Articles | Volume 15, issue 4
https://doi.org/10.5194/essd-15-1617-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-1617-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Nunataryuk field campaigns: understanding the origin and fate of terrestrial organic matter in the coastal waters of the Mackenzie Delta region
Martine Lizotte
CORRESPONDING AUTHOR
Takuvik International Research Laboratory (IRL 3376), ULaval – CNRS, Biology department, Laval University, Quebec, Canada
Bennet Juhls
Takuvik International Research Laboratory (IRL 3376), ULaval – CNRS, Biology department, Laval University, Quebec, Canada
Permafrost research section, Freie Universität Berlin, Berlin, Germany
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
Atsushi Matsuoka
Takuvik International Research Laboratory (IRL 3376), ULaval – CNRS, Biology department, Laval University, Quebec, Canada
Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, USA
Philippe Massicotte
Takuvik International Research Laboratory (IRL 3376), ULaval – CNRS, Biology department, Laval University, Quebec, Canada
Gaëlle Mével
Takuvik International Research Laboratory (IRL 3376), ULaval – CNRS, Biology department, Laval University, Quebec, Canada
David Obie James Anikina
Tuktoyaktuk Community Corporation, Tuktoyaktuk, Canada
Sofia Antonova
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
Guislain Bécu
Takuvik International Research Laboratory (IRL 3376), ULaval – CNRS, Biology department, Laval University, Quebec, Canada
Marine Béguin
Takuvik International Research Laboratory (IRL 3376), ULaval – CNRS, Biology department, Laval University, Quebec, Canada
Simon Bélanger
Dép. de Biologie, Chimie et Géographie, groupes BORÉAS et Québec-Océan, Université du Québec à Rimouski, Rimouski, Canada
Thomas Bossé-Demers
Takuvik International Research Laboratory (IRL 3376), ULaval – CNRS, Biology department, Laval University, Quebec, Canada
Chemistry Department, Laval University, Quebec, Canada
Lisa Bröder
Department of Earth Sciences, Eidgenössische Technische Hochschule, Zurich, Switzerland
Flavienne Bruyant
Takuvik International Research Laboratory (IRL 3376), ULaval – CNRS, Biology department, Laval University, Quebec, Canada
Gwénaëlle Chaillou
Dép. de Biologie, Chimie et Géographie, groupes BORÉAS et Québec-Océan, Université du Québec à Rimouski, Rimouski, Canada
Jérôme Comte
Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Quebec, Canada
Raoul-Marie Couture
Takuvik International Research Laboratory (IRL 3376), ULaval – CNRS, Biology department, Laval University, Quebec, Canada
Chemistry Department, Laval University, Quebec, Canada
Emmanuel Devred
Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Canada
Gabrièle Deslongchamps
Takuvik International Research Laboratory (IRL 3376), ULaval – CNRS, Biology department, Laval University, Quebec, Canada
Thibaud Dezutter
Takuvik International Research Laboratory (IRL 3376), ULaval – CNRS, Biology department, Laval University, Quebec, Canada
Miles Dillon
Inuvik Hunters and Trappers Committee, Inuvik, Canada
David Doxaran
Laboratoire d'Océanographie de Villefranche, UMR7093 CNRS/SU, Villefranche-sur-Mer, France
Aude Flamand
Dép. de Biologie, Chimie et Géographie, groupes BORÉAS et Québec-Océan, Université du Québec à Rimouski, Rimouski, Canada
Frank Fell
Informus GmbH, Berlin, Germany
Joannie Ferland
Takuvik International Research Laboratory (IRL 3376), ULaval – CNRS, Biology department, Laval University, Quebec, Canada
Ministère de l'Environnement et de la Lutte aux Changements Climatiques, Quebec, Canada
Marie-Hélène Forget
Takuvik International Research Laboratory (IRL 3376), ULaval – CNRS, Biology department, Laval University, Quebec, Canada
Michael Fritz
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
Thomas J. Gordon
Aklavik Hunters and Trappers Committee, Aklavik, Canada
Caroline Guilmette
Takuvik International Research Laboratory (IRL 3376), ULaval – CNRS, Biology department, Laval University, Quebec, Canada
Andrea Hilborn
Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Canada
Rachel Hussherr
Takuvik International Research Laboratory (IRL 3376), ULaval – CNRS, Biology department, Laval University, Quebec, Canada
Fisheries and Oceans Canada, Manitoba, Canada
Charlotte Irish
Tuktoyaktuk Community Corporation, Tuktoyaktuk, Canada
Fabien Joux
Laboratoire d'Océanographie Microbienne, UMR7621 CNRS-Sorbonne Université, Observatoire Océanologique de Banyuls, Banyuls-sur-Mer, France
Lauren Kipp
Department of Environmental Science, Rowan University, Glassboro, New Jersey, USA
Audrey Laberge-Carignan
Takuvik International Research Laboratory (IRL 3376), ULaval – CNRS, Biology department, Laval University, Quebec, Canada
Chemistry Department, Laval University, Quebec, Canada
Hugues Lantuit
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
Edouard Leymarie
Laboratoire d'Océanographie de Villefranche, UMR7093 CNRS/SU, Villefranche-sur-Mer, France
Antonio Mannino
NASA Goddard Space Flight Center, Greenbelt, MD, USA
Juliette Maury
Laboratoire d'Océanographie de Villefranche, UMR7093 CNRS/SU, Villefranche-sur-Mer, France
Paul Overduin
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
Laurent Oziel
Takuvik International Research Laboratory (IRL 3376), ULaval – CNRS, Biology department, Laval University, Quebec, Canada
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Colin Stedmon
Section for Oceans and Arctic, National Institute for Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
Crystal Thomas
NASA Goddard Space Flight Center, Greenbelt, MD, USA
Lucas Tisserand
Laboratoire d'Océanographie Microbienne, UMR7621 CNRS-Sorbonne Université, Observatoire Océanologique de Banyuls, Banyuls-sur-Mer, France
Jean-Éric Tremblay
Takuvik International Research Laboratory (IRL 3376), ULaval – CNRS, Biology department, Laval University, Quebec, Canada
Jorien Vonk
Department of Earth Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
Dustin Whalen
Natural Resources Canada, Dartmouth, Canada
Marcel Babin
Takuvik International Research Laboratory (IRL 3376), ULaval – CNRS, Biology department, Laval University, Quebec, Canada
Related authors
Flavienne Bruyant, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Lise Artigue, Lucas Barbedo de Freitas, Guislain Bécu, Simon Bélanger, Pascaline Bourgain, Annick Bricaud, Etienne Brouard, Camille Brunet, Tonya Burgers, Danielle Caleb, Katrine Chalut, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Marine Cusa, Fanny Cusset, Laeticia Dadaglio, Marty Davelaar, Gabrièle Deslongchamps, Céline Dimier, Julie Dinasquet, Dany Dumont, Brent Else, Igor Eulaers, Joannie Ferland, Gabrielle Filteau, Marie-Hélène Forget, Jérome Fort, Louis Fortier, Martí Galí, Morgane Gallinari, Svend-Erik Garbus, Nicole Garcia, Catherine Gérikas Ribeiro, Colline Gombault, Priscilla Gourvil, Clémence Goyens, Cindy Grant, Pierre-Luc Grondin, Pascal Guillot, Sandrine Hillion, Rachel Hussherr, Fabien Joux, Hannah Joy-Warren, Gabriel Joyal, David Kieber, Augustin Lafond, José Lagunas, Patrick Lajeunesse, Catherine Lalande, Jade Larivière, Florence Le Gall, Karine Leblanc, Mathieu Leblanc, Justine Legras, Keith Lévesque, Kate-M. Lewis, Edouard Leymarie, Aude Leynaert, Thomas Linkowski, Martine Lizotte, Adriana Lopes dos Santos, Claudie Marec, Dominique Marie, Guillaume Massé, Philippe Massicotte, Atsushi Matsuoka, Lisa A. Miller, Sharif Mirshak, Nathalie Morata, Brivaela Moriceau, Philippe-Israël Morin, Simon Morisset, Anders Mosbech, Alfonso Mucci, Gabrielle Nadaï, Christian Nozais, Ingrid Obernosterer, Thimoté Paire, Christos Panagiotopoulos, Marie Parenteau, Noémie Pelletier, Marc Picheral, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Llúcia Ribot Lacosta, Jean-François Rontani, Blanche Saint-Béat, Julie Sansoulet, Noé Sardet, Catherine Schmechtig, Antoine Sciandra, Richard Sempéré, Caroline Sévigny, Jordan Toullec, Margot Tragin, Jean-Éric Tremblay, Annie-Pier Trottier, Daniel Vaulot, Anda Vladoiu, Lei Xue, Gustavo Yunda-Guarin, and Marcel Babin
Earth Syst. Sci. Data, 14, 4607–4642, https://doi.org/10.5194/essd-14-4607-2022, https://doi.org/10.5194/essd-14-4607-2022, 2022
Short summary
Short summary
This paper presents a dataset acquired during a research cruise held in Baffin Bay in 2016. We observed that the disappearance of sea ice in the Arctic Ocean increases both the length and spatial extent of the phytoplankton growth season. In the future, this will impact the food webs on which the local populations depend for their food supply and fisheries. This dataset will provide insight into quantifying these impacts and help the decision-making process for policymakers.
Madeleine Santos, Lisa Bröder, Matt O'Regan, Iván Hernández-Almeida, Tommaso Tesi, Lukas Bigler, Negar Haghipour, Daniel B. Nelson, Michael Fritz, and Julie Lattaud
EGUsphere, https://doi.org/10.5194/egusphere-2025-3953, https://doi.org/10.5194/egusphere-2025-3953, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Our study examined how sea ice in the Beaufort Sea has changed over the past 13,000 years to better understand today’s rapid losses. By analyzing chemical tracers preserved in seafloor sediments, we found that the Early Holocene was largely ice-free, with warmer waters and lower salinity. Seasonal ice began forming about 7,000 years ago and expanded as the climate cooled. These long-term patterns show that continued warming could return the region to mostly ice-free conditions.
Montserrat Roca-Martí, Madeline Healey, Colleen E. McBride, Rachel Sipler, Emmanuel Devred, Carolina Cisternas-Novoa, Elisa Romanelli, Kyoko Ohashi, and Stephanie S. Kienast
EGUsphere, https://doi.org/10.5194/egusphere-2025-3671, https://doi.org/10.5194/egusphere-2025-3671, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We studied a historically large spring phytoplankton bloom in the Labrador Sea to quantify how much carbon reaches the deep ocean. Despite high productivity, only a small fraction of organic carbon sank below the ocean's productive layer, suggesting a limited role of the dominant phytoplankton species (Phaeocystis) in carbon export. Our findings highlight the need for long-term observations to better assess the ocean’s role in carbon sequestration.
Mehriban Aliyeva, Michael Angelopoulos, Julia Boike, Moritz Langer, Frederieke Miesner, Scott Dallimore, Dustin Whalen, Lukas U. Arenson, and Pier Paul Overduin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2675, https://doi.org/10.5194/egusphere-2025-2675, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
In this study, we investigate the ongoing transformation of terrestrial permafrost into subsea permafrost on a rapidly eroding Arctic island using electrical resistivity tomography and numerical modelling. We draw on 60 years of shoreline data to support our findings. This work is important for understanding permafrost loss in Arctic coastal areas and for guiding future efforts to protect vulnerable shorelines.
Alexie Roy-Lafontaine, Rebecca Lee, Peter M. J. Douglas, Dustin Whalen, and André Pellerin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2570, https://doi.org/10.5194/egusphere-2025-2570, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
As Arctic coastlines change with the climate, we studied how these changes might affect methane release, a powerful greenhouse gas. We found that coastal sediments can produce a lot of methane, even when exposed to seawater, which was thought to prevent it. This suggests that Arctic coasts could be an overlooked source of methane to the atmosphere as the climate continues to warm and sea levels rise.
Anisbel Leon-Marcos, Manuela van Pinxteren, Sebastian Zeppenfeld, Moritz Zeising, Astrid Bracher, Laurent Oziel, Ina Tegen, and Bernd Heinold
EGUsphere, https://doi.org/10.5194/egusphere-2025-2829, https://doi.org/10.5194/egusphere-2025-2829, 2025
Short summary
Short summary
This study links modelled ocean surface concentrations of key marine organic groups with the aerosol-climate model ECHAM-HAM to quantify species-resolved primary marine organic aerosol emissions from 1990 to 2019. Results show strong seasonality, driven by productivity and summer sea ice loss. Emissions and burdens increased over time with more frequent positive anomalies in the last decade, revealing an overall upward trend with regional differences across the Arctic and aerosol species.
Sarah Paradis, Hannah Gies, Davide Moccia, Julie Lattaud, Lisa Bröder, Negar Haghipour, Antonio Pusceddu, Albert Palanques, Pere Puig, Claudio Lo Iacono, and Timothy I. Eglinton
EGUsphere, https://doi.org/10.5194/egusphere-2025-2587, https://doi.org/10.5194/egusphere-2025-2587, 2025
Short summary
Short summary
The Gulf of Palermo features several submarine canyons, where 50–70% of the organic carbon deposited in them is terrigenous (OC-terr). The contribution of OC-terr generally decreases offshore and across canyons. Rivers deliver OC-terr, which is redistributed by regional currents and intercepted by the farthest down-current canyon, while the other submarine canyons receive terrigenous organic carbon from more distal sources. Bottom trawling also contributes to the transfer of OC-terr down-canyon.
