
Short summary
Short summary
In this study, first we generated inventories which allowed us to systematically detect glacier change patterns in the Karakoram range. We found that, by the 2020s, there were approximately 10 500 glaciers in the Karakoram mountains covering an area of 22 510.73 km2, of which ~ 10.2 % is covered by debris. During the past 30 years (from 1990 to 2020), the total glacier cover area in Karakoram remained relatively stable, with a slight increase in area of 23.5 km2.
Muchu Lesi, Yong Nie, Dan Hirsh Shugar, Jida Wang, Qian Deng, Huayong Chen, and Jianrong Fan
Earth Syst. Sci. Data, 14, 5489–5512, https://doi.org/10.5194/essd-14-5489-2022, https://doi.org/10.5194/essd-14-5489-2022, 2022
Short summary
Short summary
The China–Pakistan Economic Corridor plays a vital role in foreign trade and faces threats from water shortage and water-related hazards. An up-to-date glacial lake dataset with critical parameters is basic for water resource and flood risk research, which is absent from the corridor. This study created a glacial lake dataset in 2020 from Landsat and Sentinel images from 1990–2000, using a threshold-based mapping method. Our dataset has the potential to be widely applied.
Yang Lei, Alex S. Gardner, and Piyush Agram
Earth Syst. Sci. Data, 14, 5111–5137, https://doi.org/10.5194/essd-14-5111-2022, https://doi.org/10.5194/essd-14-5111-2022, 2022
Short summary
Short summary
This work describes NASA MEaSUREs ITS_LIVE project's Version 2 Sentinel-1 image-pair ice velocity product and processing methodology. We show the refined offset tracking algorithm, autoRIFT, calibration for Sentinel-1 geolocation biases and correction of the ionosphere streaking problems. Validation was performed over three typical test sites covering the globe by comparing with other similar global and regional products.
Nora Gourmelon, Thorsten Seehaus, Matthias Braun, Andreas Maier, and Vincent Christlein
Earth Syst. Sci. Data, 14, 4287–4313, https://doi.org/10.5194/essd-14-4287-2022, https://doi.org/10.5194/essd-14-4287-2022, 2022
Short summary
Short summary
Ice loss of glaciers shows in retreating calving fronts (i.e., the position where icebergs break off the glacier and drift into the ocean). This paper presents a benchmark dataset for calving front delineation in synthetic aperture radar (SAR) images. The dataset can be used to train and test deep learning techniques, which automate the monitoring of the calving front. Provided example models achieve front delineations with an average distance of 887 m to the correct calving front.
Mohd Soheb, Alagappan Ramanathan, Anshuman Bhardwaj, Millie Coleman, Brice R. Rea, Matteo Spagnolo, Shaktiman Singh, and Lydia Sam
Earth Syst. Sci. Data, 14, 4171–4185, https://doi.org/10.5194/essd-14-4171-2022, https://doi.org/10.5194/essd-14-4171-2022, 2022
Short summary
Short summary
This study provides a multi-temporal inventory of glaciers in the Ladakh region. The study records data on 2257 glaciers (>0.5 km2) covering an area of ~7923 ± 106 km2 which is equivalent to ~89 % of the total glacierised area of the Ladakh region. It will benefit both the scientific community and the administration of the Union Territory of Ladakh, in developing efficient mitigation and adaptation strategies by improving the projections of change on timescales relevant to policymakers.
Dahong Zhang, Gang Zhou, Wen Li, Shiqiang Zhang, Xiaojun Yao, and Shimei Wei
Earth Syst. Sci. Data, 14, 3889–3913, https://doi.org/10.5194/essd-14-3889-2022, https://doi.org/10.5194/essd-14-3889-2022, 2022
Short summary
Short summary
The length of a glacier is a key determinant of its geometry; glacier centerlines are crucial inputs for many glaciological applications. Based on the European allocation theory, we present a new global dataset that includes the centerlines and lengths of 198 137 mountain glaciers. The accuracy of the glacier centerlines was 89.68 %. The constructed dataset comprises 17 sub-datasets which contain the centerlines and lengths of glacier tributaries.