William A. Nesbitt, Samuel W. Stevens, Alfonso O. Mucci, Lennart Gerke, Toste Tanhua, Gwénaëlle Chaillou, and Douglas W. R. Wallace
EGUsphere, https://doi.org/10.5194/egusphere-2025-2400, https://doi.org/10.5194/egusphere-2025-2400, 2025
Short summary
Short summary
We use 20 years of oxygen measurements and recent carbon data with a tracer-calibrated 1D model to quantify oxygen loss and inorganic carbon accumulation in the deep waters of the Gulf and St. Lawrence Estuary. We further utilize the model to give a first estimate of the impact of adding pure oxygen, a by-product from green hydrogen production to these deep waters. Results show this could restore oxygen to year-2000 levels, but full recovery would require a larger input.
Igor V. Polyakov, Andrey V. Pnyushkov, Eddy C. Carmack, Matthew Charette, Kyoung-Ho Cho, Steven Dykstra, Jari Haapala, Jinyoung Jung, Lauren Kipp, and Eun Jin Yang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2316, https://doi.org/10.5194/egusphere-2025-2316, 2025
Short summary
Short summary
The Siberian Arctic Ocean greatly influences the Arctic climate system. Moreover, the region is experiencing some of the most notable Arctic climate change. In the summer, strong near-inertial currents in the upper (<30m) ocean account for more than half of the current speed and shear. In the winter, upper ocean ventilation due to atlantification distributes wind energy to far deeper (>100m) layers. Understanding the implications for mixing and halocline weakening depends on these findings.
Maren Jenrich, Juliane Wolter, Susanne Liebner, Christian Knoblauch, Guido Grosse, Fiona Giebeler, Dustin Whalen, and Jens Strauss
Biogeosciences, 22, 2069–2086, https://doi.org/10.5194/bg-22-2069-2025, https://doi.org/10.5194/bg-22-2069-2025, 2025
Short summary
Short summary
Climate warming in the Arctic is causing the erosion of permafrost coasts and the transformation of permafrost lakes into lagoons. To understand how this affects greenhouse gas (GHG) emissions, we studied carbon dioxide (CO₂) and methane (CH₄) production in lagoons with varying sea connections. Younger lagoons produce more CH₄, while CO₂ increases under more marine conditions. Flooding of permafrost lowlands due to rising sea levels may lead to higher GHG emissions from Arctic coasts in future.
Clement Bertin, Vincent Le Fouest, Dustin Carroll, Stephanie Dutkiewicz, Dimitris Menemenlis, Atsushi Matsuoka, Manfredi Manizza, and Charles E. Miller
EGUsphere, https://doi.org/10.5194/egusphere-2025-973, https://doi.org/10.5194/egusphere-2025-973, 2025
Short summary
Short summary
We adjusted a model of the Mackenzie River region to account for the riverine export of organic matter that affects light in the water. We show that such export causes a delay in the phytoplankton growth by two weeks and raises the water surface temperature by 1.7 °C. We found that temperature increase turns this coastal region from a sink of carbon dioxide to an emitter. Our findings suggest that rising exports of organic matter can significantly affect the carbon cycle in Arctic coastal areas.
Julia Wagner, Juliane Wolter, Justine Ramage, Victoria Martin, Andreas Richter, Niek Jesse Speetjens, Jorien E. Vonk, Rachele Lodi, Annett Bartsch, Michael Fritz, Hugues Lantuit, and Gustaf Hugelius
EGUsphere, https://doi.org/10.5194/egusphere-2025-1052, https://doi.org/10.5194/egusphere-2025-1052, 2025
Short summary
Short summary
Permafrost soils store vast amounts of organic carbon, key to understanding climate change. This study uses machine learning and combines existing data with new field data to create detailed regional maps of soil carbon and nitrogen stocks for the Yukon coastal plain. The results show how soil properties vary across the landscape highlighting the importance of data selection for accurate predictions. These findings improve carbon storage estimates and may aid regional carbon budget assessments.
Ephraim Erkens, Michael Angelopoulos, Jens Tronicke, Scott R. Dallimore, Dustin Whalen, Julia Boike, and Pier Paul Overduin
The Cryosphere, 19, 997–1012, https://doi.org/10.5194/tc-19-997-2025, https://doi.org/10.5194/tc-19-997-2025, 2025
Short summary
Short summary
We investigate the depth of subsea permafrost formed by inundation of terrestrial permafrost due to marine transgression around the rapidly disappearing, permafrost-cored Tuktoyaktuk Island (Beaufort Sea, NWT, Canada). We use geoelectrical surveys with floating electrodes to identify the boundary between unfrozen and frozen sediment. Our findings indicate that permafrost thaw depths beneath the seabed can be explained by coastal erosion rates and landscape features before inundation.
Raphaël Larouche, Bastian Raulier, Christian Katlein, Simon Lambert-Girard, Simon Thibault, and Marcel Babin
EGUsphere, https://doi.org/10.31223/X5V955, https://doi.org/10.31223/X5V955, 2025
Short summary
Short summary
We developed a new method to study how light interacts with sea ice using a compact 360-degree camera. By lowering this camera into drilled holes in ice, we captured detailed light patterns inside different ice layers. Our research revealed how light is absorbed and scattered in both Arctic multi-year ice and thinner, seasonal ice in Quebec. These findings improve our understanding of sea ice structure and its role in the climate system, helping representation sea ice in models.
Thomas M. Jordan, Giorgio Dall'Olmo, Gavin Tilstone, Robert J. W. Brewin, Francesco Nencioli, Ruth Airs, Crystal S. Thomas, and Louise Schlüter
Earth Syst. Sci. Data, 17, 493–516, https://doi.org/10.5194/essd-17-493-2025, https://doi.org/10.5194/essd-17-493-2025, 2025
Short summary
Short summary
We present a compilation of water optical properties and phytoplankton pigments from the surface of the Atlantic Ocean collected during nine cruises between 2009 and 2019. We derive continuous Chlorophyll a concentrations (a biomass proxy) from water absorption. We then illustrate geographical variations and relationships for water optical properties, Chlorophyll a, and other pigments. The dataset will be useful to researchers in ocean optics, remote sensing, ecology, and biogeochemistry.
Bennet Juhls, Anne Morgenstern, Jens Hölemann, Antje Eulenburg, Birgit Heim, Frederieke Miesner, Hendrik Grotheer, Gesine Mollenhauer, Hanno Meyer, Ephraim Erkens, Felica Yara Gehde, Sofia Antonova, Sergey Chalov, Maria Tereshina, Oxana Erina, Evgeniya Fingert, Ekaterina Abramova, Tina Sanders, Liudmila Lebedeva, Nikolai Torgovkin, Georgii Maksimov, Vasily Povazhnyi, Rafael Gonçalves-Araujo, Urban Wünsch, Antonina Chetverova, Sophie Opfergelt, and Pier Paul Overduin
Earth Syst. Sci. Data, 17, 1–28, https://doi.org/10.5194/essd-17-1-2025, https://doi.org/10.5194/essd-17-1-2025, 2025
Short summary
Short summary
The Siberian Arctic is warming fast: permafrost is thawing, river chemistry is changing, and coastal ecosystems are affected. We aimed to understand changes in the Lena River, a major Arctic river flowing to the Arctic Ocean, by collecting 4.5 years of detailed water data, including temperature and carbon and nutrient contents. This dataset records current conditions and helps us to detect future changes. Explore it at https://doi.org/10.1594/PANGAEA.913197 and https://lena-monitoring.awi.de/.
Lucas R. Diaz, Clement J. F. Delcourt, Moritz Langer, Michael M. Loranty, Brendan M. Rogers, Rebecca C. Scholten, Tatiana A. Shestakova, Anna C. Talucci, Jorien E. Vonk, Sonam Wangchuk, and Sander Veraverbeke
Earth Syst. Dynam., 15, 1459–1482, https://doi.org/10.5194/esd-15-1459-2024, https://doi.org/10.5194/esd-15-1459-2024, 2024
Short summary
Short summary
Our study in eastern Siberia investigated how fires affect permafrost thaw depth in larch forests. We found that fire induces deeper thaw, yet this process was mediated by topography and vegetation. By combining field and satellite data, we estimated summer thaw depth across an entire fire scar. This research provides insights into post-fire permafrost dynamics and the use of satellite data for mapping fire-induced permafrost thaw.
Nina Nesterova, Marina Leibman, Alexander Kizyakov, Hugues Lantuit, Ilya Tarasevich, Ingmar Nitze, Alexandra Veremeeva, and Guido Grosse
The Cryosphere, 18, 4787–4810, https://doi.org/10.5194/tc-18-4787-2024, https://doi.org/10.5194/tc-18-4787-2024, 2024
Short summary
Short summary
Retrogressive thaw slumps (RTSs) are widespread in the Arctic permafrost landforms. RTSs present a big interest for researchers because of their expansion due to climate change. There are currently different scientific schools and terminology used in the literature on this topic. We have critically reviewed existing concepts and terminology and provided clarifications to present a useful base for experts in the field and ease the introduction to the topic for scientists who are new to it.
Aude Flamand, Jean-François Lapierre, and Gwénaëlle Chaillou
EGUsphere, https://doi.org/10.5194/egusphere-2024-2945, https://doi.org/10.5194/egusphere-2024-2945, 2024
Short summary
Short summary
In the context of climate change, increasing rates of coastal erosion and thawing of permafrost increase the fluxes of solutes to the Arctic Ocean. However, the fate of this newly mobilized material is still unclear and may alter ocean chemistry. We have explored the lateral inputs of carbon from coastal permafrost bluffs to the ocean via beaches in Kugmallit Bay. Our findings highlight that beaches may act as a permanent or transient terrestrial carbon sink, limiting its lateral export.
Tim Trent, Marc Schröder, Shu-Peng Ho, Steffen Beirle, Ralf Bennartz, Eva Borbas, Christian Borger, Helene Brogniez, Xavier Calbet, Elisa Castelli, Gilbert P. Compo, Wesley Ebisuzaki, Ulrike Falk, Frank Fell, John Forsythe, Hans Hersbach, Misako Kachi, Shinya Kobayashi, Robert E. Kursinski, Diego Loyola, Zhengzao Luo, Johannes K. Nielsen, Enzo Papandrea, Laurence Picon, Rene Preusker, Anthony Reale, Lei Shi, Laura Slivinski, Joao Teixeira, Tom Vonder Haar, and Thomas Wagner
Atmos. Chem. Phys., 24, 9667–9695, https://doi.org/10.5194/acp-24-9667-2024, https://doi.org/10.5194/acp-24-9667-2024, 2024
Short summary
Short summary
In a warmer future, water vapour will spend more time in the atmosphere, changing global rainfall patterns. In this study, we analysed the performance of 28 water vapour records between 1988 and 2014. We find sensitivity to surface warming generally outside expected ranges, attributed to breakpoints in individual record trends and differing representations of climate variability. The implication is that longer records are required for high confidence in assessing climate trends.
Mathilde Dugenne, Marco Corrales-Ugalde, Jessica Y. Luo, Rainer Kiko, Todd D. O'Brien, Jean-Olivier Irisson, Fabien Lombard, Lars Stemmann, Charles Stock, Clarissa R. Anderson, Marcel Babin, Nagib Bhairy, Sophie Bonnet, Francois Carlotti, Astrid Cornils, E. Taylor Crockford, Patrick Daniel, Corinne Desnos, Laetitia Drago, Amanda Elineau, Alexis Fischer, Nina Grandrémy, Pierre-Luc Grondin, Lionel Guidi, Cecile Guieu, Helena Hauss, Kendra Hayashi, Jenny A. Huggett, Laetitia Jalabert, Lee Karp-Boss, Kasia M. Kenitz, Raphael M. Kudela, Magali Lescot, Claudie Marec, Andrew McDonnell, Zoe Mériguet, Barbara Niehoff, Margaux Noyon, Thelma Panaïotis, Emily Peacock, Marc Picheral, Emilie Riquier, Collin Roesler, Jean-Baptiste Romagnan, Heidi M. Sosik, Gretchen Spencer, Jan Taucher, Chloé Tilliette, and Marion Vilain
Earth Syst. Sci. Data, 16, 2971–2999, https://doi.org/10.5194/essd-16-2971-2024, https://doi.org/10.5194/essd-16-2971-2024, 2024
Short summary
Short summary
Plankton and particles influence carbon cycling and energy flow in marine ecosystems. We used three types of novel plankton imaging systems to obtain size measurements from a range of plankton and particle sizes and across all major oceans. Data were compiled and cross-calibrated from many thousands of images, showing seasonal and spatial changes in particle size structure in different ocean basins. These datasets form the first release of the Pelagic Size Structure database (PSSdb).
Frederieke Miesner, William Lambert Cable, Pier Paul Overduin, and Julia Boike
The Cryosphere, 18, 2603–2611, https://doi.org/10.5194/tc-18-2603-2024, https://doi.org/10.5194/tc-18-2603-2024, 2024
Short summary
Short summary
The temperature in the sediment below Arctic lakes determines the stability of the permafrost and microbial activity. However, measurements are scarce because of the remoteness. We present a robust and portable device to fill this gap. Test campaigns have demonstrated its utility in a range of environments during winter and summer. The measured temperatures show a great variability within and across locations. The data can be used to validate models and estimate potential emissions.
Sandra Raab, Karel Castro-Morales, Anke Hildebrandt, Martin Heimann, Jorien Elisabeth Vonk, Nikita Zimov, and Mathias Goeckede
Biogeosciences, 21, 2571–2597, https://doi.org/10.5194/bg-21-2571-2024, https://doi.org/10.5194/bg-21-2571-2024, 2024
Short summary
Short summary
Water status is an important control factor on sustainability of Arctic permafrost soils, including production and transport of carbon. We compared a drained permafrost ecosystem with a natural control area, investigating water levels, thaw depths, and lateral water flows. We found that shifts in water levels following drainage affected soil water availability and that lateral transport patterns were of major relevance. Understanding these shifts is crucial for future carbon budget studies.
Tanguy Soulié, Francesca Vidussi, Justine Courboulès, Marie Heydon, Sébastien Mas, Florian Voron, Carolina Cantoni, Fabien Joux, and Behzad Mostajir
Biogeosciences, 21, 1887–1902, https://doi.org/10.5194/bg-21-1887-2024, https://doi.org/10.5194/bg-21-1887-2024, 2024
Short summary
Short summary
Due to climate change, it is projected that extreme rainfall events, which bring terrestrial matter into coastal seas, will occur more frequently in the Mediterranean region. To test the effects of runoffs of terrestrial matter on plankton communities from Mediterranean coastal waters, an in situ mesocosm experiment was conducted. The simulated runoff affected key processes mediated by plankton, such as primary production and respiration, suggesting major consequences of such events.
Kirsi H. Keskitalo, Lisa Bröder, Tommaso Tesi, Paul J. Mann, Dirk J. Jong, Sergio Bulte Garcia, Anna Davydova, Sergei Davydov, Nikita Zimov, Negar Haghipour, Timothy I. Eglinton, and Jorien E. Vonk
Biogeosciences, 21, 357–379, https://doi.org/10.5194/bg-21-357-2024, https://doi.org/10.5194/bg-21-357-2024, 2024
Short summary
Short summary
Permafrost thaw releases organic carbon into waterways. Decomposition of this carbon pool emits greenhouse gases into the atmosphere, enhancing climate warming. We show that Arctic river carbon and water chemistry are different between the spring ice breakup and summer and that primary production is initiated in small Arctic rivers right after ice breakup, in contrast to in large rivers. This may have implications for fluvial carbon dynamics and greenhouse gas uptake and emission balance.
Tahiana Ratsimbazafy, Thibaud Dezutter, Amélie Desmarais, Daniel Amirault, Pascal Guillot, and Simon Morisset
Earth Syst. Sci. Data, 16, 471–499, https://doi.org/10.5194/essd-16-471-2024, https://doi.org/10.5194/essd-16-471-2024, 2024
Short summary
Short summary
The Canadian Coast Guard Ship has collected oceanographic data across the Canadian Arctic annually since 2003. Such activity aims to support Canadian and international researchers. The ship has several instruments with cutting-edge technology available for research each year during the summer. The data presented here include measurements of physical, chemical and biological variables during the year 2021. Datasets collected from each expedition are available free of charge for the public.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Revised manuscript not accepted
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Sarah Paradis, Kai Nakajima, Tessa S. Van der Voort, Hannah Gies, Aline Wildberger, Thomas M. Blattmann, Lisa Bröder, and Timothy I. Eglinton
Earth Syst. Sci. Data, 15, 4105–4125, https://doi.org/10.5194/essd-15-4105-2023, https://doi.org/10.5194/essd-15-4105-2023, 2023
Short summary
Short summary
MOSAIC is a database of global organic carbon in marine sediments. This new version holds more than 21 000 sediment cores and includes new variables to interpret organic carbon distribution, such as sedimentological parameters and biomarker signatures. MOSAIC also stores data from specific sediment and molecular fractions to better understand organic carbon degradation and ageing. This database is continuously expanding, and version control will allow reproducible research outputs.
Özgür Gürses, Laurent Oziel, Onur Karakuş, Dmitry Sidorenko, Christoph Völker, Ying Ye, Moritz Zeising, Martin Butzin, and Judith Hauck
Geosci. Model Dev., 16, 4883–4936, https://doi.org/10.5194/gmd-16-4883-2023, https://doi.org/10.5194/gmd-16-4883-2023, 2023
Short summary
Short summary
This paper assesses the biogeochemical model REcoM3 coupled to the ocean–sea ice model FESOM2.1. The model can be used to simulate the carbon uptake or release of the ocean on timescales of several hundred years. A detailed analysis of the nutrients, ocean productivity, and ecosystem is followed by the carbon cycle. The main conclusion is that the model performs well when simulating the observed mean biogeochemical state and variability and is comparable to other ocean–biogeochemical models.
Nele Lehmann, Hugues Lantuit, Michael Ernst Böttcher, Jens Hartmann, Antje Eulenburg, and Helmuth Thomas
Biogeosciences, 20, 3459–3479, https://doi.org/10.5194/bg-20-3459-2023, https://doi.org/10.5194/bg-20-3459-2023, 2023
Short summary
Short summary
Riverine alkalinity in the silicate-dominated headwater catchment at subarctic Iskorasfjellet, northern Norway, was almost entirely derived from weathering of minor carbonate occurrences in the riparian zone. The uphill catchment appeared limited by insufficient contact time of weathering agents and weatherable material. Further, alkalinity increased with decreasing permafrost extent. Thus, with climate change, alkalinity generation is expected to increase in this permafrost-degrading landscape.
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
Philippe Massicotte, Marcel Babin, Frank Fell, Vincent Fournier-Sicre, and David Doxaran
Earth Syst. Sci. Data, 15, 3529–3545, https://doi.org/10.5194/essd-15-3529-2023, https://doi.org/10.5194/essd-15-3529-2023, 2023
Short summary
Short summary
The COASTlOOC oceanographic expeditions in 1997 and 1998 studied the relationship between seawater properties and biology and chemistry across the European coasts. The team collected data from 379 stations using ships and helicopters to support the development of ocean color remote-sensing algorithms. This unique and consistent dataset is still used today by researchers.
Sebastian Westermann, Thomas Ingeman-Nielsen, Johanna Scheer, Kristoffer Aalstad, Juditha Aga, Nitin Chaudhary, Bernd Etzelmüller, Simon Filhol, Andreas Kääb, Cas Renette, Louise Steffensen Schmidt, Thomas Vikhamar Schuler, Robin B. Zweigel, Léo Martin, Sarah Morard, Matan Ben-Asher, Michael Angelopoulos, Julia Boike, Brian Groenke, Frederieke Miesner, Jan Nitzbon, Paul Overduin, Simone M. Stuenzi, and Moritz Langer
Geosci. Model Dev., 16, 2607–2647, https://doi.org/10.5194/gmd-16-2607-2023, https://doi.org/10.5194/gmd-16-2607-2023, 2023
Short summary
Short summary
The CryoGrid community model is a new tool for simulating ground temperatures and the water and ice balance in cold regions. It is a modular design, which makes it possible to test different schemes to simulate, for example, permafrost ground in an efficient way. The model contains tools to simulate frozen and unfrozen ground, snow, glaciers, and other massive ice bodies, as well as water bodies.
Ngai-Ham Chan, Moritz Langer, Bennet Juhls, Tabea Rettelbach, Paul Overduin, Kimberly Huppert, and Jean Braun
Earth Surf. Dynam., 11, 259–285, https://doi.org/10.5194/esurf-11-259-2023, https://doi.org/10.5194/esurf-11-259-2023, 2023
Short summary
Short summary
Arctic river deltas influence how nutrients and soil organic carbon, carried by sediments from the Arctic landscape, are retained or released into the Arctic Ocean. Under climate change, the deltas themselves and their ecosystems are becoming more vulnerable. We build upon previous models to reproduce for the first time an important feature ubiquitous to Arctic deltas and simulate its future under climate warming. This can impact the future of Arctic deltas and the carbon release they moderate.
Olga Ogneva, Gesine Mollenhauer, Bennet Juhls, Tina Sanders, Juri Palmtag, Matthias Fuchs, Hendrik Grotheer, Paul J. Mann, and Jens Strauss
Biogeosciences, 20, 1423–1441, https://doi.org/10.5194/bg-20-1423-2023, https://doi.org/10.5194/bg-20-1423-2023, 2023
Short summary
Short summary
Arctic warming accelerates permafrost thaw and release of terrestrial organic matter (OM) via rivers to the Arctic Ocean. We compared particulate organic carbon (POC), total suspended matter, and C isotopes (δ13C and Δ14C of POC) in the Lena delta and Lena River along a ~1600 km transect. We show that the Lena delta, as an interface between the Lena River and the Arctic Ocean, plays a crucial role in determining the qualitative and quantitative composition of OM discharged into the Arctic Ocean.
Mathilde Jutras, Alfonso Mucci, Gwenaëlle Chaillou, William A. Nesbitt, and Douglas W. R. Wallace
Biogeosciences, 20, 839–849, https://doi.org/10.5194/bg-20-839-2023, https://doi.org/10.5194/bg-20-839-2023, 2023
Short summary
Short summary
The deep waters of the lower St Lawrence Estuary and gulf have, in the last decades, experienced a strong decline in their oxygen concentration. Below 65 µmol L-1, the waters are said to be hypoxic, with dire consequences for marine life. We show that the extent of the hypoxic zone shows a seven-fold increase in the last 20 years, reaching 9400 km2 in 2021. After a stable period at ~ 65 µmol L⁻¹ from 1984 to 2019, the oxygen level also suddenly decreased to ~ 35 µmol L-1 in 2020.
Niek Jesse Speetjens, Gustaf Hugelius, Thomas Gumbricht, Hugues Lantuit, Wouter R. Berghuijs, Philip A. Pika, Amanda Poste, and Jorien E. Vonk
Earth Syst. Sci. Data, 15, 541–554, https://doi.org/10.5194/essd-15-541-2023, https://doi.org/10.5194/essd-15-541-2023, 2023
Short summary
Short summary
The Arctic is rapidly changing. Outside the Arctic, large databases changed how researchers look at river systems and land-to-ocean processes. We present the first integrated pan-ARctic CAtchments summary DatabasE (ARCADE) (> 40 000 river catchments draining into the Arctic Ocean). It incorporates information about the drainage area with 103 geospatial, environmental, climatic, and physiographic properties and covers small watersheds , which are especially subject to change, at a high resolution
Dirk Jong, Lisa Bröder, Tommaso Tesi, Kirsi H. Keskitalo, Nikita Zimov, Anna Davydova, Philip Pika, Negar Haghipour, Timothy I. Eglinton, and Jorien E. Vonk
Biogeosciences, 20, 271–294, https://doi.org/10.5194/bg-20-271-2023, https://doi.org/10.5194/bg-20-271-2023, 2023
Short summary
Short summary
With this study, we want to highlight the importance of studying both land and ocean together, and water and sediment together, as these systems function as a continuum, and determine how organic carbon derived from permafrost is broken down and its effect on global warming. Although on the one hand it appears that organic carbon is removed from sediments along the pathway of transport from river to ocean, it also appears to remain relatively ‘fresh’, despite this removal and its very old age.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Thomas Jackson, Andrei Chuprin, Malcolm Taberner, Ruth Airs, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Yngve Borsheim, Astrid Bracher, Vittorio Brando, Robert J. W. Brewin, Elisabetta Canuti, Francisco P. Chavez, Andrés Cianca, Hervé Claustre, Lesley Clementson, Richard Crout, Afonso Ferreira, Scott Freeman, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Ralf Goericke, Richard Gould, Nathalie Guillocheau, Stanford B. Hooker, Chuamin Hu, Mati Kahru, Milton Kampel, Holger Klein, Susanne Kratzer, Raphael Kudela, Jesus Ledesma, Steven Lohrenz, Hubert Loisel, Antonio Mannino, Victor Martinez-Vicente, Patricia Matrai, David McKee, Brian G. Mitchell, Tiffany Moisan, Enrique Montes, Frank Muller-Karger, Aimee Neeley, Michael Novak, Leonie O'Dowd, Michael Ondrusek, Trevor Platt, Alex J. Poulton, Michel Repecaud, Rüdiger Röttgers, Thomas Schroeder, Timothy Smyth, Denise Smythe-Wright, Heidi M. Sosik, Crystal Thomas, Rob Thomas, Gavin Tilstone, Andreia Tracana, Michael Twardowski, Vincenzo Vellucci, Kenneth Voss, Jeremy Werdell, Marcel Wernand, Bozena Wojtasiewicz, Simon Wright, and Giuseppe Zibordi
Earth Syst. Sci. Data, 14, 5737–5770, https://doi.org/10.5194/essd-14-5737-2022, https://doi.org/10.5194/essd-14-5737-2022, 2022
Short summary
Short summary
A compiled set of in situ data is vital to evaluate the quality of ocean-colour satellite data records. Here we describe the global compilation of bio-optical in situ data (spanning from 1997 to 2021) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Héloïse Lavigne, Ana Dogliotti, David Doxaran, Fang Shen, Alexandre Castagna, Matthew Beck, Quinten Vanhellemont, Xuerong Sun, Juan Ignacio Gossn, Pannimpullath Remanan Renosh, Koen Sabbe, Dieter Vansteenwegen, and Kevin Ruddick
Earth Syst. Sci. Data, 14, 4935–4947, https://doi.org/10.5194/essd-14-4935-2022, https://doi.org/10.5194/essd-14-4935-2022, 2022
Short summary
Short summary
Because of the large diversity of case 2 waters and the complexity of light transfer, retrieving main biogeochemical parameters in these waters is still challenging. By providing optical and biogeochemical parameters for 180 sampling stations with turbidity and chlorophyll-a concentration ranging from low to extreme values, the HYPERMAQ dataset will contribute to a better description of marine optics in optically complex water bodies and can help the scientific community to develop algorithms.