Lenneke M. Jong, Christopher T. Plummer, Jason L. Roberts, Andrew D. Moy, Mark A. J. Curran, Tessa R. Vance, Joel B. Pedro, Chelsea A. Long, Meredith Nation, Paul A. Mayewski, and Tas D. van Ommen
Earth Syst. Sci. Data, 14, 3313–3328, https://doi.org/10.5194/essd-14-3313-2022, https://doi.org/10.5194/essd-14-3313-2022, 2022
Short summary
Short summary
Ice core records from Law Dome in East Antarctica, collected over the the last 3 decades, provide high-resolution data for studies of the climate of Antarctica, Australia and the Southern and Indo-Pacific oceans. Here, we present a set of annually dated records from Law Dome covering the last 2000 years. This dataset provides an update and extensions both forward and back in time of previously published subsets of the data, bringing them together into a coherent set with improved dating.
Yu Cai, Claude R. Duguay, and Chang-Qing Ke
Earth Syst. Sci. Data, 14, 3329–3347, https://doi.org/10.5194/essd-14-3329-2022, https://doi.org/10.5194/essd-14-3329-2022, 2022
Short summary
Short summary
Seasonal ice cover is one of the important attributes of lakes in middle- and high-latitude regions. This study used passive microwave brightness temperature measurements to extract the ice phenology for 56 lakes across the Northern Hemisphere from 1979 to 2019. A threshold algorithm was applied according to the differences in brightness temperature between lake ice and open water. The dataset will provide valuable information about the changing ice cover of lakes over the last 4 decades.
Lea Geibel, Matthias Huss, Claudia Kurzböck, Elias Hodel, Andreas Bauder, and Daniel Farinotti
Earth Syst. Sci. Data, 14, 3293–3312, https://doi.org/10.5194/essd-14-3293-2022, https://doi.org/10.5194/essd-14-3293-2022, 2022
Short summary
Short summary
Glacier monitoring in Switzerland started in the 19th century, providing exceptional data series documenting snow accumulation and ice melt. Raw point observations of surface mass balance have, however, never been systematically compiled so far, including complete metadata. Here, we present an extensive dataset with more than 60 000 point observations of surface mass balance covering 60 Swiss glaciers and almost 140 years, promoting a better understanding of the drivers of recent glacier change.
Cited articles
Andreassen, L. M., Elvehøy, H., Kjøllmoen, B., and Belart, J. M.: Glacier change in Norway since the 1960s–an overview of mass balance, area, length and surface elevation changes, J. Glaciol., 66, 313–328, https://doi.org/10.1017/jog.2020.10, 2020. a, b
Bhambri, R., Bolch, T., Chaujar, R. K., and Kulshreshtha, S. C.: Glacier changes in the Garhwal Himalaya, India, from 1968 to 2006 based on remote sensing, J. Glaciol., 57, 543–556, https://doi.org/10.3189/002214311796905604, 2011. a
Bhattacharya, A., Bolch, T., Mukherjee, K., King, O., Menounos, B., Kapitsa, V., Neckel, N., Yang, W., and Yao, T.: High Mountain Asian glacier response to climate revealed by multi-temporal satellite observations since the 1960s, Nat. Commun., 12, 4133, https://doi.org/10.1038/s41467-021-24180-y, 2021. a
Błaszczyk, M., Jania, J. A., and Hagen, J. O.: Tidewater glaciers of Svalbard: Recent changes and estimates of calving fluxes, Pol. Polar Res., 30, 85–142, 2009. a