Flavienne Bruyant, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Lise Artigue, Lucas Barbedo de Freitas, Guislain Bécu, Simon Bélanger, Pascaline Bourgain, Annick Bricaud, Etienne Brouard, Camille Brunet, Tonya Burgers, Danielle Caleb, Katrine Chalut, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Marine Cusa, Fanny Cusset, Laeticia Dadaglio, Marty Davelaar, Gabrièle Deslongchamps, Céline Dimier, Julie Dinasquet, Dany Dumont, Brent Else, Igor Eulaers, Joannie Ferland, Gabrielle Filteau, Marie-Hélène Forget, Jérome Fort, Louis Fortier, Martí Galí, Morgane Gallinari, Svend-Erik Garbus, Nicole Garcia, Catherine Gérikas Ribeiro, Colline Gombault, Priscilla Gourvil, Clémence Goyens, Cindy Grant, Pierre-Luc Grondin, Pascal Guillot, Sandrine Hillion, Rachel Hussherr, Fabien Joux, Hannah Joy-Warren, Gabriel Joyal, David Kieber, Augustin Lafond, José Lagunas, Patrick Lajeunesse, Catherine Lalande, Jade Larivière, Florence Le Gall, Karine Leblanc, Mathieu Leblanc, Justine Legras, Keith Lévesque, Kate-M. Lewis, Edouard Leymarie, Aude Leynaert, Thomas Linkowski, Martine Lizotte, Adriana Lopes dos Santos, Claudie Marec, Dominique Marie, Guillaume Massé, Philippe Massicotte, Atsushi Matsuoka, Lisa A. Miller, Sharif Mirshak, Nathalie Morata, Brivaela Moriceau, Philippe-Israël Morin, Simon Morisset, Anders Mosbech, Alfonso Mucci, Gabrielle Nadaï, Christian Nozais, Ingrid Obernosterer, Thimoté Paire, Christos Panagiotopoulos, Marie Parenteau, Noémie Pelletier, Marc Picheral, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Llúcia Ribot Lacosta, Jean-François Rontani, Blanche Saint-Béat, Julie Sansoulet, Noé Sardet, Catherine Schmechtig, Antoine Sciandra, Richard Sempéré, Caroline Sévigny, Jordan Toullec, Margot Tragin, Jean-Éric Tremblay, Annie-Pier Trottier, Daniel Vaulot, Anda Vladoiu, Lei Xue, Gustavo Yunda-Guarin, and Marcel Babin
Earth Syst. Sci. Data, 14, 4607–4642, https://doi.org/10.5194/essd-14-4607-2022, https://doi.org/10.5194/essd-14-4607-2022, 2022
Short summary
Short summary
This paper presents a dataset acquired during a research cruise held in Baffin Bay in 2016. We observed that the disappearance of sea ice in the Arctic Ocean increases both the length and spatial extent of the phytoplankton growth season. In the future, this will impact the food webs on which the local populations depend for their food supply and fisheries. This dataset will provide insight into quantifying these impacts and help the decision-making process for policymakers.
Mauricio Arboleda-Zapata, Michael Angelopoulos, Pier Paul Overduin, Guido Grosse, Benjamin M. Jones, and Jens Tronicke
The Cryosphere, 16, 4423–4445, https://doi.org/10.5194/tc-16-4423-2022, https://doi.org/10.5194/tc-16-4423-2022, 2022
Short summary
Short summary
We demonstrate how we can reliably estimate the thawed–frozen permafrost interface with its associated uncertainties in subsea permafrost environments using 2D electrical resistivity tomography (ERT) data. In addition, we show how further analyses considering 1D inversion and sensitivity assessments can help quantify and better understand 2D ERT inversion results. Our results illustrate the capabilities of the ERT method to get insights into the development of the subsea permafrost.
Rainer Kiko, Marc Picheral, David Antoine, Marcel Babin, Léo Berline, Tristan Biard, Emmanuel Boss, Peter Brandt, Francois Carlotti, Svenja Christiansen, Laurent Coppola, Leandro de la Cruz, Emilie Diamond-Riquier, Xavier Durrieu de Madron, Amanda Elineau, Gabriel Gorsky, Lionel Guidi, Helena Hauss, Jean-Olivier Irisson, Lee Karp-Boss, Johannes Karstensen, Dong-gyun Kim, Rachel M. Lekanoff, Fabien Lombard, Rubens M. Lopes, Claudie Marec, Andrew M. P. McDonnell, Daniela Niemeyer, Margaux Noyon, Stephanie H. O'Daly, Mark D. Ohman, Jessica L. Pretty, Andreas Rogge, Sarah Searson, Masashi Shibata, Yuji Tanaka, Toste Tanhua, Jan Taucher, Emilia Trudnowska, Jessica S. Turner, Anya Waite, and Lars Stemmann
Earth Syst. Sci. Data, 14, 4315–4337, https://doi.org/10.5194/essd-14-4315-2022, https://doi.org/10.5194/essd-14-4315-2022, 2022
Short summary
Short summary
The term
marine particlescomprises detrital aggregates; fecal pellets; bacterioplankton, phytoplankton and zooplankton; and even fish. Here, we present a global dataset that contains 8805 vertical particle size distribution profiles obtained with Underwater Vision Profiler 5 (UVP5) camera systems. These data are valuable to the scientific community, as they can be used to constrain important biogeochemical processes in the ocean, such as the flux of carbon to the deep sea.
Gauthier Vérin, Florent Domine, Marcel Babin, Ghislain Picard, and Laurent Arnaud
The Cryosphere, 16, 3431–3449, https://doi.org/10.5194/tc-16-3431-2022, https://doi.org/10.5194/tc-16-3431-2022, 2022
Short summary
Short summary
Snow physical properties on Arctic sea ice are monitored during the melt season. As snow grains grow, and the snowpack thickness is reduced, the surface albedo decreases. The extra absorbed energy accelerates melting. Radiative transfer modeling shows that more radiation is then transmitted to the snow–sea-ice interface. A sharp increase in transmitted radiation takes place when the snowpack thins significantly, and this coincides with the initiation of the phytoplankton bloom in the seawater.
Niek Jesse Speetjens, George Tanski, Victoria Martin, Julia Wagner, Andreas Richter, Gustaf Hugelius, Chris Boucher, Rachele Lodi, Christian Knoblauch, Boris P. Koch, Urban Wünsch, Hugues Lantuit, and Jorien E. Vonk
Biogeosciences, 19, 3073–3097, https://doi.org/10.5194/bg-19-3073-2022, https://doi.org/10.5194/bg-19-3073-2022, 2022
Short summary
Short summary
Climate change and warming in the Arctic exceed global averages. As a result, permanently frozen soils (permafrost) which store vast quantities of carbon in the form of dead plant material (organic matter) are thawing. Our study shows that as permafrost landscapes degrade, high concentrations of organic matter are released. Partly, this organic matter is degraded rapidly upon release, while another significant fraction enters stream networks and enters the Arctic Ocean.
Malgorzata Golub, Wim Thiery, Rafael Marcé, Don Pierson, Inne Vanderkelen, Daniel Mercado-Bettin, R. Iestyn Woolway, Luke Grant, Eleanor Jennings, Benjamin M. Kraemer, Jacob Schewe, Fang Zhao, Katja Frieler, Matthias Mengel, Vasiliy Y. Bogomolov, Damien Bouffard, Marianne Côté, Raoul-Marie Couture, Andrey V. Debolskiy, Bram Droppers, Gideon Gal, Mingyang Guo, Annette B. G. Janssen, Georgiy Kirillin, Robert Ladwig, Madeline Magee, Tadhg Moore, Marjorie Perroud, Sebastiano Piccolroaz, Love Raaman Vinnaa, Martin Schmid, Tom Shatwell, Victor M. Stepanenko, Zeli Tan, Bronwyn Woodward, Huaxia Yao, Rita Adrian, Mathew Allan, Orlane Anneville, Lauri Arvola, Karen Atkins, Leon Boegman, Cayelan Carey, Kyle Christianson, Elvira de Eyto, Curtis DeGasperi, Maria Grechushnikova, Josef Hejzlar, Klaus Joehnk, Ian D. Jones, Alo Laas, Eleanor B. Mackay, Ivan Mammarella, Hampus Markensten, Chris McBride, Deniz Özkundakci, Miguel Potes, Karsten Rinke, Dale Robertson, James A. Rusak, Rui Salgado, Leon van der Linden, Piet Verburg, Danielle Wain, Nicole K. Ward, Sabine Wollrab, and Galina Zdorovennova
Geosci. Model Dev., 15, 4597–4623, https://doi.org/10.5194/gmd-15-4597-2022, https://doi.org/10.5194/gmd-15-4597-2022, 2022
Short summary
Short summary
Lakes and reservoirs are warming across the globe. To better understand how lakes are changing and to project their future behavior amidst various sources of uncertainty, simulations with a range of lake models are required. This in turn requires international coordination across different lake modelling teams worldwide. Here we present a protocol for and results from coordinated simulations of climate change impacts on lakes worldwide.
Joëlle Voglimacci-Stephanopoli, Anna Wendleder, Hugues Lantuit, Alexandre Langlois, Samuel Stettner, Andreas Schmitt, Jean-Pierre Dedieu, Achim Roth, and Alain Royer
The Cryosphere, 16, 2163–2181, https://doi.org/10.5194/tc-16-2163-2022, https://doi.org/10.5194/tc-16-2163-2022, 2022
Short summary
Short summary
Changes in the state of the snowpack in the context of observed global warming must be considered to improve our understanding of the processes within the cryosphere. This study aims to characterize an arctic snowpack using the TerraSAR-X satellite. Using a high-spatial-resolution vegetation classification, we were able to quantify the variability in snow depth, as well as the topographic soil wetness index, which provided a better understanding of the electromagnetic wave–ground interaction.
Matthias Fuchs, Juri Palmtag, Bennet Juhls, Pier Paul Overduin, Guido Grosse, Ahmed Abdelwahab, Michael Bedington, Tina Sanders, Olga Ogneva, Irina V. Fedorova, Nikita S. Zimov, Paul J. Mann, and Jens Strauss
Earth Syst. Sci. Data, 14, 2279–2301, https://doi.org/10.5194/essd-14-2279-2022, https://doi.org/10.5194/essd-14-2279-2022, 2022
Short summary
Short summary
We created digital, high-resolution bathymetry data sets for the Lena Delta and Kolyma Gulf regions in northeastern Siberia. Based on nautical charts, we digitized depth points and isobath lines, which serve as an input for a 50 m bathymetry model. The benefit of this data set is the accurate mapping of near-shore areas as well as the offshore continuation of the main deep river channels. This will improve the estimation of river outflow and the nutrient flux output into the coastal zone.
Charlotte Haugk, Loeka L. Jongejans, Kai Mangelsdorf, Matthias Fuchs, Olga Ogneva, Juri Palmtag, Gesine Mollenhauer, Paul J. Mann, P. Paul Overduin, Guido Grosse, Tina Sanders, Robyn E. Tuerena, Lutz Schirrmeister, Sebastian Wetterich, Alexander Kizyakov, Cornelia Karger, and Jens Strauss
Biogeosciences, 19, 2079–2094, https://doi.org/10.5194/bg-19-2079-2022, https://doi.org/10.5194/bg-19-2079-2022, 2022
Short summary
Short summary
Buried animal and plant remains (carbon) from the last ice age were freeze-locked in permafrost. At an extremely fast eroding permafrost cliff in the Lena Delta (Siberia), we found this formerly frozen carbon well preserved. Our results show that ongoing degradation releases substantial amounts of this carbon, making it available for future carbon emissions. This mobilisation at the studied cliff and also similarly eroding sites bear the potential to affect rivers and oceans negatively.
Sarah Shakil, Suzanne E. Tank, Jorien E. Vonk, and Scott Zolkos
Biogeosciences, 19, 1871–1890, https://doi.org/10.5194/bg-19-1871-2022, https://doi.org/10.5194/bg-19-1871-2022, 2022
Short summary
Short summary
Permafrost thaw-driven landslides in the western Arctic are increasing organic carbon delivered to headwaters of drainage networks in the western Canadian Arctic by orders of magnitude. Through a series of laboratory experiments, we show that less than 10 % of this organic carbon is likely to be mineralized to greenhouse gases during transport in these networks. Rather most of the organic carbon is likely destined for burial and sequestration for centuries to millennia.
Stiig Wilkenskjeld, Frederieke Miesner, Paul P. Overduin, Matteo Puglini, and Victor Brovkin
The Cryosphere, 16, 1057–1069, https://doi.org/10.5194/tc-16-1057-2022, https://doi.org/10.5194/tc-16-1057-2022, 2022
Short summary
Short summary
Thawing permafrost releases carbon to the atmosphere, enhancing global warming. Part of the permafrost soils have been flooded by rising sea levels since the last ice age, becoming subsea permafrost (SSPF). The SSPF is less studied than the part on land. In this study we use a global model to obtain rates of thawing of SSPF under different future climate scenarios until the year 3000. After the year 2100 the scenarios strongly diverge, closely connected to the eventual disappearance of sea ice.
Marie Barbieux, Julia Uitz, Alexandre Mignot, Collin Roesler, Hervé Claustre, Bernard Gentili, Vincent Taillandier, Fabrizio D'Ortenzio, Hubert Loisel, Antoine Poteau, Edouard Leymarie, Christophe Penkerc'h, Catherine Schmechtig, and Annick Bricaud
Biogeosciences, 19, 1165–1194, https://doi.org/10.5194/bg-19-1165-2022, https://doi.org/10.5194/bg-19-1165-2022, 2022
Short summary
Short summary
This study assesses marine biological production in two Mediterranean systems representative of vast desert-like (oligotrophic) areas encountered in the global ocean. We use a novel approach based on non-intrusive high-frequency in situ measurements by two profiling robots, the BioGeoChemical-Argo (BGC-Argo) floats. Our results indicate substantial yet variable production rates and contribution to the whole water column of the subsurface layer, typically considered steady and non-productive.
Michael Fritz, Sebastian Wetterich, Joel McAlister, and Hanno Meyer
Earth Syst. Sci. Data, 14, 57–63, https://doi.org/10.5194/essd-14-57-2022, https://doi.org/10.5194/essd-14-57-2022, 2022
Short summary
Short summary
From 2015 to 2018 we collected rain and snow samples in Inuvik, Canada. We measured the stable water isotope composition of oxygen (δ18O) and hydrogen (δ2H) with a mass spectrometer. This data will be of interest for other scientists who work in the Arctic. They will be able to compare our modern data with their own isotope data in old ice, for example in glaciers, and in permafrost. This will help to correctly interpret the climate signals of the environmental history of the Earth.
Emmanuel Devred, Andrea Hilborn, and Cornelia Elizabeth den Heyer
Biogeosciences, 18, 6115–6132, https://doi.org/10.5194/bg-18-6115-2021, https://doi.org/10.5194/bg-18-6115-2021, 2021
Short summary
Short summary
A theoretical model of grey seal seasonal abundance on Sable Island (SI) coupled with chlorophyll-a concentration [chl-a] measured by satellite revealed the impact of seal nitrogen fertilization on the surrounding waters of SI, Canada. The increase in seals from about 100 000 in 2003 to about 360 000 in 2018 during the breeding season is consistent with an increase in [chl-a] leeward of SI. The increase in seal abundance explains 8 % of the [chl-a] increase.
Cynthia Evelyn Bluteau, Peter S. Galbraith, Daniel Bourgault, Vincent Villeneuve, and Jean-Éric Tremblay
Ocean Sci., 17, 1509–1525, https://doi.org/10.5194/os-17-1509-2021, https://doi.org/10.5194/os-17-1509-2021, 2021
Short summary
Short summary
In 2018, the Canadian Coast Guard approved a science team to sample in tandem with its ice-breaking and ship escorting operations. This collaboration provided the first mixing observations during winter that covered the largest spatial extent of the St. Lawrence Estuary and the Gulf of St. Lawrence ever measured in any season. Contrary to previous assumptions, we demonstrate that fluvial nitrate inputs from upstream (i.e., Great Lakes) are the most significant source of nitrate in the estuary.
Christophe Perron, Christian Katlein, Simon Lambert-Girard, Edouard Leymarie, Louis-Philippe Guinard, Pierre Marquet, and Marcel Babin
The Cryosphere, 15, 4483–4500, https://doi.org/10.5194/tc-15-4483-2021, https://doi.org/10.5194/tc-15-4483-2021, 2021
Short summary
Short summary
Characterizing the evolution of inherent optical properties (IOPs) of sea ice in situ is necessary to improve climate and arctic ecosystem models. Here we present the development of an optical probe, based on the spatially resolved diffuse reflectance method, to measure IOPs of a small volume of sea ice (dm3) in situ and non-destructively. For the first time, in situ vertically resolved profiles of the dominant IOP, the reduced scattering coefficient, were obtained for interior sea ice.
Thomas Krumpen, Luisa von Albedyll, Helge F. Goessling, Stefan Hendricks, Bennet Juhls, Gunnar Spreen, Sascha Willmes, H. Jakob Belter, Klaus Dethloff, Christian Haas, Lars Kaleschke, Christian Katlein, Xiangshan Tian-Kunze, Robert Ricker, Philip Rostosky, Janna Rückert, Suman Singha, and Julia Sokolova
The Cryosphere, 15, 3897–3920, https://doi.org/10.5194/tc-15-3897-2021, https://doi.org/10.5194/tc-15-3897-2021, 2021
Short summary
Short summary
We use satellite data records collected along the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) drift to categorize ice conditions that shaped and characterized the floe and surroundings during the expedition. A comparison with previous years is made whenever possible. The aim of this analysis is to provide a basis and reference for subsequent research in the six main research areas of atmosphere, ocean, sea ice, biogeochemistry, remote sensing and ecology.
Lydia Stolpmann, Caroline Coch, Anne Morgenstern, Julia Boike, Michael Fritz, Ulrike Herzschuh, Kathleen Stoof-Leichsenring, Yury Dvornikov, Birgit Heim, Josefine Lenz, Amy Larsen, Katey Walter Anthony, Benjamin Jones, Karen Frey, and Guido Grosse
Biogeosciences, 18, 3917–3936, https://doi.org/10.5194/bg-18-3917-2021, https://doi.org/10.5194/bg-18-3917-2021, 2021
Short summary
Short summary
Our new database summarizes DOC concentrations of 2167 water samples from 1833 lakes in permafrost regions across the Arctic to provide insights into linkages between DOC and environment. We found increasing lake DOC concentration with decreasing permafrost extent and higher DOC concentrations in boreal permafrost sites compared to tundra sites. Our study shows that DOC concentration depends on the environmental properties of a lake, especially permafrost extent, ecoregion, and vegetation.
Jens A. Hölemann, Bennet Juhls, Dorothea Bauch, Markus Janout, Boris P. Koch, and Birgit Heim
Biogeosciences, 18, 3637–3655, https://doi.org/10.5194/bg-18-3637-2021, https://doi.org/10.5194/bg-18-3637-2021, 2021
Short summary
Short summary
The Arctic Ocean receives large amounts of river water rich in terrestrial dissolved organic matter (tDOM), which is an important component of the Arctic carbon cycle. Our analysis shows that mixing of three major freshwater sources is the main factor that regulates the distribution of tDOM concentrations in the Siberian shelf seas. In this context, the formation and melting of the land-fast ice in the Laptev Sea and the peak spring discharge of the Lena River are of particular importance.
Jannik Martens, Evgeny Romankevich, Igor Semiletov, Birgit Wild, Bart van Dongen, Jorien Vonk, Tommaso Tesi, Natalia Shakhova, Oleg V. Dudarev, Denis Kosmach, Alexander Vetrov, Leopold Lobkovsky, Nikolay Belyaev, Robie W. Macdonald, Anna J. Pieńkowski, Timothy I. Eglinton, Negar Haghipour, Salve Dahle, Michael L. Carroll, Emmelie K. L. Åström, Jacqueline M. Grebmeier, Lee W. Cooper, Göran Possnert, and Örjan Gustafsson
Earth Syst. Sci. Data, 13, 2561–2572, https://doi.org/10.5194/essd-13-2561-2021, https://doi.org/10.5194/essd-13-2561-2021, 2021
Short summary
Short summary
The paper describes the establishment, structure and current status of the first Circum-Arctic Sediment CArbon DatabasE (CASCADE), which is a scientific effort to harmonize and curate all published and unpublished data of carbon, nitrogen, carbon isotopes, and terrigenous biomarkers in sediments of the Arctic Ocean in one database. CASCADE will enable a variety of studies of the Arctic carbon cycle and thus contribute to a better understanding of how climate change affects the Arctic.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Ove H. Meisel, Joshua F. Dean, Jorien E. Vonk, Lukas Wacker, Gert-Jan Reichart, and Han Dolman
Biogeosciences, 18, 2241–2258, https://doi.org/10.5194/bg-18-2241-2021, https://doi.org/10.5194/bg-18-2241-2021, 2021
Short summary
Short summary
Arctic permafrost lakes form thaw bulbs of unfrozen soil (taliks) beneath them where carbon degradation and greenhouse gas production are increased. We analyzed the stable carbon isotopes of Alaskan talik sediments and their porewater dissolved organic carbon and found that the top layers of these taliks are likely more actively degraded than the deeper layers. This in turn implies that these top layers are likely also more potent greenhouse gas producers than the underlying deeper layers.
Ines Spangenberg, Pier Paul Overduin, Ellen Damm, Ingeborg Bussmann, Hanno Meyer, Susanne Liebner, Michael Angelopoulos, Boris K. Biskaborn, Mikhail N. Grigoriev, and Guido Grosse
The Cryosphere, 15, 1607–1625, https://doi.org/10.5194/tc-15-1607-2021, https://doi.org/10.5194/tc-15-1607-2021, 2021
Short summary
Short summary
Thermokarst lakes are common on ice-rich permafrost. Many studies have shown that they are sources of methane to the atmosphere. Although they are usually covered by ice, little is known about what happens to methane in winter. We studied how much methane is contained in the ice of a thermokarst lake, a thermokarst lagoon and offshore. Methane concentrations differed strongly, depending on water body type. Microbes can also oxidize methane in ice and lower the concentrations during winter.
Rebecca Rolph, Pier Paul Overduin, Thomas Ravens, Hugues Lantuit, and Moritz Langer
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-28, https://doi.org/10.5194/gmd-2021-28, 2021
Revised manuscript not accepted
Short summary
Short summary
Declining sea ice, larger waves, and increasing air temperatures are contributing to a rapidly eroding Arctic coastline. We simulate water levels using wind speed and direction, which are used with wave height, wave period, and sea surface temperature to drive an erosion model of a partially frozen cliff and beach. This provides a first step to include Arctic erosion in larger-scale earth system models. Simulated cumulative retreat rates agree within the same order of magnitude as observations.
Ingeborg Bussmann, Irina Fedorova, Bennet Juhls, Pier Paul Overduin, and Matthias Winkel
Biogeosciences, 18, 2047–2061, https://doi.org/10.5194/bg-18-2047-2021, https://doi.org/10.5194/bg-18-2047-2021, 2021
Short summary
Short summary
Arctic rivers, lakes, and bays are affected by a warming climate. We measured the amount and consumption of methane in waters from Siberia under ice cover and in open water. In the lake, methane concentrations under ice cover were much higher than in summer, and methane consumption was highest. The ice cover leads to higher methane concentration under ice. In a warmer Arctic, there will be more time with open water when methane is consumed by bacteria, and less methane will escape into the air.
Carolyn E. Jordan, Ryan M. Stauffer, Brian T. Lamb, Michael Novak, Antonio Mannino, Ewan C. Crosbie, Gregory L. Schuster, Richard H. Moore, Charles H. Hudgins, Kenneth L. Thornhill, Edward L. Winstead, Bruce E. Anderson, Robert F. Martin, Michael A. Shook, Luke D. Ziemba, Andreas J. Beyersdorf, Claire E. Robinson, Chelsea A. Corr, and Maria A. Tzortziou
Atmos. Meas. Tech., 14, 715–736, https://doi.org/10.5194/amt-14-715-2021, https://doi.org/10.5194/amt-14-715-2021, 2021
Short summary
Short summary
In situ measurements of ambient atmospheric aerosol hyperspectral (300–700 nm) optical properties (extinction, total absorption, water- and methanol-soluble absorption) were observed around the Korean peninsula. Such in situ observations provide a direct link between ambient aerosol optical properties and their physicochemical properties. The benefit of hyperspectral measurements is evident as simple mathematical functions could not fully capture the observed spectral detail of ambient aerosols.