Collao-Barrios, G., Gillet-Chaulet, F., Favier, V., Casassa, G., Berthier, E., Dussaillant, I., Mauginot, J., and Rignot, E.: Ice flow modelling to constrain the surface mass balance and ice discharge of San Rafael Glacier, Northern Patagonia Icefield, J. Glaciol., 64, 568–582, https://doi.org/10.1017/jog.2018.46, 2018. a
De Geer, G.: Plan öfver det svensk-ryska gradmätningsnätet på Spetsbergen efter nyaste sammanstäld Maj 1900 1:1000000, Mesure D’un Arc de Méridien au Spitzberg, Entr. en 1899–1902, Description Topographique de la Région Exploré, Géologie, Aktiebolaget Centraltryckeriet, Stockholm, Sweden, 1923. a
Dowdeswell, J., Hodgkins, R., Nuttall, A. M., Hagen, J. O., and Hamilton, G. S.: Mass balance change as a control on the frequency and occurrence of glacier surges in Svalbard, Norwegian High Arctic, Geophys. Res. Lett., 22, 2909–2912, https://doi.org/10.1029/95GL02821, 1995. a, b, c
Dudek, J., Współczesne przemiany krajobrazu półwyspu Sørkapp Land (Spitsbergen) pod wpływem recesji lodowców na podstawie danych teledetekcyjnych, Ph.D. thesis, Jagiellonian University, Poland, 294 pp., https://ruj.uj.edu.pl/xmlui/handle/item/77309 (last access: 2 February 2021), 2019 [in Polish].
Dudek, J. and Pętlicki, M.: Topography of the north-western Sørkapp Land (Svalbard) in the year 1961, Zenodo [data set], https://doi.org/10.5281/zenodo.4573129, 2021. a
Dzierżek, J., Lindner, L., Marks, L., Nitychoruk, J., and Szczęsny, R.: Application of remote sensing to topographic maps of polar areas, Pol. Polar Res., 12, 149–160, 1991. a
Eckerstorfer, M., and Christiansen, H.: The High Arctic maritime snow climate in Central Svalbard, Arct. Antarct. Alp. Res., 43, 11–21, https://doi.org/10.1657/1938-4246-43.1.11, 2011. a
Farnsworth, W. R., Ingólfsson, Ó., Retelle, M., and Schomacker, A.: Over 400 previously undocumented Svalbard surge-type glaciers identified, Geomorphology, 264, 52–60, https://doi.org/10.1016/j.geomorph.2016.03.025, 2016. a, b
Finsterwalder, R.: Photogrammetry and glacier research with special reference to glacier retreat in the eastern Alps, J. Glaciol., 2, 306–315, 1954. a
Førland E. J., Benestad R., Hanssen-Bauer I., Haugen J. E., and Skaugen T. E.: Temperature and precipitation development at Svalbard 1900–2100, Adv. Meteorol., 2011, 893790, https://doi.org/10.1155/2011/893790, 2011. a, b
Fürst, J. J., Navarro, F., Gillet-Chaulet, F., Huss, M., Moholdt, G., Fettweis, X., Lang, C., Seehaus, T., Ai, S., Benham, T. J., Benn, D. I., Björnsson, H., Dowdeswell, J. A., Grabiec, M., Kohler, J., Lavrentiev, I., Lindbäck, K., Melvold, K., Pettersson, R., Rippin, D., Saintenoy, A., Sánchez-Gámez, P., Schuler, T. V., Sevestre, H., Vasilenko, E., and Braun, M. H.: The ice-free topography of Svalbard, Geophys. Res. Lett., 45, 21, 11760–11769, https://doi.org/10.1029/2018GL079734, 2018. a, b
Geyman, E. C., van Pelt W. J. J., Maloof, A. C., Aas, H. F., and Kohler, J.: Historical glacier change on Svalbard predicts doubling of mass loss by 2100, Nature, 601, 374–379, https://doi.org/10.1038/s41586-021-04314-4, 2022. a, b, c, d
Girod, L., Nielsen, N. I., Couderette, F., Nuth, C., and Kääb, A.: Precise DEM extraction from Svalbard using 1936 high oblique imagery, Geosci. Instrum. Method. Data Syst., 7, 277–288, https://doi.org/10.5194/gi-7-277-2018, 2018. a, b
Grabiec M., Ignatiuk I., Jania J. A., Moskalik M., Głowacki P., Błaszczyk M., Budzik T., and Walczowski W.: Coast formation in an Arctic area due to glacier surge and retreat: The Hornbreen-Hambergbreen case from Spistbergen, Earth Surf. Proc. Land., 43, 387–400, https://doi.org/10.1002/esp.4251, 2017. a, b
Hagen, J. O. and Liestøl, O.: Long term glacier mass balance investigations in Svalbard 1950–1988, Ann. Glaciol., 14, 102–106, https://doi.org/10.3189/S0260305500008351, 1990. a
Hoel, A.: The Norwegian Svalbard Expeditions 1906–1926, Skrifter om Svalbard og Ishavet, 1, Oslo, https://brage.npolar.no/npolar-xmlui/bitstream/handle/11250/173618/Skrifter001.pdf?sequence=1&isAllowed=y (last access: 29 August 2023), 1929. a
Holmlund, E.: Aldegondabreen glacier change since 1910 from structure-from-motion photogrammetry of archived terrestrial and aerial photographs: Utility of a historic archive to obtain century-scale Svalbard glacier mass losses, J. Glaciol., 67, 107–116, https://doi.org/10.1017/jog.2020.89, 2021. a, b
Isachsen, G., Hoel, A., Resvoll Holmsen, H., and Schetelig, J.: Exploration du Nord-Ouest du Spitsberg entreprise sous les auspices de S. A. S. le Prince de Monaco par la Mission Isachsen, I. Récit de voyage, II. Description du champ d'opération, III. Géologie, IV. Les Formations Primitives, 5, Impr. de Monaco, 1912–1914. a
Isaksen, K., Nordli, Ø., Førland, E. J., Łupikasza, E., Eastwood, S., and Niedźwiedź, T.: Recent warming on Spitsbergen-Influence of atmospheric circulation and sea ice cover, J. Geophys. Res.-Atmos., 121, 1–19, https://doi.org/10.1002/2016JD025606, 2016. a, b
Jacob, T., Wahr, J., Pfeffer, W. T., and Swenson, S.: Recent contributions of glaciers and ice caps to sea level rise, Nature, 482, 514–518, https://doi.org/10.1038/nature10847, 2012. a
James, T. D., Murray, T., Barrand, N. E., Sykes, H. J., Fox, A. J., and King, M. A.: Observations of enhanced thinning in the upper reaches of Svalbard glaciers, The Cryosphere, 6, 1369–1381, https://doi.org/10.5194/tc-6-1369-2012, 2012. a
Jania, J. A.: Pomiary ablacji lodowca Nordfall jako element do bilansu masy i energii, Dokumentacja prac w problemie MR. II. 16. B, Institute of Geophysics of the Polish Academy of Sciences, 4, 1979. a
Jania, J. A.: Debris forms and processes in Gåsdalen region in photogrammetric investigations and repeated terrestrial photograms, Results of Investigations of the Polish Scientific Spitsbergen Expeditions,
Acta Universitatis Wratislaviensis, 4, 96–114, 1982. a
Jania, J. A.: Dynamiczne procesy glacjalne na południowym Spitsbergenie (w świetle badań fotointerpretacyjnych i fotogrametrycznych), Dynamic Glacial Processes in south Spitsbergen [in the Light of Photointerpretation and Photogrammetric Research], Prace Naukowe Uniwersytetu Śląskiego w Katowicach, 258 pp., ISSN 0208-6336, 1988a. a, b, c, d, e
Jania, J. A., Kolondra, L., and Aas, H. F.: Orthophotomap 1:25000, Werenskioldbreen and surrounding area, Faculty of Geosciences, University of Silesia and Norsk Polarinstitutt, Sosnowiec and Tromsø, 2002.