Sebastian Wetterich, Alexander Kizyakov, Michael Fritz, Juliane Wolter, Gesine Mollenhauer, Hanno Meyer, Matthias Fuchs, Aleksei Aksenov, Heidrun Matthes, Lutz Schirrmeister, and Thomas Opel
The Cryosphere, 14, 4525–4551, https://doi.org/10.5194/tc-14-4525-2020, https://doi.org/10.5194/tc-14-4525-2020, 2020
Short summary
Short summary
In the present study, we analysed geochemical and sedimentological properties of relict permafrost and ground ice exposed at the Sobo-Sise Yedoma cliff in the eastern Lena delta in NE Siberia. We obtained insight into permafrost aggradation and degradation over the last approximately 52 000 years and the climatic and morphodynamic controls on regional-scale permafrost dynamics of the central Laptev Sea coastal region.
Feng Wang, Dominique Arseneault, Étienne Boucher, Shulong Yu, Steeven Ouellet, Gwenaëlle Chaillou, Ann Delwaide, and Lily Wang
Biogeosciences, 17, 4559–4570, https://doi.org/10.5194/bg-17-4559-2020, https://doi.org/10.5194/bg-17-4559-2020, 2020
Short summary
Short summary
Wood stain is challenging the use of the blue intensity technique for dendroclimatic reconstructions. Using stained subfossil trees from eastern Canadian lakes, we compared chemical destaining approaches with the
delta bluemathematical correction of blue intensity data. Although no chemical treatment was completely efficient, the delta blue method is unaffected by the staining problem and thus is promising for climate reconstructions based on lake subfossil material.
Cited articles
AMAP: AMAP Arctic Climate Change Update 2021: Key Trends and Impacts. Arctic Monitoring and Assessment Programme (AMAP), Tromsø, Norway, viii+148 pp., 2021. a
Antoine, D., Morel, A., Leymarie, E., Houyou, A., Gentili, B., Victori, S.,
Buis, J.-P., Buis, N., Meunier, S., Canini, M., Crozel, D., Fougnie, B., and
Henry, P.: Underwater Radiance Distributions Measured with Miniaturized
Multispectral Radiance Cameras, J. Atmos. Ocean.
Tech., 30, 74–95, https://doi.org/10.1175/JTECH-D-11-00215.1, 2013. a, b
Babin, M., Morel, A., Fournier-Sicre, V., Fell, F., and Stramski, D.: Light
Scattering Properties of Marine Particles in Coastal and Open Ocean Waters
Asrelated to the Particle Mass Concentration, Limnol. Oceanogr., 48,
843–859, https://doi.org/10.4319/lo.2003.48.2.0843, 2003. a
Becu, G.: GuislainBecu/Nunataryuk_WP4_CTD: v1.0.0 (v1.0.0), Zenodo [code and data set], https://doi.org/10.5281/zenodo.7595420, 2023. a
Bélanger, S., Carrascal-Leal, C., Jaegler, T., Larouche, P., and
Galbraith, P.: Assessment of Radiometric Data from a Buoy in the St.
Lawrence Estuary, J. Atmos. Ocean. Tech., 34,
877–896, https://doi.org/10.1175/JTECH-D-16-0176.1, 2017. a, b, c
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G.,
Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. G.,
Abramov, A., Allard, M., Boike, J., Cable, W. L., Christiansen, H. H.,
Delaloye, R., Diekmann, B., Drozdov, D., Etzelmüller, B., Grosse, G.,
Guglielmin, M., Ingeman-Nielsen, T., Isaksen, K., Ishikawa, M., Johansson,
M., Johannsson, H., Joo, A., Kaverin, D., Kholodov, A., Konstantinov, P.,
Kröger, T., Lambiel, C., Lanckman, J. P., Luo, D., Malkova, G.,
Meiklejohn, I., Moskalenko, N., Oliva, M., Phillips, M., Ramos, M., Sannel,
A. B. K., Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A., Wu, Q.,
Yoshikawa, K., Zheleznyak, M., and Lantuit, H.: Permafrost Is Warming at a
Global Scale, Na. Commun., 10, 264,
https://doi.org/10.1038/s41467-018-08240-4, 2019. a
Block, B. D., Denfeld, B. A., Stockwell, J. D., Flaim, G., Grossart, H.-P. F.,
Knoll, L. B., Maier, D. B., North, R. L., Rautio, M., Rusak, J. A., Sadro,
S., Weyhenmeyer, G. A., Bramburger, A. J., Branstrator, D. K., Salonen, K.,
and Hampton, S. E.: The Unique Methodological Challenges of Winter Limnology,
Limnol. Oceanogr.-Methods, 17, 42–57, https://doi.org/10.1002/lom3.10295,
2019. a
Bricaud, A., Morel, A., and Prieur, L.: Absorption by Dissolved Organic Matter
of the Sea (Yellow Substance) in the UV and Visible Domains, Limnol. Oceanogr., 26, 43–53, https://doi.org/10.4319/lo.1981.26.1.0043, 1981. a
Bricaud, A., Babin, M., Claustre, H., Ras, J., and Tièche, F.: Light
Absorption Properties and Absorption Budget of Southeast Pacific Waters,
J. Geophys. Res., 115, C08009, https://doi.org/10.1029/2009JC005517,
2010. a
Brown, J., Ferrians Jr., O., Heginbottom, J. A., and Melnikov, E.:
Circum-Arctic Map of Permafrost and Ground Ice Conditions, USGS Numbered
Series, p. 1, https://doi.org/10.7265/skbg-kf16, 1997. a
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A.,
and Holmes, S. P.: DADA2: High-resolution Sample Inference from
Illumina Amplicon Data, Nature Methods, 13, 581–583,
https://doi.org/10.1038/nmeth.3869, 2016. a, b
Camill, P.: Permafrost Thaw Accelerates in Boreal Peatlands during Late-20th
Century Climate Warming, Clim. Change, 68, 135–152,
https://doi.org/10.1007/s10584-005-4785-y, 2005. a
Chaillou, G., Lemay-Borduas, F., Larocque, M., Couturier, M., Biehler, A.,
and Tommi-Morin, G.: Flow and Discharge of Groundwater from a
Snowmelt-Affected Sandy Beach, J. Hydrol., 557, 4–15,
https://doi.org/10.1016/j.jhydrol.2017.12.010, 2018. a
Coble, P. G.: Characterization of Marine and Terrestrial DOM in Seawater
Using Excitation-Emission Matrix Spectroscopy, Marine Chem., 51,
325–346, https://doi.org/10.1016/0304-4203(95)00062-3, 1996. a
Couture, R.-M., Fischer, R., Van Cappellen, P., and Gobeil, C.: Non-Steady
State Diagenesis of Organic and Inorganic Sulfur in Lake Sediments,
Geochim. Cosmochim. Ac., 194, 15–33,
https://doi.org/10.1016/j.gca.2016.08.029, 2016. a
Downes, M. T.: An Automated Determination of Low Reactive Phosphorus
Concentrations in Natural Waters in the Presence of Arsenic, Silicon and
Mercuric Chloride, Water Res., 12, 743–745,
https://doi.org/10.1016/0043-1354(78)90022-2, 1978. a
Doxaran, D., Ehn, J., Bélanger, S., Matsuoka, A., Hooker, S., and Babin, M.: Optical characterisation of suspended particles in the Mackenzie River plume (Canadian Arctic Ocean) and implications for ocean colour remote sensing, Biogeosciences, 9, 3213–3229, https://doi.org/10.5194/bg-9-3213-2012, 2012. a, b
Doxaran, D., Leymarie, E., Nechad, B., Dogliotti, A., Ruddick, K., Gernez, P.,
and Knaeps, E.: Improved Correction Methods for Field Measurements of
Particulate Light Backscattering in Turbid Waters, Optics Express, 24, 3615,
https://doi.org/10.1364/OE.24.003615, 2016. a, b
Flamand, A., Chaillou, G., and Lapierre, J.-F.: Caractérisation et Devenir de
La Matière Organique Dissoute Issue Du Dégel Du Pergélisol Côtier
(Mer de Beaufort, TNO, CANADA), PhD thesis, Université du
Québec à Rimouski, 2023. a
Fritz, M., Vonk, J. E., and Lantuit, H.: Collapsing Arctic Coastlines, Nat.
Clim. Change, 7, 6–7, https://doi.org/10.1038/nclimate3188, 2017. a, b
Gasol, J. M. and Del Giorgio, P. A.: Using Flow Cytometry for Counting Natural
Planktonic Bacteria and Understanding the Structure of Planktonic Bacterial
Communities, Sci. Marina, 64, 197–224,
https://doi.org/10.3989/scimar.2000.64n2197, 2000. a
Gordon, H. R. and Ding, K.: Self-shading of In-water Optical Instruments,
Limnol. Oceanogr., 37, 491–500, https://doi.org/10.4319/lo.1992.37.3.0491,
1992. a, b, c
Grasshoff, K., Kremling, K., and Ehrhardt, M.: Methods of Seawater Analysis,
in: Methods of Seawater Analysis: Third, Completely Revised and Extended
Edition, edited by: Grasshoff, K., Kremling, K., and Ehrhardt, M.,
Wiley, 1–600, https://doi.org/10.1002/9783527613984, 1999. a
Gruber, S.: Derivation and analysis of a high-resolution estimate of global permafrost zonation, The Cryosphere, 6, 221–233, https://doi.org/10.5194/tc-6-221-2012, 2012. a
Holmes, R. M., McClelland, J. W., Peterson, B. J., Tank, S. E., Bulygina, E.,
Eglinton, T. I., Gordeev, V. V., Gurtovaya, T. Y., Raymond, P. A., Repeta,
D. J., Staples, R., Striegl, R. G., Zhulidov, A. V., and Zimov, S. A.:
Seasonal and Annual Fluxes of Nutrients and Organic Matter from Large Rivers
to the Arctic Ocean and Surrounding Seas, Estuar. Coasts, 35, 369–382,
https://doi.org/10.1007/s12237-011-9386-6, 2012. a
Hooker, S. B., Van Heukelem, L., Thomas, C. S., Claustre, H., Ras, J., Barlow,
R., Sessions, H., Schlüter, L., Perl, J., Trees, C., Stuart, V., Head,
E., Clementson, L., Fishwick, J., Llewellyn, C., and Aiken, J.: The Second
SeaWiFS HPLC Analysis Round-Robin Experiment (SeaHARRE-2), NASA
Technical Memorandum, 1–112, 2005. a, b
Hooker, S. B., Lind, R. N., Morrow, J. H., Brown, J. W., Kudela, R. M.,
Houskeeper, H. F., and Suzuki, K.: Advances in Above-and in-Water Radiometry,
Volume 2: Autonomous Atmospheric and Oceanic Observing Systems, Tech. rep., Report number NASA/TP-2018-219033/Vol. 2, Document ID 20190026972, National Technical Information Service, National Aeronautics and Space Administration,
Goddard Space Flight Center Greenbelt, Maryland 20771,
2018. a, b
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, 11, 6573–6593, https://doi.org/10.5194/bg-11-6573-2014, 2014. a
IOCCG: Ocean Colour Remote Sensing in Polar Seas, edited by: Babin, M., Arrigo,
K., Bélanger, S., and Forget, M.-H., IOCCG Report Series,
No. 16, International Ocean Colour Coordinating Group, Dartmouth, Canada,
No. 16, 2015. a
IOCCG: IOCCG Ocean Optics and Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation; Volume 1.0. Inherent Optical Property Measurements and Protocols: Absorption Coefficient, edited by: Neeley, A. R. and Mannino, A., Dartmouth, NS, Canada, International Ocean-Colour Coordinating Group (IOCCG), 78 pp., https://doi.org/10.25607/OBP-119, 2018. a, b
IOCCG Protocol Series: Particulate Organic Matter Sampling and Measurement Protocols: Consensus Towards Future Ocean Color Missions, edited by: Chaves, J. E., Cetinić, I., Dall'Olmo, G., Estapa, M., Gardner, W., Goñi, M., Graff, J. R., Hernes, P., Lam, P. J., Liu, Z., Lomas, M. W., Mannino, M., Novak, M. G., Turnewitsch, R., Werdell, P. J., and Westberry, T. K., IOCCG Ocean Optics and Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation, Volume 6.0, IOCCG, Dartmouth, NS, Canada, 2021. a
IPCC: Summary for Policymakers, in: Global Warming of 1.5 ∘C. An IPCC Special Report on the impacts of global warming of 1.5 ∘C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, edited by: Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., and Waterfield, T., Cambridge University Press, Cambridge, UK and New York, NY, USA, 3–24, https://doi.org/10.1017/9781009157940.001, 2018. a
IPCC: Summary for Policymakers, in: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, edited by: Shukla, P. R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D. C., Zhai, P., Slade, R., Connors, S., van Diemen, R., Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J., Portugal Pereira, J., Vyas, P., Huntley, E., Kissick, K., Belkacemi, M., and Malley, J., https://doi.org/10.1017/9781009157988.001, 2019. a
Juhls, B., Overduin, P. P., Hölemann, J., Hieronymi, M., Matsuoka, A., Heim, B., and Fischer, J.: Dissolved organic matter at the fluvial–marine transition in the Laptev Sea using in situ data and ocean colour remote sensing, Biogeosciences, 16, 2693–2713, https://doi.org/10.5194/bg-16-2693-2019, 2019. a
Juhls, B., Stedmon, C. A., Morgenstern, A., Meyer, H., Hölemann, J., Heim,
B., Povazhnyi, V., and Overduin, P. P.: Identifying Drivers of Seasonality in
Lena River Biogeochemistry and Dissolved Organic Matter Fluxes, Front.