Jania, J. A. and Szczypek, T.: Kartowanie geomorfologiczne otoczenia fiordu Hornsund na podstawie interpretacji zdjęć lotniczych, Fotointerpretacja w Geografii, 9, 108–128, 1987. a
Jiskoot, H., Murray, T., and Boyle, P.: Controls on the distribution of surge-type glaciers in Svalbard, J. Glaciol., 46, 412–422, https://doi.org/10.3189/172756500781833115, 2000. a, b
Knight, P. G.: Glacier Science and Environmental Change, Blackwell Science Ltd., Oxford, 527 pp., https://doi.org/10.1002/9780470750636, 2006. a
Kolondra, L.: Mapa 1:5000, Wurmbrandegga – fragment wsch. stoku pasma, District Geodetic and Cartographic Enterprise, Katowice, 1979. a
Kolondra, L.: Mapa 1:5000, Tsjebysjovfiellet – fragment zach. stoku pasma. District Geodetic and Cartographic Enterprise, Katowice, 1980. a
Kolondra, L.: Prace i dorobek polskich fotogrametrów w Arktyce (1934–2000), Archiwum Fotogrametrii, Kartografii i Teledetekcji, 10, 1–14, ISBN 83-906804-4-0, 2000. a
Kolondra, L.: Problemy fotogrametrycznego pozyskiwania danych w badaniach glacjologicznych – studium metodyczne na przykładzie Spitsbergenu. Ph.D. thesis, Faculty of Geosciences, University of Silesia, Sosnowiec, 166 pp. + 3 maps, 2002. a
Kolondra, L.: Photogrammetry the Authentic Source of Data For Spitsbergen Glaciological Research, Geoinformatica Polonica, Works of the Geoinformatics Commission of the Polish Academy of Arts and Sciences, Cracow, 7, 45–73, ISSN 1642-2511, 2005. a
Kosiba, A.: Some results of glaciological investigations in SW-Spitsbergen carried out during the Polish I.G.Y. Spitsbergen Expeditions in 1957, 1958 and 1959, Scientific Papers of University of Wrocław, B Series, 4, 30 pp., 1960. a
Lipert, C.: Prace geodezyjne w 50-leciu polskich wypraw polarnych, Sigma, Warszawa, Poland, 57 pp., 1962. a
Małecki, J.: Elevation and volume changes of seven Dickson Land glaciers. Svalbard, 1960–1990–2009, Polar Res., 32, 18400, https://doi.org/10.3402/polar.v32i0.18400, 2013. a, b
Mannerfelt, E. S., Dehecq, A., Hugonnet, R., Hodel, E., Huss, M., Bauder, A., and Farinotti, D.: Halving of Swiss glacier volume since 1931 observed from terrestrial image photogrammetry, The Cryosphere, 16, 3249–3268, https://doi.org/10.5194/tc-16-3249-2022, 2022. a
Marcinkiewicz, A.: Die zahlenmassige Erfassung des Gletscherriickganges wàhrendder Periode 1936–1958 am zwei Westspitzbergen Gletschern, [in:] Bulletin de l'Académie Polonaise des Sciences, Série des Scienes Géologiques et Geographiques, 9, 233–237 + map, ISSN 0366-2497, 1961. a
Martín-Moreno, R., Allende Álvarez, F., and Hagen, J. O.: “Little Ice Age'’ glacier extent and subsequent retreat in Svalbard archipelago, Holocene, 27, 1–12, https://doi.org/10.1177/0959683617693904, 2017. a, b