Environ. Sci., 8, https://doi.org/10.3389/fenvs.2020.00053, 2020. a
Juhls, B., Lizotte, M., Matsuoka, A., Mével, G., Bécu, G., Overduin,
P. P., Devred, E., Doxaran, D., Ferland, J., Forget, M.-H., Hilborn, A.,
Leymarie, E., Maury, J., Oziel, L., Tisserand, L., Miles, D., Anikina, D.
O. J., Guilmette, C., Béguin, M., Couture, R.-M., Bossé-Demers, T.,
Laberge-Carignan, A., Chaillou, G., Bélanger, S., Bruyant, F., and
Babin, M.: Hydrographical, Biogeochemical and Biooptical Water Properties in
the Mackenzie Delta Region during 4 Expeditions from Spring to Fall in
2019, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.937587, 2021. a, b, c, d
Juhls, B., Matsuoka, A., Lizotte, M., Bécu, G., Overduin, P., El Kassar,
J., Devred, E., Doxaran, D., Ferland, J., Forget, M., Hilborn, A., Hieronymi,
M., Leymarie, E., Maury, J., Oziel, L., Tisserand, L., Anikina, D., Dillon,
M., and Babin, M.: Seasonal Dynamics of Dissolved Organic Matter in the
Mackenzie Delta, Canadian Arctic Waters: Implications for Ocean
Colour Remote Sensing, Remote Sens. Environ., 283, 113327,
https://doi.org/10.1016/j.rse.2022.113327, 2022. a
Key, R., Brewer, R., Stockwell, J., Guinasso, N., and Schink, D.: Some Improved
Techniques for Measuring Radon and Radium in Marine Sediments and in
Seawater, Marine Chem., 7, 251–264, https://doi.org/10.1016/0304-4203(79)90042-2,
1979. a
Kipp, L. E., Charette, M. A., Moore, W. S., Henderson, P. B., and Rigor, I. G.:
Increased Fluxes of Shelf-Derived Materials to the Central Arctic Ocean,
Sci. Adv., 4, eaao1302, https://doi.org/10.1126/sciadv.aao1302, 2018. a
Lawaetz, A. J. and Stedmon, C. A.: Fluorescence Intensity Calibration Using the
Raman Scatter Peak of Water, Appl. Spectros., 63, 936–940,
https://doi.org/10.1366/000370209788964548, 2009. a
Lefering, I., Röttgers, R., Utschig, C., and McKee, D.: Uncertainty Budgets
for Liquid Waveguide CDOM Absorption Measurements, Appl. Optics, 56,
6357, https://doi.org/10.1364/AO.56.006357, 2017. a
Leymarie, E., Doxaran, D., and Babin, M.: Uncertainties Associated to
Measurements of Inherent Optical Properties in Natural Waters, Appl. Optics, 49, 5415, https://doi.org/10.1364/AO.49.005415, 2010. a, b
Liu, C. M., Kachur, S., Dwan, M. G., Abraham, A. G., Aziz, M., Hsueh, P. R.,
Huang, Y. T., Busch, J. D., Lamit, L. J., Gehring, C. A., Keim, P., and
Price, L. B.: FungiQuant: A Broad-Coverage Fungal Quantitative Real-Time
PCR Assay, BMC microbiology, 12, 255, https://doi.org/10.1186/1471-2180-12-255,
2012. a
Ma, L., Dang, D. H., Wang, W., Evans, R. D., and Wang, W.-X.: Rare Earth
Elements in the Pearl River Delta of China: Potential Impacts of
the REE Industry on Water, Suspended Particles and Oysters, Environ.
Pollut., 244, 190–201, https://doi.org/10.1016/j.envpol.2018.10.015, 2019. a
Massicotte, P.: PMassicotte/eemR: eemR 1.0.1, Zenodo [code],
https://doi.org/10.5281/ZENODO.3257526, 2019. a
Massicotte, P.: PMassicotte/nunataryuk_data_paper: v1.0.1 (v1.0.1), Zenodo [code], https://doi.org/10.5281/zenodo.7603079, 2023. a
Massicotte, P., Asmala, E., Stedmon, C., and Markager, S.: Global Distribution
of Dissolved Organic Matter along the Aquatic Continuum: Across Rivers,
Lakes and Oceans, Sci. Total Environ., 609, 180–191,
https://doi.org/10.1016/j.scitotenv.2017.07.076, 2017. a
Massicotte, P., Amon, R. M. W., Antoine, D., Archambault, P., Balzano, S., Bélanger, S., Benner, R., Boeuf, D., Bricaud, A., Bruyant, F., Chaillou, G., Chami, M., Charrière, B., Chen, J., Claustre, H., Coupel, P., Delsaut, N., Doxaran, D., Ehn, J., Fichot, C., Forget, M.-H., Fu, P., Gagnon, J., Garcia, N., Gasser, B., Ghiglione, J.-F., Gorsky, G., Gosselin, M., Gourvil, P., Gratton, Y., Guillot, P., Heipieper, H. J., Heussner, S., Hooker, S. B., Huot, Y., Jeanthon, C., Jeffrey, W., Joux, F., Kawamura, K., Lansard, B., Leymarie, E., Link, H., Lovejoy, C., Marec, C., Marie, D., Martin, J., Martín, J., Massé, G., Matsuoka, A., McKague, V., Mignot, A., Miller, W. L., Miquel, J.-C., Mucci, A., Ono, K., Ortega-Retuerta, E., Panagiotopoulos, C., Papakyriakou, T., Picheral, M., Prieur, L., Raimbault, P., Ras, J., Reynolds, R. A., Rochon, A., Rontani, J.-F., Schmechtig, C., Schmidt, S., Sempéré, R., Shen, Y., Song, G., Stramski, D., Tachibana, E., Thirouard, A., Tolosa, I., Tremblay, J.-É., Vaïtilingom, M., Vaulot, D., Vaultier, F., Volkman, J. K., Xie, H., Zheng, G., and Babin, M.: The MALINA oceanographic expedition: how do changes in ice cover, permafrost and UV radiation impact biodiversity and biogeochemical fluxes in the Arctic Ocean?, Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, 2021. a
Matsuoka, A., Hill, V., Huot, Y., Babin, M., and Bricaud, A.: Seasonal
Variability in the Light Absorption Properties of Western Arctic Waters:
Parameterization of the Individual Components of Absorption for Ocean
Color Applications, J. Geophys. Res., 116, C02007,
https://doi.org/10.1029/2009JC005594, 2011. a, b
Matsuoka, A., Bricaud, A., Benner, R., Para, J., Sempéré, R., Prieur, L., Bélanger, S., and Babin, M.: Tracing the transport of colored dissolved organic matter in water masses of the Southern Beaufort Sea: relationship with hydrographic characteristics, Biogeosciences, 9, 925–940, https://doi.org/10.5194/bg-9-925-2012, 2012. a, b
Matsuoka, A., Hooker, S. B., Bricaud, A., Gentili, B., and Babin, M.: Estimating absorption coefficients of colored dissolved organic matter (CDOM) using a semi-analytical algorithm for southern Beaufort Sea waters: application to deriving concentrations of dissolved organic carbon from space, Biogeosciences, 10, 917–927, https://doi.org/10.5194/bg-10-917-2013, 2013. a
Matsuoka, A., Babin, M., Doxaran, D., Hooker, S. B., Mitchell, B. G., Bélanger, S., and Bricaud, A.: A synthesis of light absorption properties of the Arctic Ocean: application to semianalytical estimates of dissolved organic carbon concentrations from space, Biogeosciences, 11, 3131–3147, https://doi.org/10.5194/bg-11-3131-2014, 2014. a
Matsuoka, A., Boss, E., Babin, M., Karp-Boss, L., Hafez, M., Chekalyuk, A.,
Proctor, C. W., Werdell, P. J., and Bricaud, A.: Pan-Arctic Optical
Characteristics of Colored Dissolved Organic Matter: Tracing Dissolved
Organic Carbon in Changing Arctic Waters Using Satellite Ocean Color
Data, Remote Sens. Environ., 200, 89–101,
https://doi.org/10.1016/j.rse.2017.08.009, 2017. a
Maza-Márquez, P., Aranda, E., González-López, J., and Rodelas,
B.: Evaluation of the Abundance of Fungi in Wastewater Treatment
Plants Using Quantitative PCR (qPCR), in: Quantitative Real-Time
PCR, edited by: Biassoni, R. and Raso, A., Springer
New York, New York, NY, 2065, 79–94, https://doi.org/10.1007/978-1-4939-9833-3_7, 2020. a
McClelland, J. W., Déry, S. J., Peterson, B. J., Holmes, R. M., and Wood,
E. F.: A Pan-Arctic Evaluation of Changes in River Discharge during the
Latter Half of the 20th Century, Geophys. Res. Lett., 33, L06715,
https://doi.org/10.1029/2006GL025753, 2006. a
Mcguire, A. D., Anderson, L. G., Christensen, T. R., Scott, D., Laodong, G.,
Hayes, D. J., Martin, H., Lorenson, T. D., Macdonald, R. W., and Nigel, R.:
Sensitivity of the Carbon Cycle in the Arctic to Climate Change,
Ecol. Monogr., 79, 523–555, https://doi.org/10.1890/08-2025.1, 2009. a
McGuire, A. D., Lawrence, D. M., Koven, C., Clein, J. S., Burke, E., Chen, G.,
Jafarov, E., MacDougall, A. H., Marchenko, S., Nicolsky, D., Peng, S., Rinke,
A., Ciais, P., Gouttevin, I., Hayes, D. J., Ji, D., Krinner, G., Moore,
J. C., Romanovsky, V., Schädel, C., Schaefer, K., Schuur, E. A., and
Zhuang, Q.: Dependence of the Evolution of Carbon Dynamics in the Northern
Permafrost Region on the Trajectory of Climate Change, P.
Natl. Acad. Sci. USA, 115,
3882–3887, https://doi.org/10.1073/pnas.1719903115, 2018. a
Meyer, H., Schönicke, L., Wand, U., Hubberten, H. W., and Friedrichsen, H.:
Isotope Studies of Hydrogen and Oxygen in Ground Ice – Experiences with
the Equilibration Technique, Isot. Environ. Healt. S.,
36, 133–149, https://doi.org/10.1080/10256010008032939, 2000. a
Miller, M. P. and McKnight, D. M.: Comparison of seasonal changes in fluorescent dissolved organic matter among aquatic lake and stream sites in the Green Lakes Valley, J. Geophys. Res., 115, 1–14, https://doi.org/10.1029/2009jg000985, 2010. a
Mitchell, B. G., Kahry, M., Wieldand, J., and Stramska, M.: Determination of
Spectral Absorption Coefficients of Particles, Dissolved Material and
Phytoplankton for Discrete Water Samples., in: Ocean Optics Protocols for
Satellite Ocean Color Sensor Validation, edited by: Mueller, J. L. and Fargion, G. S.,
2, 231–258, Academic Press, San Diego, 2002. a
Moore, W. S.: The subterranean estuary: a reaction zone of ground water and sea water, Mar. Chem., 65, 111–125, https://doi.org/10.1016/S0304-4203(99)00014-6, 1999. a
Moore, W. S. and Arnold, R.: Measurement of 223Ra and 224Ra in coastal waters using a delayed coincidence counter, J. Geophys. Res., 101, 1321–1329, https://doi.org/10.1029/95JC03139, 1996. a
Murphy, K. R., Stedmon, C. A., Waite, T. D., and Ruiz, G. M.: Distinguishing
between Terrestrial and Autochthonous Organic Matter Sources in Marine
Environments Using Fluorescence Spectroscopy, Marine Chem., 108, 40–58,
https://doi.org/10.1016/j.marchem.2007.10.003, 2008. a
Murphy, K. R., Stedmon, A. C., Graeber, D., and Bro, R.: Fluorescence
Spectroscopy and Multi-Way Techniques. PARAFAC, Anal. Methods, 5,
6557, https://doi.org/10.1039/c3ay41160e, 2013. a, b, c
Neweshy, W., Planas, D., Tellier, E., Demers, M., Marsac, R., and Couture,
R.-M.: Response of Sediment Phosphorus Partitioning to Lanthanum-Modified
Clay Amendment and Porewater Chemistry in a Small Eutrophic Lake,
Environ. Sci.-Process. Impacts, 24, 1494–1507,
https://doi.org/10.1039/D1EM00544H, 2022. a
Nilsson, R. H., Larsson, K.-H., Taylor, A. F., Bengtsson-Palme, J., Jeppesen,
T. S., Schigel, D., Kennedy, P., Picard, K., Glöckner, F. O., Tedersoo,
L., Saar, I., Kõljalg, U., and Abarenkov, K.: The UNITE Database for
Molecular Identification of Fungi: Handling Dark Taxa and Parallel Taxonomic
Classifications, Nucleic Acids Res., 47, D259–D264,
https://doi.org/10.1093/nar/gky1022, 2019. a
Obu, J., Westermann, S., Bartsch, A., Berdnikov, N., Christiansen, H. H.,
Dashtseren, A., Delaloye, R., Elberling, B., Etzelmüller, B., Kholodov,
A., Khomutov, A., Kääb, A., Leibman, M. O., Lewkowicz, A. G., Panda,
S. K., Romanovsky, V., Way, R. G., Westergaard-Nielsen, A., Wu, T.,
Yamkhin, J., and Zou, D.: Northern Hemisphere Permafrost Map Based on
TTOP Modelling for 2000–2016 at 1 km2 Scale, Earth-Sci.
Rev., 193, 299–316, https://doi.org/10.1016/j.earscirev.2019.04.023, 2019. a
Osburn, C. L., Retamal, L., and Vincent, W. F.: Photoreactivity of Chromophoric
Dissolved Organic Matter Transported by the Mackenzie River to the
Beaufort Sea, Marine Chem., 115, 10–20,
https://doi.org/10.1016/j.marchem.2009.05.003, 2009. a
Parada, A. E., Needham, D. M., and Fuhrman, J. A.: Every Base Matters:
Assessing Small Subunit rRNA Primers for Marine Microbiomes with Mock
Communities, Time Series and Global Field Samples, Environ.
Microbiol., 18, 1403–1414, https://doi.org/10.1111/1462-2920.13023, 2016. a
Poulin, B. A., Ryan, J. N., and Aiken, G. R.: Effects of Iron on Optical
Properties of Dissolved Organic Matter, Environ. Sci. Tech.,
48, 10098–10106, https://doi.org/10.1021/es502670r, 2014. a
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P.,
Peplies, J., and Glöckner, F. O.: The SILVA Ribosomal RNA Gene
Database Project: Improved Data Processing and Web-Based Tools, Nucleic Acids
Res., 41, D590–D596, https://doi.org/10.1093/nar/gks1219, 2012. a
R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, R Foundation for Statistical Computing, Vienna, 2014. a
Reid, D. F., Key, R. M., and Schink, D. R.: Radium, Thorium, and Actinium
Extraction from Seawater Using an Improved Manganese-Oxide-Coated Fiber,
Earth Planet. Sc. Lett., 43, 223–226,
https://doi.org/10.1016/0012-821X(79)90205-X, 1979. a
Reimnitz, E., Toimil, L., and Barnes, P.: Arctic Continental Shelf Morphology
Related to Sea-Ice Zonation, Beaufort Sea, Alaska, Marine Geol.,
28, 179–210, https://doi.org/10.1016/0025-3227(78)90018-X, 1978. a
Romanovsky, V. E., Smith, S. L., and Christiansen, H. H.: Permafrost Thermal
State in the Polar Northern Hemisphere during the International Polar
Year 2007–2009: A Synthesis, Permafrost Periglac. Process., 21,
106–116, https://doi.org/10.1002/ppp.689, 2010. a
Schaefer, K., Lantuit, H., Romanovsky, V. E., Schuur, E. A., and Witt, R.: The
Impact of the Permafrost Carbon Feedback on Global Climate, Environ.
Res. Lett., 9, 85003, https://doi.org/10.1088/1748-9326/9/8/085003, 2014. a
Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W.,
Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M., Natali,
S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat,
C. C., and Vonk, J. E.: Climate Change and the Permafrost Carbon Feedback,
Nature, 520, 171–179, https://doi.org/10.1038/nature14338, 2015. a, b
Seeberg-Elverfeldt, J., Schlüter, M., Feseker, T., and Kölling, M.:
Rhizon Sampling of Porewaters near the Sediment-Water Interface of Aquatic
Systems: Rhizon Porewater Sampling, Limnol. Oceanogr.-Methods,
3, 361–371, https://doi.org/10.4319/lom.2005.3.361, 2005. a
Semiletov, I. P., Shakhova, N. E., Pipko, I. I., Pugach, S. P., Charkin, A. N., Dudarev, O. V., Kosmach, D. A., and Nishino, S.: Space–time dynamics of carbon and environmental parameters related to carbon dioxide emissions in the Buor-Khaya Bay and adjacent part of the Laptev Sea, Biogeosciences, 10, 5977–5996, https://doi.org/10.5194/bg-10-5977-2013, 2013. a
Shiklomanov, A. I., Holmes, R., McClelland, J., Tank, S., and Spencer, R.:
Arctic Great Rivers Observatory, Version 2021121212, Discharge [data set],
2021. a
Shinohara, N., Woo, C., Yamamoto, N., Hashimoto, K., Yoshida-Ohuchi, H., and
Kawakami, Y.: Comparison of DNA Sequencing and Morphological
Identification Techniques to Characterize Environmental Fungal Communities,
Sci. Rep., 11, 2633, https://doi.org/10.1038/s41598-021-81996-w, 2021. a
Stedmon, C., Amon, R., Rinehart, A., and Walker, S.: The Supply and
Characteristics of Colored Dissolved Organic Matter (CDOM) in the
Arctic Ocean: Pan Arctic Trends and Differences, Marine Chem.,
124, 108–118, https://doi.org/10.1016/j.marchem.2010.12.007, 2011. a, b, c
Stramski, D., Reynolds, R. A., Kaczmarek, S., Uitz, J., and Zheng, G.:
Correction of Pathlength Amplification in the Filter-Pad Technique for
Measurements of Particulate Absorption Coefficient in the Visible Spectral
Region, Appl. Optics, 54, 6763, https://doi.org/10.1364/ao.54.006763, 2015. a
Tank, S. E., Striegl, R. G., McClelland, J. W., and Kokelj, S. V.:
Multi-Decadal Increases in Dissolved Organic Carbon and Alkalinity Flux from
the Mackenzie Drainage Basin to the Arctic Ocean, Environ.
Res. Lett., 11, 054015, https://doi.org/10.1088/1748-9326/11/5/054015, 2016. a
Tanski, G., Lantuit, H., Ruttor, S., Knoblauch, C., Radosavljevic, B., Strauss,
J., Wolter, J., Irrgang, A. M., Ramage, J., and Fritz, M.: Transformation of
Terrestrial Organic Matter along Thermokarst-Affected Permafrost Coasts in
the Arctic, Sci. Total Environ., 581–582, 434–447,
https://doi.org/10.1016/j.scitotenv.2016.12.152, 2017. a
Tanski, G., Wagner, D., Knoblauch, C., Fritz, M., Sachs, T., and Lantuit, H.:
Rapid CO2 Release from Eroding Permafrost in Seawater, Geophys.
Res. Lett., 46, 11244–11252, https://doi.org/10.1029/2019GL084303, 2019. a, b
Tassan, S.: A Sensitivity Analysis of the “Transmittance-Reflectance”
Method for Measuring Light Absorption by Aquatic Particles, J.
Plankton Res., 24, 757–774, https://doi.org/10.1093/plankt/24.8.757, 2002. a
Tassan, S. and Ferrari, G. M.: An Alternative Approach to Absorption
Measurements of Aquatic Particles Retained on Filters, Limnol. Oceanogr., 40, 1358–1368, https://doi.org/10.4319/lo.1995.40.8.1358, 1995. a
Tassan, S. and Ferrari, G. M.: Variability of Light Absorption by Aquatic
Particles in the Near-Infrared Spectral Region, Appl. Optics, 42, 4802,
https://doi.org/10.1364/AO.42.004802, 2003. a
Tisserand, L., Dadaglio, L., Intertaglia, L., Catala, P., Panagiotopoulos, C.,
Obernosterer, I., and Joux, F.: Use of Organic Exudates from Two Polar
Diatoms by Bacterial Isolates from the Arctic Ocean: Diatom Exudates
and Arctic Bacteria, Philos. T. Roy. Soc. A, 378, 20190356,
https://doi.org/10.1098/rsta.2019.0356, 2020. a
Van Heukelem, L. and Thomas, C. S.: Computer-Assisted High-Performance Liquid
Chromatography Method Development with Applications to the Isolation and
Analysis of Phytoplankton Pigments, J. Chromatogr. A, 910, 31–49,
https://doi.org/10.1016/S0378-4347(00)00603-4, 2001. a
Viollier, E., Inglett, P., Hunter, K., Roychoudhury, A., and Van Cappellen, P.:
The Ferrozine Method Revisited: Fe(II)/Fe(III) Determination
in Natural Waters, Appl. Geochem., 15, 785–790,
https://doi.org/10.1016/S0883-2927(99)00097-9, 2000. a
Vonk, J. E. and Gustafsson, Ö.: Permafrost-Carbon Complexities, Nat.
Geosci., 6, 675–676, https://doi.org/10.1038/ngeo1937, 2013. a
Vonk, J. E., Sanchez-Garca, L., Van Dongen, B. E., Alling, V., Kosmach, D.,
Charkin, A., Semiletov, I. P., Dudarev, O. V., Shakhova, N., Roos, P.,
Eglinton, T. I., Andersson, A., and Gustafsson, A.: Activation of Old Carbon
by Erosion of Coastal and Subsea Permafrost in Arctic Siberia, Nature,
489, 137–140, https://doi.org/10.1038/nature11392, 2012. a
Vonk, J. E., Semiletov, I. P., Dudarev, O. V., Eglinton, T. I., Andersson, A.,
Shakhova, N., Charkin, A., Heim, B., and Gustafsson, Ö.: Preferential
Burial of Permafrost-Derived Organic Carbon in Siberian-Arctic Shelf
Waters, J. Geophys. Res.-Oceans, 119, 8410–8421,
https://doi.org/10.1002/2014JC010261, 2014. a
Voss, K., Leymarie, E., Flora, S., Carol Johnson, B., Gleason, A., Yarbrough,
M., Feinholz, M., and Houlihan, T.: Improved Shadow Correction for the Marine
Optical Buoy, MOBY, Optics Express, 29, 34411, https://doi.org/10.1364/OE.440479,
2021.
a, b
Walters, W., Hyde, E. R., Berg-Lyons, D., Ackermann, G., Humphrey, G.,
Parada, A., Gilbert, J. A., Jansson, J. K., Caporaso, J. G., Fuhrman, J. A.,
Apprill, A., and Knight, R.: Improved Bacterial 16S rRNA Gene (V4 and
V4-5) and Fungal Internal Transcribed Spacer Marker Gene Primers for
Microbial Community Surveys, mSystems, 1, https://doi.org/10.1128/mSystems.00009-15,
2016. a
Wegner, C., Bennett, K. E., de Vernal, A., Forwick, M., Fritz, M.,
Heikkilä, M., Ła̧cka, M., Lantuit, H., Laska, M., Moskalik, M.,
O'Regan, M., Pawłowska, J., Promińska, A., Rachold, V., Vonk, J. E.,
and Werner, K.: Variability in Transport of Terrigenous Material on the
Shelves and the Deep Arctic Ocean during the Holocene, Polar
Res., 34, 24964, https://doi.org/10.3402/polar.v34.24964, 2015. a
Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R., and
Mopper, K.: Evaluation of Specific Ultraviolet Absorbance as an Indicator of
the Chemical Composition and Reactivity of Dissolved Organic Carbon,
Environ. Sci. Technol., 37, 4702–4708,
https://doi.org/10.1021/es030360x, 2003. a, b
Wurl, O. and Sin, T. M.: Analysis of dissolved and particulate organic carbon with the HTCO technique, in: Practical Guidelines for the Analysis of Seawater, edited by: Wurl, O., CRC Press, Taylor and Francis Group, Boca Raton, FL, 33–48, https://doi.org/10.1201/9781420073072.ch2, 2009. a
Yamamoto, S., Alcauskas, J. B., and Crozier, T. E.: Solubility of Methane in
Distilled Water and Seawater, J. Chem. Eng. Data, 21,
78–80, https://doi.org/10.1021/je60068a029, 1976. a
Zhang, Y. and Xie, H.: Photomineralization and photomethanification of dissolved organic matter in Saguenay River surface water, Biogeosciences, 12, 6823–6836, https://doi.org/10.5194/bg-12-6823-2015, 2015. a
Zibordi, G., Voss, K. J., Carol Johnson, B., and Mueller, J. L.: Ocean Optics
and Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation,
Volume 3.0: Protocols for Satellite Ocean Colour Data Validation: In
Situ Optical Radiometry, Tech. rep., International Ocean Colour Coordinating
Group (IOCCG), 2019. a
Zielinski, R., Otton, J., and Budahn, J.: Use of Radium Isotopes to Determine
the Age and Origin of Radioactive Barite at Oil-Field Production Sites,
Environ. Pollut., 113, 299–309, https://doi.org/10.1016/S0269-7491(00)00188-3,
2001. a
Short summary
Permafrost thaw in the Mackenzie Delta region results in the release of organic matter into the coastal marine environment. What happens to this carbon-rich organic matter as it transits along the fresh to salty aquatic environments is still underdocumented. Four expeditions were conducted from April to September 2019 in the coastal area of the Beaufort Sea to study the fate of organic matter. This paper describes a rich set of data characterizing the composition and sources of organic matter.
Permafrost thaw in the Mackenzie Delta region results in the release of organic matter into the...
Altmetrics
Final-revised paper
Preprint