Maurer, J. and Rupper, S.: Tapping into the Hexagon spy imagery database: A new automated pipeline for geomorphic change detection, ISPRS J. Photogramm., 108, 113–127, https://doi.org/10.1016/j.isprsjprs.2015.06.008, 2015. a
Maurer, J. M., Schaefer, J. M., Rupper, S., and Corley, A.: Acceleration of ice loss across the Himalayas over the past 40 years, Sci. Adv. 5, eaav7266, https://doi.org/10.1126/sciadv.aav7266, 2019. a
McNabb, R., Nuth, C., Kääb, A., and Girod, L.: Sensitivity of glacier volume change estimation to DEM void interpolation, The Cryosphere, 13, 895–910, https://doi.org/10.5194/tc-13-895-2019, 2019. a
Mertes, J. R., Gulley, J. D., Benn, D. I., Thompson, S. S., and Nicholson, L. I.: Using structure‐from‐motion to create glacier DEMs and orthoimagery from historical terrestrial and oblique aerial imagery, Earth Surf. Proc. Land., 42, 2350–2364, https://doi.org/10.1002/esp.4188, 2017. a
Midgley, N. G. and Tonkin, T. N.: Reconstruction of former glacier surface topography from archive oblique aerial images, Geomorphology, 282, 18–26, https://doi.org/10.1016/j.geomorph.2017.01.008, 2017. a
Morris, A., Moholdt, G., and Gray, L.: Spread of Svalbard Glacier Mass Loss to Barents Sea Margins Revealed by CryoSat-2, J. Geophys. Res.-Earth, 125, e2019JF005357, https://doi.org/10.1029/2019JF005357, 2020. a
Nathorst, A. G.: Swedish explorations in Spitzbergen 1758–1908, Ymer (Stockholm), Sweden, 29 pp., 1909. a
Noël, B., Jakobs, C. L., van Pelt, W. J. J., Lhermitte, S., Wouters, B., Kohler, J., Hagen, J. O., Luks, B., Reijmer, C. H., van de Berg, W. J., and van den Broeke, M. R.: Low elevation of Svalbard glaciers drives high mass loss variability, Nat. Commun., 11, 4597, https://doi.org/10.1038/s41467-020-18356-1, 2020. a
Noormets, R. Flink, A., and Kirchner, N.: Glacial dynamics and deglaciation history of Hambergbukta reconstructed from submarine landforms and sediment cores, SE Spitsbergen, Svalbard, Boreas, 50, 29–50, https://doi.org/10.1111/bor.12488, 2020. a, b, c
Nordli, Ø., Przybylak, R., Ogilvie, A., and Isaksen, K.: Long-term temperature trends and variability on Spitsbergen: The extended Svalbard Airport temperature series, 1898–2012, Polar Res., 33, 21349, https://doi.org/10.3402/polar.v33.21349, 2014. a
Nordli, Ø., Wyszyński P., Gjelten H. M., Isaksen K., Łupikasza E., Niedźwiedź T., and Przybylak R.: Revisiting the extended Svalbard Airport monthly temperature series, and the compiled corresponding daily series 1898–2018, Polar Res., 39, 3614, https://doi.org/10.33265/polar.v39.3614, 2020. a
Norwegian Polar Institute: Topografisk kart over Svalbard 1:100 000, C13. Sørkapp, Oslo, Norsk Polarinstitutt, 1948. a
Norwegian Polar Institute: Topographic map of Svalbard 1:100 000, C13. Sørkapp Land, Oslo, Norsk Polarinstitutt, 2007. a
Norwegian Polar Institute: Map archive [data set], Norwegian Polar Institute, https://doi.org/10.21334/npolar.2015.cf9a9474, 2015.
Nuth, C., Kohler, J., Aas, H. F., Brandt, O., and Hagen, J. O.: Glacier geometry and elevation changes on Svalbard (1936–90): a baseline dataset, Ann. Glaciol., 46, 106–116, https://doi.org/10.3189/172756407782871440, 2007. a, b, c, d
Nuth, C., Moholdt, G., Kohler, J., Hagen, J. O., and Kääb, A.: Svalbard glacier elevation changes and contribution to sea level rise, J. Geophys. Res., 115, F01008, https://doi.org/10.1029/2008JF001223, 2010. a, b, c
Oerlemans, J.: A flowline model for Nigardsbreen, Norway: projection of future glacier length based on dynamic calibration with the historic record, Ann. Glaciol., 24, 382–389, https://doi.org/10.3189/S0260305500012489, 1997. a
Osuch M. and Wawrzyniak T.: Inter- and intra-annual changes in air temperature and precipitation in western Spitsbergen, Int. J. Climatol., 37, 3082–3097, https://doi.org/10.1002/joc.4901, 2017. a
Pälli, A., Moore, J., Jania, J. A., and Głowacki, P.: Glacier changes in southern Spitsbergen, Svalbard, 1901–2000, Ann. Glaciol., 37, 219–225, https://doi.org/10.3189/172756403781815573, 2003. a, b
Schöner, M. and Schöner, W.: Photogrammetrische und glaziologische Untersuchungen am Gåsbre (Ergebnisse der Spitzbergenexpedition 1991), Geowissenschaftliche Mitteilungen, Schriftenreihe der Studienrichtung Vermessungswesen der Technischen Universität Wien, Austria, 42, 120 pp. + 2 maps, ISSN 1811-8380, 1996. a, b, c, d, e
Schöner, M. and Schöner, W.: Effects of glacier retreat on the outburst of Goësvatnet, southwest Spitsbergen, Svalbard, J. Glaciol., 43, 276–282, https://doi.org/10.3189/S0022143000003221, 1997. a, b, c, d
Schuler, T. V., Kohler, J., Elagina, N., Hagen, J. O. M., Hodson, A. J., Jania, J. A., Käbb, A. M., Luks, Bartlomiej, Malecki, J., Moholdt, G., Pohjola, V. A., Sobota, I., and Van Pelt, W. J. J.: Reconciling Svalbard glacier mass balance, Front. Earth Sci., 8, 156, https://doi.org/10.3389/feart.2020.00156, 2020. a, b, c, d
Sharov, A. I.: Exegesis of interferometric and altimetric observations in South Spitsbergen, The mass budget of Arctic Glaciers, edited by: Oerlemans, H., 88–93, Utrecht: IASC, IMAU, 2006. a
Sharov, A. I. and Osokin, S. A.: Controlled interferometric models of glacier changes in south Svalbard, Proceedings of the Fringe 2005 Workshop, Frascati, Italy, 28 November–2 December 2005 (ESA SP-610), 1–8, 2006. a
Stocker-Waldhuber, M., Fischer, A., Helfricht, K., and Kuhn, M.: Long-term records of glacier surface velocities in the Ötztal Alps (Austria), Earth Syst. Sci. Data, 11, 705–715, https://doi.org/10.5194/essd-11-705-2019, 2019. a
Sund, M., Eiken, T., Hagen, J. O., and Kääb, A.: Svalbard surge dynamics derived from geometric changes, Ann. Glaciol., 50, 50–60, https://doi.org/10.3189/172756409789624265, 2009. a, b, c, d
Surazakov, A. B. and Aizen, V. B.: Estimating volume change of mountain glaciers using SRTM and map-based topographic data, IEEE T. Geosci. Remote, 44, 2991–2995, https://doi.org/10.1109/TGRS.2006.875357, 2006. a
Szafraniec, J.: Deglaciation rate on southern and western Spitsbergen in the conditions of Arctic amplification, Pol. Polar Res., 39, 77–98, https://doi.org/10.24425/118739, 2018. a
Szafraniec, J.: Ice-Cliff Morphometry in Identifying the Surge Phenomenon of Tidewater Glaciers (Spitsbergen, Svalbard), Geosciences, 10, 328, https://doi.org/10.3390/geosciences10090328, 2020. a, b
Teng, J., Wang, F., and Liu, Y.: An Efficient Algorithm for Raster-to-Vector Data Conversion, Geogr. Inform. Sci., 14, 54–62, https://doi.org/10.1080/10824000809480639, 2008.
Tielidze, L. G.: Glacier change over the last century, Caucasus Mountains, Georgia, observed from old topographical maps, Landsat and ASTER satellite imagery, The Cryosphere, 10, 713–725, https://doi.org/10.5194/tc-10-713-2016, 2016. a
van Pelt, W., Pohjola, V., Pettersson, R., Marchenko, S., Kohler, J., Luks, B., Hagen, J. O., Schuler, T. V., Dunse, T., Noël, B., and Reijmer, C.: A long-term dataset of climatic mass balance, snow conditions, and runoff in Svalbard (1957–2018), The Cryosphere, 13, 2259–2280, https://doi.org/10.5194/tc-13-2259-2019, 2019. a, b, c
Van Pelt, W. J. J., Schuler, T. V., Pohjola, V. A., and Pettersson, R.: Accelerating future mass loss of Svalbard glaciers from a multi-model ensemble, J. Glaciol., 67, 485–499, https://doi.org/10.1017/jog.2021.2, 2021. a, b, c
Weber, P., Andreassen, L. M., Boston, C. M., Lovell, H., and Kvarteig, S.: An 1899 glacier inventory for Nordland, northern Norway, produced from historical maps, J. Glaciol., 66, 259–277, https://doi.org/10.1017/jog.2020.3, 2020. a
WGMS: Global Glacier Change Bulletin No. 3 (2016–2017), edited by: Zemp, M., Gärtner-Roer, I., Nussbaumer, S. U., Bannwart, J., Rastner, P., Paul, F., and Hoelzle, M., ISC(WDS)/IUGG(IACS)/UNEP/UNESCO/WMO, World Glacier Monitoring Service, Zurich, Switzerland, 274 pp., https://doi.org/10.5904/wgms-fog-2019-12, 2020. a
Zagrajski, S. and Zawadzki, A.: Polska Wyprawa na Spitsbergen 1934, Prace geodezyjne i kartograficzne, Military Geographical Institute, Library of the Topographic Service, Warsaw, 16, 102 pp. + 2 maps 1:50 000, 1936. a
Zekollari, H., Huss, M., and Farinotti, D.: On the Imbalance and Response Time of Glaciers in the European Alps, Geophys. Res. Lett., 47, e2019GL085578, https://doi.org/10.1029/2019GL085578, 2020 a
Ziaja, W.: Glacial Recession in Sørkappland and Central Nordenskiöldland, Spitsbergen, Svalbard, during the 20th century, Arct. Antarct. Alp. Res., 33, 36–41, https://doi.org/10.1080/15230430.2001.12003402, 2001. a
Ziaja, W., Maciejowski, W., and Ostafin, K.: Coastal Landscape Dynamics in NE Sørkapp Land (SE Spitsbergen), 1900–2005, Ambio, 38, 201–208, https://doi.org/10.1579/0044-7447-38.4.201, 2009. a, b
Ziaja, W. and Ostafin, K.: Landscape-seascape dynamics in the isthmus between Sørkapp Land and the rest of Spitsbergen: Will a new big Arctic island form?, Ambio, 44, 332–342, https://doi.org/10.1007/s13280-014-0572-1, 2015. a, b, c
Żyszkowski, J.: Photogrammetric Surveys In the Hornsund Fiord Area Spitsbergen, carried out in 1973, Results of Investigations of the Polish Scientific Spitsbergen Expeditions, Acta Universitatis Wratislaviensis, 4, 289–298, 1982. a
Short summary
In our research, we evaluate the potential of archival maps of Hornsund fjord area, southern Spitsbergen, published by the Polish Academy of Sciences for studying glacier changes. Our analysis concerning glaciers in the north-western part of the Sørkapp Land peninsula revealed that, in the period 1961–2010, a maximum lowering of their surface was about 100 m for the largest land-terminating glaciers and over 120 m for glaciers terminating in the ocean (above the line marking their 1984 extents).
In our research, we evaluate the potential of archival maps of Hornsund fjord area, southern...
Altmetrics
Final-revised paper
Preprint